CS 61b: Final Review

Data Structures

Steve Sinha and Winston Liaw

DISCLAIMER

We have NOT seen the exam.
We do NOT know the format of the exam

What we are presenting is what we
“think is important” for the exam

Steve Sinha and Winston Liaw. Final Review

Review Topics

= Inheritance, Method Calls
= Asymptotic Analysis
= Data Structures
o Binary Search Trees
o B-Trees
o Heaps
o Hash Tables
= Graphs
o DFS, BFS
o Topological Sort
o Dijkstra
o Kruskal

= Sorting
= Skip Lists
= Threading, Synchronization

Final Review

‘ Inheritance/Method Calls

= Given the class definitions on the next slide,
which lines in class foobarbaz are illegal?

Final Review

‘ Inheritance
package foo;
public classfoo {
static void f1() { ...}
protected boolean f2(int x) { ...}
private String f3(String s) { ...}
}

package foo;

import bar.bar;

public class foobarbaz {

static void main(String[] args) {

foo f = new foo();
bar r = new bar();
baz z;
r.f3(3);
£.£2(3);

package foo;
public class baz extends foo {
private String f3(String s) { ...}

z = (baz) f;

f = new baz();
£.£2(3);

z = (baz) f;

package bar;

import foo.foo;

public class bar extends foo {
protected boolean f3(int x) { ...}

}

zf1();
r.f1();
((foo) r).f1();
}
}

Steve Sinha and Winston Liaw

Final Review

‘ Inheritance/Method Calls

= Access table:

world package | child definer
public X X X X
private X
protected X X X
<default> X X

= Static methods called according to static type

= Child type can be assigned to parent variable
without a cast, but the reverse requires one, and
the dynamic types must match

Steve Sinha and Winston Liaw. Final Review

‘ Inheritance
package foo;
public classfoo {
static void f1() { ...}
protected boolean f2(int x) { ...}
private String f3(String) { ...}
}

package foo;

public class baz extends foo {
private String f3(String s) { ...}

}

package bar;

import foo.foo;

public class bar extends foo {
protected boolean f3(int x) { ...}

}

package foo;

import bar.bar;

public class foobarbaz {

static void main(String[] args) {

foo f = new foo();
bar r = new bar();
baz z;
r.£3(3); Il ILLEGAL
£.£2(3);
z = (baz) f; /I LLEGAL
f = new baz();
£.£2(3);
z = (baz) f;
zf1();
rf1(); /I ILLEGAL
((foo) r).f1();

Steve Sinha and Winston Liaw

| Asymptotic Analysis

= O — Upper bound/Worst case
= Q — Lower bound

= 0 —both

= 0 - strictly Upper bound

More detall...

Steve Sinha and Winston Liaw. Final Review 8

| Asymptotic Analysis

T(n) is O(f(n)) if and only if there exists positive constants C and N

such that

T(n) <= Cf(n) foralln>=N

5f(n)

T(n)

f(n)

T(n)=4n
f(n) =n

4nis O(n)

Steve Sinha and Winston Liaw

| Asymptotic Analysis

T(n) is O(f(n)) if and only if there exists positive constants C and N
such that

T(n)<=Cf(n)foralln>=N
N Cf(n)

T(n)

4

Steve Sinha and Winston Liaw. Final Review 10

| Asymptotic Analysis

T(n) is O(f(n)) if and only if there exists
positive constants C and N such that
T(n) <= Cf(n) foralln >=N

T(n) is Q(f(n)) if and only if there exists
positive constants C and N such that
T(n) >= C f(n) for alln >= N

Steve Sinha and Winston Liaw

| Asymptotic Analysis

T(n) is O(f(n)) if and only if
= T(n)is O(f(n))

and
= T(n)is Q(f(n))

Examples
5n2+1 is B(n?)
3n is O(n?), but 3n is NOT 8(n?)
because 3n is not Q(n?)

Steve Sinha and Winst

| Asymptotic Analysis Problem

= Find the running time of the following code:

int foo(int x) {

intans=1,

for (inti =0;i<x;i++){
for (intj =0;j <i; j++) {

ans*=(i +]j);

}

}

return ans;

}

Steve Sinha and Winston Liaw. Final Review

| Asymptotic Analysis Solution

= The nested loops give away the answer: the outer loop
executes x times, the inner loop an average of x/2 times,
for a running time of O(x?).

int foo(int x) {

intans=1;

for (inti =0;i<x;i++){
for (intj =0;j <i; j++) {

ans*=(i+]j);

}

}

return ans;

}

Steve Sinha and Winston Liaw. Final Review 14

| Trees: Binary Tree

Tree:

What are the Pre-, In-, and Post- Preorder : ABCEGFD
order traversals of this tree? Inorder : CEBAGDF
Postorder: ECBDFGA

Steve Sinha and Wint

Final Review

‘ Trees: BST Problem

= Remove 8 from:

Steve Sinha and Win:

Final Review 16

‘ Trees: BST Problem

= Remove 8 from:

M

Replace with successor (left-most nodein
right subtree)

Steve Sinha and Winston Liaw. Final Review

‘ Trees: BST Solution

= Final tree:

(o

Steve Sinha and Winston Liaw. Final Review 18

Trees: B-Tree of Order 4 / 2-3-4 Tree

= Suggest a sequence of operations that
would create the 2-3-4 tree.
You can use removal as well as insertion.

Steve Sinha and Winston Liaw. Final Review 19

‘ Trees: 2-3-4 Tree Solution

= Insert: 4,5,6,7, 8,9, 2 Remove: 9

Steve Sinha and Winston Liaw. Final Review 20

‘ Trees: 2-3-4 Tree Solution

= Insert: 4,5,6,7, 8,9, 2 Remove: 9

- Touch nodesize=3

Steve Sinha and Winston Liaw. Final Review 21

‘ Trees: 2-3-4 Tree Solution

= Insert: 4,5,6,7, 8,9, 2 Remove: 9

Steve Sinha and Winston Liaw. Final Review 22

‘ Trees: 2-3-4 Tree Solution

= Insert: 4,5, 6,7, 8,9, 2 Remove: 9

Steve Sinha and Winston Liaw. Final Review 23

‘ Trees: 2-3-4 Tree Solution

= Insert: 4,5, 6,7, 8,9, 2 Remove: 9

Touch nodesize=3

Steve Sinha and Winston Liaw. Final Review 24

‘ Trees: 2-3-4 Tree Solution

= Insert: 4,5,6,7, 8,9, 2 Remove: 9

Steve Sinha and Winston Liaw. Final Review 25

‘ Trees: 2-3-4 Tree Solution

= Insert: 4,5, 6,7, 8,9, 2 Remove: 9

Steve Sinha and Winston Liaw. Final Review 2

| Priority Queues — Problem

= Add 9, 76, 54, 3, 33, 21 to a max heap, using only
the array based representation

Steve Sinha and Winston Liaw. Final Review 27

‘ Priority Queues — Insertion

= Insert at the last position in the heap

= Reheapify up: if the element is greater than
its parent, swap them and repeat

= For an element at position n, its children are
at 2n+1 and 2n+2

= For an element at position n, its parent is at
floor[(n-1)/2]

Steve Sinha and Winston Liaw. Final Review 28

| Priotity Queues — Solution

= Add 9, 76, 54, 3, 33, 21 to a max heap, using only
the array based representation

Steve Sinha and Winston Liaw

| Priotity Queues — Solution

= Add 9, 76, 54, 3, 33, 21 to a max heap, using only
the array based representation

N
(odel [T [[~
[ele] |

Steve Sinha and Winst

Priority Queues — Solution

Add 9, 76, 54, 3, 33, 21 to a max heap, using only
the array based representation

D EEI

0 1 2 3 4 5

Steve Sinha and Winston Liaw Final Review

Priority Queues — Solution

Add 9, 76, 54, 3, 33, 21 to a max heap, using only
the array based representation

EE

0 1 2 3 4 5

Steve Sinha and Winston Liaw Final Review

Priority Queues — Solution

Add 9, 76, 54, 3, 33, 21 to a max heap, using only
the array based representation

P ——
|76|9‘54|3‘33‘ ‘

0 1 2 3 4 5

|76|33‘54|3‘9‘ ‘

0 1 2 3 4 5

Steve Sinha and Winston Liaw Final Review

Priority Queues — Solution

Add 9, 76, 54, 3, 33, 21 to a max heap, using only
the array based representation

|76|33‘54|3‘9‘21‘...

0 1 2 3 4 5

Tree
Representation

Steve Sinha and Winston Liaw Final Review

Priority Queues — Problem

Remove the max from the heap

|76|33‘54|3‘9‘21‘...

0 1 2 3 4 5

Steve Sinha and Winston Liaw Final Review

Priority Queues — Removal

Replace the max element with the last
element in the heap

Reheapify down: if one or both of its children
is larger than it, swap with the larger of the
children and repeat

For an element at position n, its children are
at 2n+1 and 2n+2

For an element at position n, its parent is at
floor[(n-1)/2]

Steve Sinha and Winston Liaw Final Review

Priority Queues — Solution

Remove the max from the heap

|76’|'§3754|3\9\21\...

0 1 2 3 4 5

|21|33\54|3\9‘

0 1 2 3 4 5

Steve Sinha and Winston Liaw Final Review

Priority Queues — Solution

Remove the max from the heap

|21|33‘54|3‘9‘

0 1 2 3 4 5

|54|33\21|3\9‘

0 1 2 3 4 5

Steve Sinha and Winston Liaw Final Review

Priority Queues — Solution

Remove the max from the heap

|54|33‘21|3‘9‘ ‘

0 1 2

4 5

&%

.
Tree
Representation d@‘/ \Q'
daw Final Review

Steve Sinha and Winston Li

Hash Table Problem

Draw the structure of a size 7 hash table after
insertion of keys with the following hash
codes: 0, 95, 21, 6, 64, 74, 3, 54, 34, 75, 10.

Steve Sinha and Winston Liaw Final Review

Hash Tables

High-level idea — 2 components

1. Big array called hash table of size M

2. Function h which maps keys to integer values
For (key, item), use h(key) % M to find
location of item in table
Linked list in each entry that stores all items
that map to that location (chaining)

Steve Sinha and Winston Liaw Final Review

Hash Table Solution

Draw the structure of a size 7 hash table after
insertion of keys with the following hash
codes: 0, 95, 21, 6, 64, 74, 3, 54, 34, 75, 10.

a
o] [o¢] L7 [o] [54] [
| A [so] 74| 18] [a¢
n val¥l%

Steve Sinha and Winston Liaw Final Review

| Searches (BES and DES) | Searches (BES and DFS) Problem

= BFS uses a queue, DFS uses a stack = Perform BFS and DFS on the graph, starting
public void BFS/DFS(Node start) { at node 1
Queue/Stack s = new Queue/Stack();
s.enqueue/push(start);
while (!s.empty()) {
Node n = s.dequeue/pop();
mark(n);
for (all children that are not yet marked) {
s.enqueue/push(child);
}
}
}

Steve Sinha and Winston Liaw. Final Review 43 Steve Sinha and Winston Liaw. Final Review 44

'Searches (BES and DFS) Solution Example graph
= Perform BFS and DFS on the graph, starting Infroductiom Flirt
at node 1
BFS DFS
1 1
2 2 Ad
5 3
3 4 Give me an ordering
4 5 | that | can do thesein
6 6 g sothat | don't violate
7 7 the dependencies (or
my date).
‘ Topological Sort ‘ Example graph
= Topological sorting gives us an ordering 1/1@ 211/~ 3/10
: . . Introductipr Flirt
which won't violate these dependencies.

o Perform a DFS from each source (root), marking
start and finish times.

o Now, our ordering is simply the nodes we visited
in decreasing finishing time. personal Ad

Introduction

Flirt

Date

Hug

Kiss

umm...

NoO s WNE

Steve Sinha and Winstor

Final Review 47 Steve Sinha and Winston Liaw. Final Review a8

' Dijkstra’s Algorithm Problem

= Find the shortest distances to each node
from node 1 8

Steve Sinha and Winston Liaw. Final Review 49

' Dijkstra’s Algorithm

= Set all distances initially to «, except the start
node, which should be set to 0

= Construct a min priority queue of the nodes,
with their distances as keys

= Repeatedly remove the minimum element,
updating each of its adjacent node’s
distances if they are still in the queue and if
the updated distance is less than the current
distance

Steve Sinha and Winston Liaw. Final Review

‘ Dijkstra’s Algorithm Solution

= Find the shortest distances to each node
from node 1 8

0 P.Q.

1(0)

2 ()

0 3 ()
4 ()

5 (o)

6 ()

7 ()

Steve Sinha and Winston Liaw. Final Review 51

Dijkstra’s Algorithm Solution

= Find the shortest distances to each node
from node 1
0

Steve Sinha and Winston Liaw. Final Review

‘ Dijkstra’s Algorithm Solution

= Find the shortest distances to each node
from node 1

0 P.Q.

x1(0)

x2 (3)

o 3(9
5(13)
4(13)

6 ()

7 (%)

Steve Sinha and Winston Liaw. Final Review 53

‘ Dijkstra’s Algorithm Solution

= Find the shortest distances to each node
from node 1

0 P.Q.

x1(0)

x2 (3)

o X3(9)
5(10)
4(11)

7 (16)

6 ()

Steve Sinha and Winston Liaw. Final Review 54

‘ Dijkstra’s Algorithm Solution

= Find the shortest distances to each node

from node 1
0 P.Q.
x1(0)
x2 (3)
18 x3(9)
X5 (10)
4(11)
7 (15)
6(18)

Steve Sinha and Winston Liaw. Final Review

‘ Dijkstra’s Algorithm Solution

= Find the shortest distances to each node

from node 1
0 P.Q.
x1(0)
x2 (3)
15 x3(9)
X5 (10)
x4 (11)
7(14)
6 (15)

Steve Sinha and Winston Liaw. Final Review

‘ Dijkstra’s Algorithm Solution

= Find the shortest distances to each node

from node 1
0 P.Q.
x1(0)
x2 (3)
15 x3(9)
X5 (10)
x4 (11)
X7 (14)
6 (15)

Steve Sinha and Winston Liaw. Final Review

‘ Dijkstra’s Algorithm Solution

= Find the shortest distances to each node

from node 1
0 P.Q.
x1(0)
x2 (3)
15 x3(9)
X5 (10)
x4 (11)
X7 (14)
x6 (15)

Steve Sinha and Winston Liaw. Final Review

 Kruskal’s Algorithm Problem

= Find the MST of the graph, using Kruskal's
Algorithm 8

Steve Sinha and Winston Liaw. Final Review

‘ Kruskal’s Algorithm

= Put each node into a set by itself

= Sort all the edges in ascending order by their
weights

= Pick the least-weight edge, if the edge
connects two nodes in different sets, add the
edge to the MST and merge the two sets

Steve Sinha and Winston Liaw. Final Review 60

10

' Kruskal’s Algorithm Solution

= Find the MST of the graph, using Kruskal's
Algorithm 8 Edges
35(1)
3-4(2)
12(3)
4-6 (4)
57 (5)
2:3(6)
56(8)
2-4(10)
5-6 (12)
1-5(13)
6-7 (16)

Steve Sinha and Winston Liaw. Final Review

' Kruskal’s Algorithm Solution

= Find the MST of the graph, using Kruskal's
Algorithm 8 Edges
X35 (1)
3-4(2)
1-2(3)
4-6 (4)
57 (5)
2:3(6)
56(8)
2-4(10)
5-6 (12)
1-5(13)
6-7 (16)

Steve Sinha and Winston Liaw. Final Review

' Kruskal’s Algorithm Solution

= Find the MST of the graph, using Kruskal's
Algorithm 8 Edges
X35 (1)
X3-4(2)
12(3)
4-6 (4)
57 (5)
2:3(6)
56(8)
2-4(10)
56 (12)
1-5(13)
6-7 (16)

Steve Sinha and Winston Liaw. Final Review

 Kruskal’s Algorithm Solution

= Find the MST of the graph, using Kruskal's
Algorithm 8 Edges
X35 (1)
X3-4(2)
x1-2 (3)
4-6 (4)
57 (5)
2:3(6)
56(8)
2-4(10)
56 (12)
1-5(13)
6-7 (16)

Steve Sinha and Winston Liaw. Final Review

' Kruskal’s Algorithm Solution

= Find the MST of the graph, using Kruskal's
Algorithm 8 Edges
— X35 (1)

13 x3-4(2)

x1-2 (3)

1 12 X4-6 (4)

57 (5)

2-3(6)

° © 5\
g 56(8)
2-4(10)
10 \e’ 56(12)

1-5(13)
67 (16)

Steve Sinha and Winston Liaw. Final Review

' Kruskal’s Algorithm Solution

= Find the MST of the graph, using Kruskal's
Algorithm 8 Edges
— X3-5 (1)
13 x3-4 (2)
x1-2 (3)
1 12 X4-6 (4)
6 x5-7 (5)
—g 5\ 16 2-3(6)
) 56(8)
2-4(10)
10 \e’ 56(12)
1-5(13)

6-7 (16)

Steve Sinha and Winston Liaw. Final Review

11

' Kruskal’s Algorithm Solution

= Find the MST of the graph, using Kruskal's
Algorithm 8 Edges
—_ X3-5 (1)
X3-4 (2)
x1-2 (3)
X4-6 (4)
X5-7 (5)
x2-3 (6)
56(8)
2-4(10)
56 (12)
1-5 (13)
6-7 (16)

3 12

1
6 85

Steve Sinha and Winston Liaw. Final Review 67

' Kruskal’s Algorithm Solution

= Find the MST of the graph, using Kruskal's

Algorithm
(5
1
6 @ 5
2
(4

6]
/]

@
2]

Disjoint Sets — Problem

Given the following array representation of a
disjoint sets data structure:

[25-353-32230]

a) Draw the forest that this array represents.

b) Give a sequence of union and find
operations whose execution will convert the
array to:

[25-32522220]

Steve Sinha and Winston Liaw. Final Review 6

‘ Disjoint Sets — Solution, cont.

2 5
I]\ I\
0 6 7 1 3

/ /\

9 4 8

[25-32522220] Find(4)

_____ []

, R \ Union(2,5)
0O 6 7 5 3 8 Find(8)
| /\

1 4

4
' Disjoint Sets — Solution
01 234 567829
[25-353-32230]
2 5
/] I\
0 6 7 1 3
/ [\
9 4 8
‘ Sorting

= Given the following steps, which sorting
algorithms were used in each case?

132789269375138 132789269375138
127892693751338 132726937513889
158926937271338 113272693753889
159268937271338 151327269373889
159138937272638 151327269373889
159132637278938 15913272637 3889
159132627378938 159132627 373889

159132627378938
159132627 373889

Steve Sinha and Winston Liaw. Final Review

12

Sorting

Selection Sort

132789269375138
127892693751338
158926937271338
159268937271338
159138937272638
159132637278938
159132627378938

Quick Sort

132789269375138
132726937513889
113272693753889
151327269373889
151327269373889
1591327 26373889
159132627 373889

159132627378938
159132627 373889

Steve Sinha and Winston Liaw Final Review

Sorting

Do a radix sort on the following sequence,
showing each step

(1087 643 2532 954 8174 65 340 1752)

Steve Sinha and Winston Liaw Final Review

Sorting
Step 1: sort by ones place

(1087 643 2532 954 8174 65 340 1752)

|

(340 2532 1752 643 954 8174 65 1087)

Steve Sinha and Winston Liaw Final Review

Sorting
Step 2: sort by tens place

(340 2532 1752 643 954 8174 65 1087)

M

(2532 340 643 1752 954 65 8174 1087)

Steve Sinha and Winston Liaw Final Review

Sorting
Step 3: sort by hundreds place

(2532 340 643 1752 954 65 8174 1087)

|

(65 1087 8174 340 2532 643 1752 954)

Steve Sinha and Winston Liaw Final Review

Sorting
Step 4: sort by thousands place

(651087 8174 340 2532 643 1752 954)

!

(65 340 643 954 1087 1752 2532 8174)

13

Skip List Problem

Write code for searching a skip list for a key.
Assume a skip list node is defined as
class Node {
Comparable key;
Node |€ft, right, up, down;
}
and that the skip list pointer references the
top left node.

Steve Sinha and Winston Liaw Final Review

Skip Lists

2D linked lists

Bottom level contains all keys, and each
subsequent level contains probabilistically
half the keys of the previous level

Each level starts at -~ and ends at +«
The keys in each level are in ascending order

Steve Sinha and Winston Liaw Final Review 80

Skip List Example
-00 9 0
! !
-0 +=.10 9 o0
! ! !
-0 +=>.]0) «—>9 <18 59 L
! ! !
-0+ 10 «*>3 «*9 <18 «*35 +*59 «> 84 +—>

Steve Sinha and Winston Liaw Final Review 81

Skip List Searching

Start at top left node

If the current key is equal to the search key,
return the node

If the next key is greater than the search key,
go down and repeat search

Otherwise go right and repeat search

Steve Sinha and Winston Liaw Final Review 82

Skip List Solution

Write code for searching a skip list for a key

Node search(Node n, Comparable key) {
if (n.key.equals(key)) {
return n;
} elseif (n.next.key.compareTo(key) > 0) {
return search(n.down, key);
}else{
return search(n.next, key);
}
}

Steve Sinha and Winston Liaw Final Review 83

Skip List Searching
l Search for 18
-00 9 ©0
! !]
-0 .10 9 0
I ! !
-°°<—'-110 «—9 <18 59 °I°
-0 «>]0 >3 <9 <18 «*35 «*59 <> 84 «—>

9 is not greater than 18, so move right

Steve Sinha and Winston Liaw Final Review 84

14

Skip List Searching

l Search for 18

-0 9

!

-00 <10 9

-0 +>]10 +—>9 <18 59

S N S

-0 +>.]10 +*3 +*9 <18 +*35 +*59 +> 84 —
* s greater than 18, so move down

Steve Sinha and Winston Liaw Final Review

!
O i
!

Skip List Searching
l Search for 18
-0 9 o]
! ! !
-00 10 9 o0
[!
-0 +=>.]Q) +—>9 <18 59 L
I I ! !
-0+ 10 «*>3 «*9 <18 «*35 +*59 «> 84 +—>

* s greater than 18, so move down

Steve Sinha and Winston Liaw Final Review 86

Skip List Searching

l Search for 18

00 +=>.10

!

-0 +>]10 +—>9 <18 59

! !

-0 +>.]10 +*3 +*9 <18 +*35 +*59 +> 84 —
18 is not greater than 18, so move right

«—> OO

Steve Sinha and Winston Liaw Final Review

!
1,
!

Skip List Searching

l Search for 18

00 +=>.10

!

-0 +>]10 +—>9 <18 59

! !

-0 +>.]10 «*3 +>9 «*18 «*35 «*59 «> 84 «—
18 is equal to 18, so return node

«—> OO

!
1,
!

Steve Sinha and Winston Liaw Final Review 88

Threading

Motivations:

a Modeling of simultaneous actions

a Counteract I/O Latency
Mechanism: Multiple threads of control

o Shared memory space, multiple program counters
Dangers:

o Shared access to memory can result in conflicts

o Multiple threads per processor can result in unequal time sharing (see
scheduling)

Conflict types:

o WAR (write after read)

o WAW (write after write)

a RAW (read after write)
How to avoid shared data conflicts? Locking
Dangers of locking? Deadlock

nd W

Credits

Thanks to CS 61b staff of
o Fall 2001

o Spring 2002

o Summer 2002

Thanks to Amir and Jack

Thanks to
o CMU - MIT
o Cornell — Johns Hopkins U

for slide and example ideas

15

Steve Sinha and Winston Liaw

GOOD LUCK!

(and may you not need it)

16

