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Programming Challenges and Solutions

Message Passing Programming 
Divide up domain in pieces
Each compute one piece
Exchange (send/receive) data

PVM, MPI, and many libraries

Global Address Space Programming
Each start computing
Grab whatever you need whenever

Global Address Space Languages 
and Libraries 

~10% of NERSC apps use some kind of PGAS-like model 2



Parallel Programming Problem: Histogram

• Consider the problem of computing a histogram:
-Large number of “words” streaming in from somewhere
-You want to count the # of words with a given property

• In shared memory
-Lock each bucket

A’s B’s C’s … Y’s Z’s

• Distributed memory: the array is huge and spread out
-Each processor has a substream and sends +1 to the 

appropriate processor… and that processor “receives”

A’s B’s C’s D’s Y’s Z’s…
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PGAS = Partitioned Global Address Space

• Global address space: thread may directly read/write 
remote data 
• Convenience of shared memory

• Partitioned: data is designated as local or global
• Locality and scalability of message passing
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UPC: production 
(multiple 

compilers)

CAF: Features in 
FORTRAN 
standard

UPC++: DEGAS 
research 
(HPGAS)

Others: Chapel, 
Titanium, X10, …

PGAS

PGAS Languages
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Private address 
space

Global address space

UPC++ Features

Multi-threading

Local 
task 
queue

Function shipping across nodes Multidimensional 
arrays
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p0 p1 p2

UPC++:  PGAS with “Mixins”

• Default execution model is SPMD, but

• UPC++ uses templates (no compiler 
needed)
shared_var<int> s; 
global_ptr<LLNode> g; 
shared_array<int> sa(8);

s: 16

g: 

x: 5
y: 

x: 7
y: 0

sa: 

18                  63           27

• Remote methods, async
async(place) (Function f, T1 arg1,…);
async_wait(); // other side does poll();

• Interoperability is key; UPC++ can be use with OpenMP or MPI

• Research in teams for 
hierarchical algorithms and 
machines
teamsplit (team) { ... }
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Random Access to Large Memory
Meraculous Genome Assembly Pipeline Graph as Distributed Hash Table

• Remote Atomics
• Dynamic Aggregation 
• Software Caching
• Fast I/O (HDF5)
• Bloom filters, locality-aware hashing,…

Grand Challenge: Metagenomes

Gbp
sequenced
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kmer analysis

contig generation
scaffolding

ideal overall time

~20% of Edison @ NERSC can 
assemble all human genomes 
produced worldwide in 2015

Contig generation step:
- Human: 44 hours to 20 secs
- Wheat: “doesn’t run” to 32 secs
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UPC++ Execution 
Model



UPC++ Basics

• UPC++ reserves all names that start with UPCXX or 
upcxx, or that are in the upcxx namespace

• Include “upcxx.h” for using UPC++

• Init and finalize the runtime
int upcxx::init(&argc, &argv); 

int upcxx::finalize();

• Number of processes in the parallel job and my ID
uint32_t upcxx::ranks();  // THREADS in UPC

uint32_t upcxx::myrank(); // MYTHREAD in UPC

Tip: Add “using namespace upcxx;” to save typing “upcxx::” 
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Hello World in UPC++

#include <upcxx.h>
#include <iostream>

using namespace upcxx; // save typing “upcxx::”

int main (int argc, char **argv)
{
init(&argc, &argv); // initialize UPC++ runtime
std::cout << ”Hello, I'm rank " << myrank() << " of "

<< ranks() << ".\n";
finalize(); // shut down UPC++ runtime
return 0;

}

• Any legal C/C++ program is also a legal UPC++ program
• If you compile and run it with P processes, it will run P 

copies of the program, also known as SPMD
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Example: Monte Carlo Pi Calculation

• Estimate Pi by throwing darts at a unit square
• Calculate percentage that fall in the unit circle

-Area of square = r2 = 1
-Area of circle quadrant = ¼ * p r2 = p/4

• Randomly throw darts at x,y positions
• If x2 + y2 < 1, then point is inside circle
• Compute ratio:

-# points inside / # points total
- p = 4*ratio 

r =1
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Each thread calls �hit� separately

Initialize random in 
math library

Each thread can use 
input arguments

Each thread gets its own 
copy of these variables

Pi in UPC++ (ported from the UPC version) 

• Independent estimates of pi:
main(int argc, char **argv) {

int i, hits, trials = 0;
double pi;

if (argc != 2)trials = 1000000;
else trials = atoi(argv[1]);

srand(myrank()*17);

for (i=0; i < trials; i++) hits += hit();
pi = 4.0*hits/trials;
printf("PI estimated to %f.", pi);

}
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Helper Code for Pi in UPC++ (same as UPC)

• Required includes:
#include <stdio.h>
#include <math.h> 
#include <upcxx.h> // #include <upc.h> for UPC

• Function to throw dart and calculate where it hits:
int hit() {

int const rand_max = 0xFFFFFF;
double x = ((double) rand()) / RAND_MAX;
double y = ((double) rand()) / RAND_MAX;
if ((x*x + y*y) <= 1.0) {

return(1);
} else {

return(0);
}

}

15



Shared vs. Private 
Variables



Private vs. Shared Variables in UPC++

• Normal C++ variables and objects are allocated in the 
private memory space for each rank.

• Shared variables are allocated only once, with thread 0
shared_var<int> ours; // use sparingly: performance
int mine;

• Shared variables may not have dynamic lifetime:  may not 
occur in a function definition, except as static.  Why?

Shared
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Shared Variables

Declaration:
shared_var<T> ours;

Explicit read and write with member functions get and put
T ours.get();
ours.put(const T& val);

Implicit read and write a shared variable in an expression
- Type conversion operator “T()” is overloaded to call get

int mine = ours; // C++ compiler generates an 
implicit type conversion from shared_var<T> to T

- Assignment operator “=” is overloaded to call put
ours = 5;

- Compound operators such as “+=” and “-=” involve both a read 
and a write.  Note that these are not atomic operations.
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Pi in UPC++: Shared Memory Style

shared variable to 
record hits

divide work up evenly

What is the problem with this program?

accumulate hits

• Parallel computing of pi, but with a bug
shared_var<int> hits;
main(int argc, char **argv) {

int i, my_trials = 0;
int trials = atoi(argv[1]);
my_trials = (trials + ranks() - 1)/ranks();
srand(myrank()*17);
for (i=0; i < my_trials; i++)   

hits += hit();
barrier();
if (myrank() == 0) {

printf("PI estimated to %f.", 4.0*hits/trials);
}

}
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Pi in UPC: Shared Memory Style

create a lock

accumulate hits 
locally

accumulate 
across threads

private hit count

same shared scalar variable
• Like pthreads, but use shared accesses judiciously

shared_var<int> hits;
shared_lock hit_lock;

main(int argc, char **argv) {
int i, my_hits, my_trials = 0;
int trials = atoi(argv[1]);
my_trials = (trials + THREADS - 1)/THREADS;
srand(MYTHREAD*17);
for (i=0; i < my_trials; i++) 

my_hits += hit();
hit_lock.lock();
hits += my_hits;
hit_lock.unlock();
barrier;
if (myrank == 0) 

printf("PI: %f", 4.0*hits/trials);
}

20



Shared Arrays

Declaration:
shared_array<Type>  sa;

Initialization (should be called collectively):
sa.init(size_t array_size, sizt_t blk_size);

Finalization (should be called collectively)
sa.finalize();

Accessing Arrays elements:
sa[index] = ...;
... = sa[index];
cout << sa[index];

21



Shared Arrays Are Cyclic By Default

• Shared scalars always live in thread 0
• Shared arrays are spread over the ranks
• Shared array elements are spread across the processes

shared_array<int> x, y, z;
x.init(ranks()); /* 1 element per process */
y.init(3*ranks()); /* 3 elements per process */
z.init(3*3); /* 2 or 3 elements per process */

• In the pictures below, assume ranks() = 4
-Blue elts have affinity to rank 0
x

y

z

As a 2D array, y is 
logically blocked 
by columns

Think of linearized 
C array, then map 
in round-robin

z is not
22



• Alternative fix to the race condition 
• Have each thread update a separate counter:

-But do it in a shared array
-Have one thread compute sum

shared_array<int> all_hits;
main(int argc, char **argv) {
all_hits.init(ranks());
for (i=0; i < my_trials; i++) 

all_hits[myrank()] += hit();
barrier();
if (myrank() == 0) {

for (i=0; i < ranks(); i++) hits += all_hits[i];
printf("PI estimated to %f.", 4.0*hits/trials);

}
}

Pi in UPC: Shared Array Version

all_hits is 
shared by all 
processors, 
just as hits was

update element 
with local affinity

23



Asynchronous 
Task Execution



UPC++ Async

• C++ 11 async function
std::future<T> handle 
= std::async(Function&& f, Args&&… args);

handle.wait();

• UPC++ async function
// Remote Procedure Call
upcxx::async(rank)(Function f, T1 arg1, T2 arg2,…);
upcxx::async_wait();

// Explicit task synchronization
upcxx::event e;
upcxx::async(place, &e)(Function f, T1 arg1, …);
e.wait();

25



Async Task Example

#include <upcxx.h>

void print_num(int num)
{ 
printf(“myid %u, arg: %d\n”, MYTHREAD, num);

}

int main(int argc, char **argv)
{ 
for (int i = 0; i < upcxx::ranks(); i++) {
upcxx::async(i)(print_num, 123); 

}
upcxx::async_wait(); // wait for all remote tasks to complete
return 0;

}
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Async with C++11 Lambda Function

using namespace upcxx;

// Rank 0 spawns async tasks
for (int i = 0; i < ranks(); i++) {
// spawn a task expressed by a lambda function
async(i)([] (int num) 

{ printf("num: %d\n”, num); },
1000+i); // argument to the λ function

}
async_wait(); // wait for all tasks to finish

mpirun –n 4  ./test_async

Output:
num:  1000
num:  1001
num:  1002
num:  1003 27



Finish-Async Programming Idiom

using namespace upcxx;

// Thread 0 spawns async tasks
finish {
for (int i = 0; i < ranks(); i++) {
async(i)([] (int num) 

{ printf("num: %d\n”, num); }, 
1000+i);

}
} // All async tasks are completed
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Example: Building A Task Graph

using namespace upcxx;
event e1, e2, e3;

t1

e
1

t2

t4t3

t5

e
3

e
2

t6

async(P1, &e1)(task1);
async(P2, &e1)(task2);

async_after(P3, &e1, &e2)(task3);
async(P4, &e2)(task4);
async_after(P5, &e2, &e3)(task5);

async_after(P6, &e2, &e3)(task6);

async_wait(); // all tasks will be done 
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Progress Function for Async Tasks

• Each UPC++ rank decides when to execute incoming 
tasks and send outgoing tasks by polling the task queue:
int advance(int max_in, int max_out)
- max_in maximum number of incoming tasks to be 

processed before returning
- max_out maximum number of outgoing tasks to be 

processed before returning
• Support different progress models, for example:

-Call advance() from the default thread
-Create a dedicated progress thread for polling

• Important Progress Properties
-Blocking functions in UPC++ call advance() internally to 

guarantee progress.  These only include: async_wait(), 
barrier(), event.wait(), finish and finalize().

-Other UPC++ functions are non-blocking
30



Dynamic Memory 
Management and 

Bulk Data Transfer



Dynamic Global Memory Management

• Global address space pointers (pointer-to-shared)
global_ptr<Type> ptr;

• Dynamic shared memory allocation
global_ptr<T> allocate<T>(uint32_t where,

size_t count);
void deallocate(global_ptr<T> ptr);

Example: allocate space for 512 integers on rank 2
global_ptr<int> p = allocate<int>(2, 512);

Remote memory allocation is not 
available in MPI-3, UPC or SHMEM.
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More on Global Pointers

• Global pointers examples:
global_ptr<int> p1;
global_ptr<void> p2;
global_ptr<void *> p3;

• Query the location (owner) of the data
Uint32_t where()

• Get the local pointer (virtual memory address)
T* raw_ptr()

• Pointer arithmetic is the same as that for local pointers
-There is no phase field in the global pointer

• Can dereference a pointer to read from or write to the 
global location
*ptr or ptr[i]

33



One-Sided Data Transfer Functions

// Copy count elements of T from src to dst
upcxx::copy<T>(global_ptr<T> src,

global_ptr<T> dst,
size_t count);

// Implicit non-blocking copy
upcxx::async_copy<T>(global_ptr<T> src,

global_ptr<T> dst,
size_t count);

// Synchronize all previous asyncs
upcxx::async_wait();

Similar to upc_memcpy_nb extension in UPC 1.3
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UPC++ Translation Example

shared_array <int>	sa;

sa.init(100,	1);	

sa[0] = 1;		//	“[]”	and	“=”	overloaded

C++	Compiler

UPC++	Runtime

Local	Access

Is	tmp_ref
local?

Yes No

tmp_ref =	sa.operator [] (0);

tmp_ref.operator = (1);

Remote	Access

Runtime 
Address 
Translation 
Overheads

35



When Address Translation Overheads Matter?

Case 1: access local data
1. Get the partition id of the 

global address (1 cycle)
2. Check if the partition is 

local (1 cycle)
3. Get the local address of 

the partition (1 cycle)
4. Access data through the 

local address (1 cycle)

3 CPU cycles for address 
translation vs. 1 cycle for 
real work 
(Bad: 3X overhead)

Case 2: access remote data
1. Get the partition id of the 

global address (1 cycle)
2. Check if the partition is 

local (1 cycle)
3. Get the local address of 

the partition (1 cycle)
4. Access data through the 

network (~104 cycles)

3 CPU cycles for address 
translation vs. ~104 cycles 
for real work 
(Good: 0.3% overhead)
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How to Amortize Address Translation Overheads

• Move data in chunks
copy(src, dst, count);

non-blocking async_copy is even better

• Cast pointer-to-shared to pointer-to-local 

Physical Shared-memory Virtual Address Space

int *p1 = (int *)sp1;

global_ptr<int>     sp1
global_ptr<int>    sp2

Proccess 1’s perspective

int *p2 = (int *)sp2;

P1 P2

UPC++ Process
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Completion Events for Non-blocking Put

Source buffer Dest. buffer
User 
owns 
buffers

System 
owns 
buffers

NB op starts Local completion Remote completion
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Signaling Copy in UPC++

async_copy_and_signal(global_ptr<T> src,
global_ptr<T> dst,
size_t count,
event *signal_event,
event *local_completion,
event *remote_completion);

• Three key events for a non-blocking put 
-Initiator side events :

• local completion: the src buffer is reusable
• remote completion: the data has arrived in the dst

buffer
-Target side event :

• signal event: the data has arrived in the dst buffer
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UPC++ Cheat Sheet for UPC Programmers

UPC UPC++

Num. of threads THREADS ranks()

My ID MYTHREAD myrank() 

Shared variable shared Type s shared_var<Type>  s

Shared array shared [bf] Type A[sz] shared_array<Type> A
A.init(sz, bf)

Pointer-to-shared shared Type *ptr global_ptr<Type> ptr

Dynamic memory 
allocation

shared void * 
upc_alloc(nbytes)

global_ptr<Type>  
allocate<Type>(place, count)

Bulk data transfer upc_memcpy(dst, src, sz) copy<Type>(src, dst, count)

Affinity query upc_threadof(ptr) ptr.where()

Synchronization upc_lock_t shared_lock

upc_barrier barrier()

Homework: how to translate upc_forall?
41



C++ 
Compiler 

UPC++
Program

UPC++ 
Templat
e Header 

Files

Linker

UPC++ 
idioms 

are 
translated  

to C++

Object 
file w. 

runtime 
calls

Exe

GASNet

System 
Libs

UPC++ 
Runtime

• Leverage C++ standards and 
compilers
- Implement UPC++ as a C++ 

template library
- C++ templates can be used as a 

mini-language to extend C++ 
syntax

• Many new features in C++11
- E.g., type inference, variadic

templates, lambda functions, r-
value references 

- C++ 11 is well-supported by 
major compilers

A “Compiler-Free” Approach for PGAS
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Installing UPC++

• Get source from Bitbucket
git clone https://bitbucket.org/upcxx/upcxx.git

• Get the optional multidimensional arrays package
cd upcxx/include 
git clone https://bitbucket.org/upcxx/upcxx-arrays.git

• Standard autotools build process
./Bootstrap
## Create a separate build directory and cd to it
configure --with-gasnet=/path/to/${conduit}-{seq|par}.mak
--prefix=/path/to/install CXX=upc++_backend_compiler
make; make install

• UPC++ is preinstalled on NERSC Edison (Cray XC30)
export MODULEPATH=$MODULEPATH:/usr/common/usg/degas/modulefiles
module load upc++
Or
. /usr/common/usg/degas/upcxx/default-intel/bin/upcxx_vars.sh

For details about installation instructions, please see 
https://bitbucket.org/upcxx/upcxx/wiki/Installing%20UPC++
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Compiling UPC++ Programs

• The upc++ compiler wrapper works like the MPI 
equivalent mpic++. For example,
## compile hello.cpp to hello.o
upc++ -c hello.cpp
## compile hello.cpp and link it to a.out
upc++ hello.cpp
## print the command line that upc++ would 
execute
upc++ -show 
## print the help message
upc++ -h

• You can also get UPC++ makefile definitions and shell 
environment variables to customize for your app.
https://bitbucket.org/upcxx/upcxx/wiki/Compiling%20UPC++%20Applications
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Running UPC++ Programs

• Run it like a MPI (multi-process) program, for example,
-On systems with MPI installed, mpirun
-On a Cray, aprun

• Use the conduit-specific gasnet spawner

• Commonly used GASNet env variables
## Increase the size of the global    
## partition per rank 
export GASNET_MAX_SEGSIZE=256MB

## Disable process-shared memory nodes
export GASNET_MAX_SUPERNODE=1
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Examples



Random Access Benchmark (GUPS)

// shared uint64_t Table[TableSize]; in UPC
shared_array<uint64_t> Table(TableSize);

void RandomAccessUpdate() 
{
uint64_t ran, i; 
ran = starts(NUPDATE / ranks() * myrank());
for(i = myrank(); i < NUPDATE; i += ranks()) {
ran = (ran << 1) ^ ((int64_t)ran < 0 ? POLY : 0);
Table[ran & (TableSize-1)] ^= ran;

}
}

0 4 8 12 1 5 9 13

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 6 10 14 3 7 11 15

Rank 0 Rank 1

Rank 2 Rank 3

Global data layout

local data layout

Main 
update
loop
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BoxLib

Applications

A number of BoxLib-based codes are being used in active
research, including

MAESTRO – low Mach number astrophysics
CASTRO – compressible radiation/hydrodynamics
Nyx – cosmology (baryon plus dark matter evolution)
LMC – low Mach number combustion
CNSReact – compressible reacting flow
ACTuARy – atmospheric chemical transport
PMAMR – subsurface modeling (AMANZI-S)

Almgren CCSE

Source: “BoxLib: A Software Framework for Block-
Structured AMR Applications” by Ann Almgren

A Software Framework for Block-
Structured AMR Applications

Used in many active research projects:

http://www.speedup.ch/workshops/w42_2013/ann.pdf
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Comm. Patterns in BoxLib

// Pack data and figure out
// communication neighbors

MPI_Irecv(…);
MPI_Irecv(…);
…
MPI_Isend(…);
MPI_Isend(…);
…

// Local computation for 
overlap

MPI_Waitall(…);

// Unpack data and continue

Data Structures and Operations (continued)

Fine-Fine
Physical BC
Coarse-Fine

Single-level operations
Fill boundary data from same-level grids
Fill data using physical boundary conditions
Integrate data at a level

Patch by patch for explicit algorithms
Solve over all patches at a level for implicit algorithms

Almgren CCSE

Cells in each box are stored in 
column- major order.  Boxes are 
laid out in Z-order in 3D space.  
Each processor gets a contiguous 
chunk of boxes of equal size.  

Each process does the 
following:
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Message Passing Protocols

Eager protocol for short msgs. • Rendezvous protocol for long msgs.

Message matching is done at the 
receiver.  The sender needs to know the 
receive buffer address to do RDMA and 
avoid buffering.

Sender Receiver

Message 
buffered

Message 
matched 
by Recv

Sender Receiver

Message 
matched 
by Recv

Inattentive CPUs may 
cause extra lags. 
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Active Receive (Sender Side Message Matching)

• Message matching is done at the sender  
• The sender uses signaling put to transfer the 

message payload and notify the receiver for 
completion

• The completion event is like a semaphore and can 
be used to count multiple operations

Sender Receiver

Actively 
post Recv
to the 
senderMessage 

matched 
by Send

Signal the 
completion 
event
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BoxLib Communication Performance

MPI w. OpenMP UPC++ w. OpenMP
No 
overlap

Total Time : 8.2
Communication time: 1.8
Chemistry time: 2.6
Hyp-Diff time: 3.8

Total Time : 7.9
Communication time: 1.6
Chemistry time: 2.6
Hyp-Diff time: 3.8

Overlap Total Time : 8.4
Communication time: 1.8
Chemistry time: 2.9
Hyp-Diff time: 3.8

Total Time : 7.8
Communication time: 1.3
Chemistry time: 2.8
Hyp-Diff time: 3.8

SMC benchmark on Edison, 128 processes, 1 
process per numa node, 12 openmp threads per 
process
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Progress thread in UPC++

• Mitigate CPU inattentiveness for better communication 
and computation overlaps

progress_thread_start()
progress_thread_stop()

• Three threading modes
-Non thread-safe: main thread explicitly transfers 

progress control to the progress thread and stop it 
before making UPC++ calls
-Thread-safe with GASNet PAR mode: will need non-

thread-specific handle support from GASNet-EX to 
match the UPC++ usage model
-Thread-safe with pthread mutex and GASNet SEQ 

mode: use a coarse-grained lock for gasnet calls 
54



Application: Full-Waveform Seismic Imaging
• Method	for	developing	models	of	earth	structure, applicable	to	…

• basic	science:	study	of	interior	structure	and	composition

• petroleum	exploration	and	environmental	monitoring

• nuclear	test-ban	treaty	verification

• Model	is	trained	to	predict	(via	numerical	simulation)	seismograms	

recorded	from	real	earthquakes	or	controlled	sources

• Training	defines	a	non-linear	regression	problem,	solved	iteratively

1000 km

Deep
mantle

Ocean
floor

HawaiiMarquesas
Tahiti

Samoa
Pitcairn

Macdonald
Hotspot volcanic islands

North

Seismic shear-wave velocity
beneath the central Pacific

low-velocity
fingers

low-velocity
plumes

Model Prediction

Observed Data

Time (s)

�(m) =
1

2
kd� g(m)k22

Seismic

model

Observed	

waveform

Predicted	

waveforms

Above:	global	full-waveform	seismic	model	
SEMum2	(French	et	al.,	2013,	Science)

Minimize:

Collaboration with Scott French et al, Berkeley Seismological Lab
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ConvergentMatrix: An array abstraction for distributed dense-matrix assembly with

asynchronous updates

CS294 Fall 2013: Modern Parallel Languages
Scott French

sfrench@seismo.berkeley.edu

I. INTRODUCTION

In large-scale inverse problems [1] (e.g. regression), one
must often assemble and manipulate dense matrices that are
too large to fit “in-core” on a single shared-memory com-
puter – instead requiring a distributed-memory approach.
Further, it is also common that the elements of these matrices
are themselves the result of (possibly many) distributed
computations. While the PBLAS and ScaLAPACK [2], for
example, provide a convenient abstraction for linear algebra
operations on distributed dense matrices, the problem of
distributed-matrix assembly is typically left to the user.

One particular class of assembly problem is that which
consists only of augmented assignments to distributed matrix
elements with an operator that is, or can be assumed to be
for practical purposes, commutative and associative, e.g. the
+= operator. Under this scenario, the stream of concurrent
update operations to any given matrix element may be
arbitrarily reordered, so long as each augmented assignment
is applied in isolation (i.e. is atomic w.r.t. the others). Here,
we explore the efficacy of implementing a distributed matrix
abstraction for this particular class of assembly problem
using UPC++ [3], a partitioned global address space (PGAS)
extension to the C++ language.

A. A motivating example

The above class of distributed assembly problem is
commonly encountered in inverse theory – namely, in the
assembly of a Gauss-Newton estimate for the Hessian of
a given misfit functional. For example, in the case of the
generalized least-squares misfit

�(m) =
1

2
kd� g(m)k22 + prior terms . . .

where d contains observed data, m is a proposed model,
and g(·) is the (non-linear) forward operator that predicts d
given m, the Hessian estimate is given by GTG, where G
is the typically non-sparse Jacobian of the forward operator:
Gij = @gi(m)/@mj .

Often, for inverse problems considering large numbers
of data, the Jacobian G (dimd ⇥ dimm where dimd �
dimm) is too large to form explicitly and we instead
form GTG (dimm ⇥ dimm) directly. Typically, column-
strided panels of the Jacobian, denoted G(i), are produced

GtG[ix,ix] += GtG_i[:,:]

L
o
c
a
l

D
is
tr
ib
u
te
d

Figure 1. A schematic illustration of the strided update operation discussed
in the text.

concurrently by distributed computations – one for each
datum i of size k, such that G(i) is k ⇥ n, where (1) n
is typically an order of magnitude smaller than dimm due
to thresholding of small partial-derivative values, and (2) k
is at least an order of magnitude smaller than n. For each i,
the (smaller) symmetric matrix GT

(i)G(i) must be “added”
to the global GTG, with the mapping between elements
given by a strided slicing operation; or, in pseudocode
GtG[ix,ix] += GtG_i[:,:] where ix is an indexing
array (see Fig. I-A).

II. DESIGN

A. Requirements

An implementation of a distributed dense-matrix abstrac-
tion tailored to the class of assembly problem detailed above
should provide:

1) Support for distribution schemes common in parallel
dense linear algebra (i.e. cyclic, block, block-cyclic);

2) Distributed augmented-assignment operations (for
commutative and associative operators), which are
applied in isolation of each other;

3) Generality, with no fixed assumptions regarding sym-
metry or rank of updates;

4) Minimal need for synchronization, with the exception
of a barrier-like “freeze” operation, which is guaran-
teed to return only after all updates have been applied
and the distributed matrix has converged to its final
value; and
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Alternative implementation: MPI-3 RMA
• Have to “design for” the MPI implementation

• NERSC Edison (XC30), so using Cray MPICH 7.0.3 (MPICH 3.0.x)
• Per-accumulate lock / unlock with exclusive locks

• Faster than shared (with or without single epoch)
• Would another implementation be faster? (possibly, but hard to say ...)
• In any case, similar code complexity to UPC++

https://github.com/swfrench/convergent-matrix-mpi

Weak scaling vs. UPC++
• Distributed matrix size fixed (180 GB)
• Dataset size scaled w/ concurrency

• 64 updates per MPI or UPC++ 
task + threads in NUMA domain

• NERSC Edison (Cray XC30)
• GNU Compilers 4.8.2 (-O3)
• Cray MPICH 7.0.3
• Up to 12,288 cores
• Matrix size: 180GBSe
tu

p
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• First-ever whole-mantle seismic model from numerical waveform 
tomography

• Reveals new details of deep structure not seen before
• Made feasible by Gauss-Newton

scheme, enabled by UPC++

Scientific results: A whole-mantle model

Right: Broad plumes in 
the earth’s lower 
mantle, including those 
beneath Pitcairn, 
Samoa, and other 
hotspots.
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S U M M A R Y
The radially anisotropic shear velocity structure of the Earth’s mantle provides a critical win-
dow on the interior dynamics of the planet, with isotropic variations that are interpreted in
terms of thermal and compositional heterogeneity and anisotropy in terms of flow. While
significant progress has been made in the more than 30 yr since the advent of global seis-
mic tomography, many open questions remain regarding the dual roles of temperature and
composition in shaping mantle convection, as well as interactions between different domi-
nant scales of convective phenomena. We believe that advanced seismic imaging techniques,
such as waveform inversion using accurate numerical simulations of the seismic wavefield,
represent a clear path forwards towards addressing these open questions through application
to whole-mantle imaging. To this end, we employ a ‘hybrid’ waveform-inversion approach,
which combines the accuracy and generality of the spectral finite element method (SEM) for
forward modelling of the global wavefield, with non-linear asymptotic coupling theory for
efficient inverse modelling. The resulting whole-mantle model (SEMUCB-WM1) builds on
the earlier successful application of these techniques for global modelling at upper mantle and
transition-zone depths (≤800 km) which delivered the models SEMum and SEMum2. Indeed,
SEMUCB-WM1 is the first whole-mantle model derived from fully numerical SEM-based
forward modelling. Here, we detail the technical aspects of the development of our whole-
mantle model, as well as provide a broad discussion of isotropic and radially anisotropic model
structure. We also include an extensive discussion of model uncertainties, specifically focused
on assessing our results at transition-zone and lower-mantle depths.

Key words: Inverse theory; Body waves; Surface waves and free oscillations; Seismic
anisotropy; Seismic tomography; Computational seismology.

1 I N T RO D U C T I O N

Global seismic tomography has made considerable progress over
the past 30 years in identifying robust, large-scale features in the
seismic velocity structure of the Earth’s mantle, including the large
low shear velocity provinces (LLSVPs) in the deep mantle (e.g.
Dziewonski et al. 1977; Lekić et al. 2012) and high-velocity anoma-
lies associated with subducted slabs (e.g. van der Hilst et al. 1997),
although the depth distribution of the latter is still debated (e.g.
Fukao & Obayashi 2013). The earliest 3-D global models, such

∗Now at: The National Energy Research Scientific Computing Center
(NERSC), Lawrence Berkeley National Laboratory, Berkeley, CA 94720,
USA.

as those of Dziewonski et al. (1977) and Woodhouse & Dziewon-
ski (1984), focusing on the lower and upper mantle, respectively,
were the first to obtain images of long-wavelength heterogeneity
(>5000 km). Since then, several generations of models have been
developed with steadily improving resolution. More recent global
studies, including both whole-mantle (e.g. Panning & Romanowicz
2006; Simmons et al. 2006, 2010; Houser et al. 2008; Kustowski
et al. 2008; Ritsema et al. 2011) and upper-mantle models (e.g.
Lekić & Romanowicz 2011a; Debayle & Ricard 2012; Schaeffer &
Lebedev 2013), with some claiming lateral resolution on the order of
1000 km, have extended the interpretable spectrum of model struc-
ture while largely confirming the long-wavelength features seen
previously (e.g. Lekić et al. 2012). At the same time, shorter wave-
length features (<2500 km) do not tend to correlate well across
global models (Becker & Boschi 2002; Dziewonski 2005), as

C⃝ The Authors 2014. Published by Oxford University Press on behalf of The Royal Astronomical Society 1303
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as those of Dziewonski et al. (1977) and Woodhouse & Dziewon-
ski (1984), focusing on the lower and upper mantle, respectively,
were the first to obtain images of long-wavelength heterogeneity
(>5000 km). Since then, several generations of models have been
developed with steadily improving resolution. More recent global
studies, including both whole-mantle (e.g. Panning & Romanowicz
2006; Simmons et al. 2006, 2010; Houser et al. 2008; Kustowski
et al. 2008; Ritsema et al. 2011) and upper-mantle models (e.g.
Lekić & Romanowicz 2011a; Debayle & Ricard 2012; Schaeffer &
Lebedev 2013), with some claiming lateral resolution on the order of
1000 km, have extended the interpretable spectrum of model struc-
ture while largely confirming the long-wavelength features seen
previously (e.g. Lekić et al. 2012). At the same time, shorter wave-
length features (<2500 km) do not tend to correlate well across
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C⃝ The Authors 2014. Published by Oxford University Press on behalf of The Royal Astronomical Society 1303

 by guest on January 4, 2015
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

Left: 3D rendering of 
low-velocity structure 
beneath the Hawaii 
hotspot.

(French and Romanowicz, 
2015, in revision) 58



Alternative implementation: MPI-3 RMA
Why the performance disparity?
• Very different approaches to achieving “generality”
• Determines what optimizations are available to programmer

upcxx::async
(general functions)

• Explicit buffer management
• Customized update function 

with domain knowledge
• Progress at both source and 

target is controllable
• One way bulk data movement 

can be guaranteed

MPI_Accumulate
(general data types)

• Opaque internal MPI buffers
• Generalized MPI data types + 

pre-defined merge ops
• Progress is impl.-specific and 

not controllable at target
• Data may take more than one 

trip to ensure passive target 
(ex: bulk accumulate in foMPI)

vs.

More opportunities to exploit
problem / domain specific knowledge 59



Multidimensional 
Arrays in UPC++



Multidimensional Arrays

• Multidimensional arrays are a common data structure in 
HPC applications

• However, they are poorly supported by the C family of 
languages, including UPC
-Layout, indexing must be done manually by the user
-No built-in support for subviews

• Remote copies of array subsets pose an even greater 
problem
-Require manual packing at source, unpacking at 

destination
-In PGAS setting, remote copies that are logically 

one-sided require two-sided coordination by the user
61



UPC++ Multidimensional Arrays

• True multidimensional arrays with sizes specified at 
runtime

• Support subviews without copying (e.g. view of interior)

• Can be created over any rectangular index space, with 
support for strides

• Local-view representation makes locality explicit and 
allows arbitrarily complex distributions
-Each rank creates its own piece of the global data 

structure

• Allow fine-grained remote access as well as one-sided 
bulk copies
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UPC++ Arrays Based on Titanium

• Titanium is a PGAS language based on Java
• Line count comparison of Titanium and other languages:

0
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NPB-CG NPB-FT NPB-MG

Li
ne

s 
of

 C
od

e

NAS Parallel Benchmarks
MPI+Fortran UPC Titanium

AMR Chombo C++/Fortran/MPI Titanium
AMR data structures 35000 2000

AMR operations 6500 1200
Elliptic PDE Solver 4200* 1500

* Somewhat more functionality in PDE part of C++/Fortran 
code 63



Titanium vs. UPC++

• Main goal: provide similar productivity and performance 
as Titanium in UPC++

• Titanium is a language with its own compiler
-Provides special syntax for indices, arrays
-PhD theses have been written on compiler 

optimizations for multidimensional arrays (e.g. Geoff 
Pike specifically for Titanium)

• Primary challenge for UPC++ is to provide Titanium-like 
productivity and performance in a library
-Use macros, templates, and operator/function 

overloading for syntax
-Provide specializations for performance
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Overview of UPC++ Array Library
• A point is an index, consisting of a tuple of integers

• A rectangular domain is an index space, specified with a 
lower bound, upper bound, and optional stride

• An array is defined over a rectangular                    
domain and indexed with a point

• One-sided copy operation copies all elements in the 
intersection of source and destination domains

ndarray<double, 2> A(r); A[lb] = 3.14;

point<2> lb = {{1, 1}}, ub = {{20, 10}};

rectdomain<2> r(lb, ub);

ndarray<double, 2, global> B = ...;
B.async_copy(A); // copy from A to B
async_wait(); // wait for copy completion

65
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Multidimensional Arrays in UPC++ (and Titanium)

• Titanium arrays have a rich set of operations

• None of these modify the original array, they just create 
another view of the data in that array

• You create arrays with a RectDomain and get it back 
later using A.domain() for array A
-A Domain is a set of points in space
-A RectDomain is a rectangular one

• Operations on Domains include +, -, * (union, different 
intersection)

translate restrict  slice (n dim to n-1) transpose
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Example: 3D 7-Point Stencil

• Code for each timestep:
// Copy ghost zones from previous timestep.
for (int j = 0; j < NEIGHBORS; j++)

allA[neighbors[j]].async_copy(A.shrink(1));
async_wait(); // sync async copies
barrier(); // wait for puts from all nodes
// Local computation.
foreach (p, interior_domain) {

B[p] = WEIGHT * A[p] +
A[p + PT(0, 0, 1)] + A[p + PT(0, 0, -1)] +
A[p + PT(0, 1, 0)] + A[p + PT(0, -1, 0)] +
A[p + PT(1, 0, 0)] + A[p + PT(-1, 0, 0)];

};
// Swap grids.
SWAP(A, B); SWAP(allA, allB);

Special foreach loop 
iterates over arbitrary 

domain

One-line copy

Point constructor

View of interior of A

Implemented using 
lambda, so “;” needed67



Arrays in Adaptive Mesh Refinement

• AMR starts with a coarse grid
over the entire domain

• Progressively finer AMR
levels added as needed over
subsets of the domain

• Finer level composed of
union of regular subgrids,
but union itself may not be
regular

• Individual subgrids can be
represented with UPC++
arrays

• Directory structure can be used to represent union of all 
subgrids
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Example: Ghost Exchange in AMR

foreach (l, my_grids.domain()) {
foreach (a, all_grids.domain()) {
if (l != a)

my_grids[l].copy(all_grids[a].shrink(1));
};
};

Proc 0 Proc 1
my_grids

all_grids

• Can allocate arrays in a global index space
• Let library compute intersections

"ghost" cells

Avoid null copies

Copy from interior of other grid
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Syntax of Points

• A point<N> consists of N coordinates
• The point class template is declared as plain-old data 

(POD), with an N-element array as its only member
template<int N> struct point {
cint_t x[N];
...

};
-Can be constructed using initializer list

point<2> lb = {{1, 1}};

• The PT function creates a point in non-initializer contexts
point<2> lb = PT(1, 1);

-Implemented using variadic templates in C++11, 
explicit overloads otherwise
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Array Template

• Arrays represented using a class template, with element 
type and dimensionality arguments
template<class T, int N,

class F1, class F2>
class ndarray;

• Last two (optional) arguments specify locality and layout
-Locality can be local (i.e. elements are located in 

the local memory space) or global (elements may 
be located elsewhere)
-Layout can be strided, unstrided, row, column; 

more details later

• Template metaprogramming used to encode type 
lattices for implicit conversions
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Array Implementation

• Local and global arrays have significant differences in 
their implementation
-Global arrays may require communication

• Layout only affects indexing
• Implementation strategy:

• Macros and template metaprogramming used to 
interface between layers 

GASNet

UPC++
Active 

Message
s

UPC++ Backend

global_tiarray and 
local_tiarray templates

ndarray template

Shared-
Memor

y 
Backen

d

Handles layout

Manage locality

Backends provide 
communication 

primitives

Runtime layer
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Foreach Implementation

• Macros and templates allow definition of foreach loops

• C++11 implementation using type inference and lambda:
#define foreach(p, dom)                        \

foreach_(p, dom, UNIQUIFYN(foreach_ptr_, p))

#define foreach_(p, dom, ptr_)                 \
for (auto ptr_ = (dom).iter(); !ptr_.done;   \

ptr_.done = true)                       \
ptr_ = [&](const decltype(ptr_.dummy_pt()) &p)

• Pre-C++11 implementation also possible using sizeof
operator
-However, loop is flattened, so performance is much 

slower
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C++11 Foreach Translation

• Lambda encapsulates body, passed to loop template
template<int N> struct rditer {
template<class F> rditer &operator=(const F &func) {
rdloop<N>::loop(func, p0.x, p1.x, loop_stride.x);
return *this;

}
};

• Loop template implemented recursively, with base case a 
template specialization that calls body (not shown)
-Result is N-d loop; GCC and Clang optimize it well

template<int N> struct rdloop {
template<class F, class... Is>
static void loop(const F &func, const int *lwb, const int *upb,

const int* stride, Is... is) {
for (int x = *lwb, u = *upb, s = *stride; x < u; x += s)
rdloop<N-1>::loop(func, lwb+1, upb+1, stride+1, is..., x);

}
}; 74



Layout Specializations

• Arrays can be created over any logical domain, but are 
laid out contiguously
-Physical domain may not match logical domain
-Non-matching stride requires division to get from 

logical to physical
(px[0] – base[0])*side_factors[0]/stride[0] +
(px[1] – base[1])*side_factors[1]/stride[1] +
(px[2] – base[2])*side_factors[2]/stride[2]

• Introduce template specializations to restrict layout
-strided: any logical or physical stride
-unstrided: logical and physical strides match
-row: matching strides + row-major format

• Default in UPC++ to provide best performance
-column: matching strides + column-major 75



Array Library Evaluation

• Evaluation of array library done by porting benchmarks 
from Titanium to UPC++
-Again, goal is to match Titanium’s productivity and 

performance without access to a compiler

• Benchmarks: 3D 7-point stencil, NAS CG, FT, and MG

• Minimal porting effort for these examples, providing 
some evidence that productivity is similar to Titanium
-Less than a day for each kernel
-Array code only requires change in syntax
-Most time spent porting Java features to C++
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NAS Benchmarks on One Node (GCC)
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Stencil Weak Scaling (GCC)
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Array Library Summary

• We have built a multidimensional array library for 
UPC++
-Macros and template metaprogramming provide a lot 

of power for extending the core language
-UPC++ arrays can provide the same productivity 

gains as Titanium
-Specializations allow UPC++ to match Titanium’s 

performance
• Some issues remain

-Improve performance of one-sided array copies
• Performance somewhat slower than manual 

packing/unpacking, as will be shown in miniGMG results
-GCC and Clang optimize complex template code 

well, but other compilers do not
• We are not the only ones to run into this (e.g. Raja, HPX)
• Need to lean on compiler implementers to do a better job
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Case Study: miniGMG

• We evaluate the productivity and performance of three 
implementations of miniGMG, a multigrid benchmark

• The three implementations use different communication 
strategies enabled by the PGAS model

1. Fine-grained communication, at the natural 
granularity of the algorithm

2. Bulk communication, with manual packing and 
unpacking by the user
• One-sided analogue of message passing

3. Higher-level array-based communication that 
offloads the work to an array library
• Still semantically one-sided

• We evaluate performance on two current platforms
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Multigrid Overview

• Linear Solvers (Ax=b) are ubiquitous in scientific computing
-Combustion, Climate, Astrophysics, Cosmology, etc. 

• Multigrid exploits the nature of elliptic PDEs to provide a 
hierarchical approach with O(N) computational complexity

• Geometric Multigrid is specialization in which the linear 
operator (A) is simply a stencil on a structured grid (i.e. 
matrix-free)

“MG V-Cycle”
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miniGMG Overview

• 3D Geometric Multigrid benchmark designed
to proxy MG solves in BoxLib and
CHOMBO-based AMR applications

• Defines a cubical problem domain
- Decomposed into cubical subdomains (boxes)
- Rectahedral collections of subdomains are assigned

to processes
- Decomposition preserved across all levels of V-Cycle

• MPI+OpenMP parallelization
• Configured to use…

- Fixed 10 U-Cycles (V-Cycle truncated when boxes are coarsened to 43)
- 7-pt stencil with Gauss Seidel Red-Black (GSRB) smoother that requires 

nearest-neighbor communication for each smooth or residual calculation.
- BiCGStab coarse-grid (bottom) solver

• Communication pattern is thus…
- Fixed 6 nearest-neighbor communication
- Message sizes vary greatly as one descends through the V-Cycle

(128KB -> 128 bytes -> 128KB)
- Requires neighbor synchronization on each step (e.g. two-sided MPI) 82



Array Creation in miniGMG

void create_grid(..., int li, int lk, int lk, int szi,
int szj, int szk, int ghosts) {

...
double *grid = upcxx::allocate<double>(...);

rectdomain<3> rd(PT(li-ghosts, lj-ghosts, lk-ghosts),
PT(li+szi+ghosts, lj+szj+ghosts,

lk+szk+ghosts));
point<3> padding = ...;
ndarray<double, 3> garray(grid, rd, true, padding);
...

}

Existing Grid Creation Code

Logical Domain of Grid

Padding of Grid Dimensions

Create Array Descriptor 
over Existing Grid Memory

Grid Domain

Column-Major 
Layout

Padding
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Communication Setup for miniGMG Arrays

point<3> dirs = {{ di, dj, dk }}, p0 = {{ 0, 0, 0 }};
for (int d = 1; d <= 3; d++) {
if (dirs[d] != 0)
dst = dst.border(ghosts, -d * dirs[d], 0);

if (dirs[d] == -1 && src.domain().lwb()[d] < 0)
src = src.translate(p0.replace(d, dst.domain().upb()[d] -

ghosts));
else if (dirs[d] == 1 && dst.domain().lwb()[d] < 0)
src = src.translate(p0.replace(d, -src.domain().upb()[d] +

ghosts));
}

rectdomain<3> isct = dst.domain()*src.domain().shrink(ghosts);

send_arrays[PT(level, g, nn, i, j, k)] = src.constrict(isct);
recv_arrays[PT(level, g, nn, i, j, k)] = dst.constrict(isct);

Circular Domain Shift
at Boundaries

Compute Intersection

Save Views of Source and Destination Restricted to Intersection
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Bulk Communication Strategy

• Bulk version uses manual packing/unpacking
-Similar to MPI code, but with one-sided puts instead 

of two-sided messaging

i (unit stride) i (unit stride)

send
buffers

recv
buffer

box 2
(remote)

box 0
(local)

box 3
(remote)

1 32 4
box 1

(remote)

1

2

3

4 recv
buffer
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Fine-Grained Communication Strategy

• Fine-Grained version does multiple one-sided puts of 
contiguous data
-Puts are at natural granularity of the algorithm

i (unit stride) i (unit stride)

box 2
(remote)

box 0
(local)

box 3
(remote)

2 box 1
(remote)

1
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Array Communication Strategy

• Array version logically copies entire ghost zones, 
delegating actual procedure to array library
-Copies have one-sided semantics

i (unit stride) i (unit stride)

box 2
(remote)

box 0
(local)

box 3
(remote)

box 1
(remote)

2

1
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Communication Coordination

• Shared array used to coordinate communication
shared_array<global_ptr<subdomain_type>, 1> 
global_boxes;

• Bulk version must carefully coordinate send and receive 
buffers between ranks
-Must ensure right buffers are used, same ordering 

for packing and unpacking elements
-Special cases for ghost zones at faces, edges, and 

corners
-Most difficult part of code

• Minimal coordination required for fine-grained and array
-Only need to obtain location of target grid from 

shared array
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Ghost-Zone Exchange Algorithms

• Pack/unpack parallelized using OpenMP in bulk version
-Effectively serialized in fine-grained and array

Bulk Fine-Grained Array

Barrier Yes Yes Yes

Pack Yes No No

Async
Puts/Copies

1 per 
neighboring 

rank

1 for each 
contiguous 

segment

1 per 
neighboring grid

Async Wait Yes Yes Yes

Barrier Yes Yes Yes

Unpack Yes No No

~ Line Count of 
Setup + Exchange 884 537 399
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Bulk Copy Code

• Packing/unpacking code in bulk version:
...
for (int k = 0; k < dim_k; k++) {

for (int j = 0; j < dim_j; j++) {
for (int i = 0; i < dim_i; i++) {

int read_ijk = (i+ read_i) + (j+ read_j)*
read_pencil + (k+ read_k)* read_plane;

int write_ijk = (i+write_i) + (j+write_j)*
write_pencil + (k+write_k)*write_plane;

write[write_ijk] = read[read_ijk]; 
}

}
}

• Code must be run on both sender and receiver
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Fine-Grained Copy Code

• Fine-grained code matches shared-memory code, but 
with async_copy instead of memcpy:
...
for (int k = 0; k < dim_k; k++)

for (int j = 0; j < dim_j; j++) {
int roff = recv_i + (j+recv_j)*rpencil +

(k+recv_k)*rplane;
int soff = send_i + (j+send_j)*spencil +

(k+send_k)*splane;
async_copy(sbuf+soff, rbuf+roff, dim_i);

}
}

• Takes advantage of fact that source and destination 
layouts match
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Array Copy Code

• Array version delegates actual copies to array library:
rcv = recv_arrays[PT(level, g, nn, i, j, k)];
rcv.async_copy(send_arrays[PT(level, g, nn, i, j, k)]);

• Array library behavior for cases that occur in miniGMG:
1. If the source and destination are contiguous, then one-sided 

put directly transfers data
2. Otherwise, elements packed into contiguous buffer on source

a) If the elements and array metadata fit into a medium 
active message (AM), a medium AM is initiated

– AM handler on remote side unpacks into destination
b) Otherwise, a short AM is used to allocate a remote buffer

– Blocking put transfers elements to remote buffer
– Medium AM transfers array metadata
– AM handler on remote side unpacks and deallocates
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Platforms and Experimental Setup

• Cray XC30 (Edison), located at NERSC
-Cray Aries Dragonfly network
-Each node has two 12-core sockets
-We use 8 threads/socket

• IBM Blue Gene/Q (Mira), located at Argonne
-5D torus network
-Each node has 16 user cores, with 4 threads/core
-We use 64 threads/socket

• Fixed (weak-scaling) problem size of 1283 grid/socket 
• Two experiments on each platform

-1 MPI process, 8 or 64 OpenMP threads per socket 
-8 MPI processes, 1 or 8 OpenMP threads per socket
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Communication Histogram

• Histogram of message sizes per process, when using 1 
process/socket, for all three versions on Cray XC30
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Histogram of 1 MPI Process vs. 8/Socket 

• Same overall problem size per socket
• Fewer small messages per process when using 8 

processes, but more small messages per socket
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Performance Results on Cray XC30

• Fine-grained and array versions do much better with 
higher injection concurrency
-Array version does not currently parallelize 

packing/unpacking, unlike bulk/MPI
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Performance Results on IBM Blue Gene/Q

• Fine-grained does worse, array better on IBM than Cray
• Using more processes improves fine-grained and array 

performance, but fine-grained still significantly slower
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miniGMG Summary

• Array abstraction can provide better productivity than 
even fine-grained, shared-memory-style code, while 
getting close to bulk performance
-Unlike bulk, array code doesn’t require two-sided 

coordination

-Further optimization (e.g. parallelize packing/unpacking) 
can reduce the performance gap between array and bulk

-Existing code can be easily rewritten to take advantage of 
array copy facility, since changes localized to 
communication part of code
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Lessons Learned

• Many productive language features can be implemented 
in C++ without modifying the compiler
-Macros and template metaprogramming provide a lot 

of power for extending the core language
• Many Titanium applications can be ported to UPC++ 

with little effort
-UPC++ can provide the same productivity gains as 

Titanium
• However, analysis and optimization still an open 

question
-Can we build a lightweight standalone 

analyzer/optimizer for UPC++?
-Can we provide automatic specialization at runtime 

in C++?
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Takeaways

• Communicate more often 
- use non-blocking one-sided operations

• Move computation instead of data 
- use async and event-driven execution

• Express algorithms with high-level data structures
- use Titanium-style multidimensional arrays

• Easy on-ramp
- interoperate w. existing MPI+OpenMP codes

• We look forward to collaboration!
- share knowledge and experience beyond tools

UPC++: https://bitbucket.org/upcxx
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