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1 Bad Proofs

Consider the following proof:

Claim: Every natural number can be described in fifteen English words or less.

Proof by well-ordering.

Let P(n) = “n can be described in fifteen English words or less”.

Let us assume that there are numbers n for which P(n) is not true. In this case, by the well-ordering
principle, there must be a least such number, and let that number be k. But then k can be described by
the following sentence “It’s the smallest natural number that cannot be described in fifteen English words
or less.” However, this is a description that requires fifteen words or less, and so we have a contradiction.
Thus P(n) is true for all numbers n.

What, if anything, is wrong with the above proof? The claim itself is easy to disprove. Let IV be the
number of words in the English language. Then there are about N'® possible descriptions of 15 words or
less. Thus if the claim were true, there would be at most N'® natural numbers. We know this is not the
case, so the claim is false.

The problem in the proof is that P(n) is actually not a well-defined proposition. In fact, being “describable
in fifteen English words or less” depends not only on the encoding of the numbers, but also on the context
in which this is spoken, and to define it, we need more arguments which pin down the encoding and context.
Consider the following scenario. I write down the number 10 on a piece of paper, and describe it as “the
number on the paper.” Simultaneously, someone in China writes down the number 11 on a piece of paper and
also describes it as “the number on the paper.” As you can see, the same description can refer to different
numbers depending on the context in which the description is given. This is why P(n) in not well-defined.

2 Stable Marriage

Consider a stable matching M on n boys and n girls. Suppose that Alice and Bob are married in M. Now
suppose that Alice and Bob move to Canada. Then we are left with a matching, say L, on n — 1 boys and
n — 1 girls. Is L stable?

In fact, L is stable. Suppose it is not. Then there exist some couples (b1, ¢g1) and (bs, g2) where by likes
g2 more than g1, and g5 likes by more than by. But these same two couples exist in M, and with the same
preferences, so by and g would be a rouge couple in M as well. Since M is stable, this is a contradiction.

Now consider two (not necessarily stable) matchings M and M’ on the same set of people. Let M |J M’
be the configuration in which each girl is married to the better of her two partners in M and M’. Is M |J M’
always a matching? Recall that in a matching, each boy is married to exactly one girl, and each girl is
married to exactly on boy.

Unfortunately, M |J M’ is not guaranteed to be a matching. Suppose M contains the couples (b1, g1) and
(b2, g2), and that M’ contains the couples (b, g1) and (b1, g2). Suppose that both g; and g prefer by over
by. Then in M |JM’, we have the pairings (b1, ¢1) and (b1, g2). Since b; is married to two girls, M | M’ is
not a matching.

Finally, consider the situation where there are n + 1 boys and n girls. Does the traditional marriage
algorithm produce a stable pairing between n of the boys and the n girls?

In order to see that TMA does indeed produce a stable pairing, consider a virtual girl g,41. Let this
girl have an arbitrary preference list, and for each boy, add this girl to the end of their preference lists. The



addition of this virtual girl simulates the running of TMA on the n+ 1 boys and n girls. Now TMA produces
a stable matching on this new configuration, so it does for the original. This same procedure can be used
for any k£ boys and m girls, by introducing virtual people into the problem.

3 Cake Cutting

Consider the following cake cutting algorithm for n = 3:
1. A cuts the cake into three equal pieces.
2. B trims the largest piece so it is equal to the second largest piece, throwing away the trimmings.

3. C chooses the largest piece.
4. B chooses between the two remaining pieces.
5. A takes the last piece.

Is this algorithm fair? Obviously not, since C' can assign the trimmings a value of 1, in which case he
ends up with none of the cake. How about in a weaker sense of fair, call it fair’, where each person gets at
least % of the remaining cake? It is not even fair’, if A values the trimmings and ends up with a trimmed
piece. (The trimmed piece would have value < % of the original, while the other two would be exactly %
of the original, resulting in the trimmed piece being less than % of the remaining.) However, it is fair’ for
B and C. It is for C since C gets to pick first. It is for B since at least two of the pieces are equally the
largest, and since he gets to pick second, he will get one of those.

Now the above algorithm can be made fair’ for A if we can somehow guarantee that A gets an untrimmed
piece. This can be done by forcing B to take the trimmed piece if C' does not pick it. Now it is still fair’
for C by the same reasoning as above. It is fair’ for A since she gets an untrimmed piece, worth % of the
original cake, so it must be at least % of the remaining cake. It is fair’ for B, since the trimmed piece is one
of the two largest pieces. Thus the modified algorithm is fair’.

In order to modify the algorithm to be fair, we need to decide what to do with the trimmings. Now
it is already fair for A, since she gets an untrimmed piece. So only B and C need to participate in the
partitioning of the trimmings. The obvious choice is to use cut-and-choose. So consider a new algorithm:

1. A cuts the cake into three equal pieces.

2. B trims the largest piece so it is equal to the second largest piece.

3. C chooses the largest piece.

4. B takes the trimmed piece if it is still available, or chooses between the two remaining pieces if not.
5. A takes the last piece.

6. B and C cut-and-choose the trimmings.

Is this new algorithm fair? As we said before, it is fair for A. Now consider B. Suppose he assigns a value
of x1 to the largest piece A cuts, x2 to the second largest, and x3 to the smallest, where x1 + xo + 23 = 1.
It is easy to see that x7 > %7 and 3 < % Then the trimmings have value 1 — z3. So B gets at least
To + H52 = ”31;””2 = 17;3 > 1721/3 = % of the cake. Thus it is fair for B. It is also fair for C, but I leave
the proof as an exercise.

Is the algorithm envy-free? Recall that envy-free means that each person does the best according to his
own measure. Unfortunately, it is not envy-free for A, since one of B and C get an untrimmed piece, worth

%, plus some of the trimmings, for a total of more than the % that A got.




By an extension of the above reasoning, we see that it is impossible for the algorithm to be envy-free
without giving A some of the trimmings. However, we can see that no matter how much of the trimmings
the person who got the trimmed piece gets, A will not envy him. This is because that person can get at
most the untrimmed piece plus all the trimmings, for exactly % of the cake according to A’s measure, the
same amount that A got. Thus I propose the following algorithm:

1. A cuts the cake into three equal pieces.
2. B trims the largest piece so it is equal to the second largest piece.

C chooses the largest piece.
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B takes the trimmed piece if it is still available, or chooses between the two remaining pieces if not.
5. A takes the last piece.

6. Divide the trimmings as follows. Let T" be the person who took the trimmed piece, and U be the one
between B and C' who took the untrimmed piece.

U cuts the trimmings into three equal pieces.
T takes one piece.
A takes a piece.

U takes the remaining piece.

It is easy to see that this algorithm is envy-free for A. We know that A cannot envy T'. A also does not
envy U, since she gets the same amount of the trimmed cake as U and more of the trimmings.

Now the algorithm is also envy-free for T'. Consider when B gets the trimmed piece. This piece is one
of the two largest pieces in the trimmed cake, so B gets at least as much of the trimmed cake as A or C.
Similarly, if C is T', the he gets to choose first out of the trimmed cake, so he gets the largest piece in the
trimmed cake. Since T gets the largest piece of the trimmed cake and gets the best of the trimmings, he
does better than A or U.

Finally, the algorithm is envy-free for U. By a similar argument as that for T, U gets at least as much
of the trimmed cake as the other two. Now since U gets to cut the trimmings, he gets the same amount of
trimmings as A and T. Thus he gets at least as much of the total cake as A or T.

Unfortunately, there is no known generalization of this n = 3 envy-free algorithm for higher n. A
complicated envy-free algorithm for n = 4 is known, but no envy-free algorithm for n > 5 has been discovered.



