Kathy Yelick'?, Yili Zheng', Amir Kamil':3

Lawrence Berkeley National Laboratory
2Department of EECS, UC Berkeley
SDepartment of EECS, University of Michigan

~

PGAS 2015 Tutorial P\I .ﬁ‘
September 16, 2015

BERKELEY LAB

e Berkeley National Laboratory

Programming Challenges and Solutions

Message Passing Programming Global Address Space Programming
Divide up domain in pieces Each start computing

Each compute one piece Grab whatever you need whenever
Exchange (send/receive) data

Global Address Space Languages
PVM, MPI, and many libraries and Libraries

~

~ o i . A
upQ+ 10% of NERSC apps use some kind of PGAS-like model >

BERKELEY LAB

Parallel Programming Problem: Histogram

» Consider the problem of computing a histogram:
—-Large number of “words” streaming in from somewhere
-You want to count the # of words with a given property

* In shared memory

—Lock each bucket
As |Bs |Cs|... |Ys |Zs

* Distributed memory: the array is huge and spread out

—Each processor has a substream and sends +1 to the
appropriate processor... and that processor “receives”

As | B’s C's [D’s Y's | Z's

up(C’ :

PGAS = Partitioned Global Address Space

* Global address space: thread may directly read/write
remote data

« Convenience of shared memory
* Partitioned: data is designated as local or global
* Locality and scalability of message passing

Global address space

PGAS Languages

UPC: production CAF: Features In
(multiple FORTRAN
compilers) standard

HEGH DECAN Others: Chapel,

research T
(HPGAS) Titanium, X10, ...

UPC++ Features

Global address space

Function shipping across nodes Multidimensional

.
.
-~
. "
a
.
. L
‘‘‘‘‘
.
. "
=

R »

Multi-threading Private address

space

upC ;

UPC++: PGAS with “Mixins”

« UPC++ uses templates (no compiler s: 16 X: 5// x: 7
needed) / y: C]y: 0
shared_var<int> s; !
global ptr<LLNode> g; 18 ’/ ! - 63 27
shared_array<int> sa(8); ll \\
. . sa.
« Default execution model is SPMD, but 5

« Remote methods, async

async(place) (Function f, T1 argl,..);
async_wait(); // other side does poll();

« Research in teams for
hierarchical algorithms and
machines

teamsplit (team) { ... }

* Interoperability is key; UPC++ can be use with OpenMP or MPI

N
A

u ++ 7 rjr—r>| ‘"1
L BERKELEY LAB

Why Should You Care about PGAS?

Latency between Two MICs via Point-to-Point Latency Comparison on
Infiniabnd Edison (Cray XC30)
35 - 10 -
==MPI|_Send/Recv g - «=MPI_Send/Recv
30 - - t
e=G==ypc_memput 8 - upc_mempu
__25 - 7 upc_memget
a upc_memget 2 |
;20 7] ~— 6
>
Q O 5 4
c c
2151 24 -
3 3
10 - 3 7
b o2 -
- e
0 t | 17
t
0 T T T T T T T T T T T T T T 1 e O
T~ AN T OO0 O N0 O NI 00 O N T r
~— N ~—-— NI O O ©
T AN OOO ™M
~— N < o ‘«_D

U p Qf Size (bytes) |)\l v

Random Access to Large Memory

Graph as Distributed Hash Table
Remote Atomics

* Dynamic Aggregation

« Software Caching

« Fast /O (HDF5)

« Bloom filters, locality-aware hashing,...

Meraculous Genome Assembly Pipeline

Contig generation step:

kmer analysis ===-==
- Human: 44 hours to 20 secs 4096 , contig generation -
i) scaffolding
- Wheat: “doesn’t run” to 32 secs 2048y e i ideal overall time e
—
Grand Challenge: Metagenomes a 1% m T, Y
100 ®» g st e
90 ® © # Soil $ S,
- 80 B Marine 256 A, By
270 Groundwater | e, -
e} 12 LLTIN . "n.....,.. -
OEJ 60 - ©® Bioreactor 8 T N
% 50 o e,
& 40 .
S
=

0

0 10Gbp

sequenced

up(C’

30
20 1 °
10 - ﬂ e

20 30

T
overall time

~20% of Edison @ NERSC can

assemble all human genomes
produced worldwide in 2015

~

A
reeeeee)| !

BERKELEY LAB

UPC++ Execution
Model

UPC++ Basics

« UPC++ reserves all names that start with UPCXX or
upcxx, or that are in the upcxx namespace

* Include “upcxx.h” for using UPC++
* [nit and finalize the runtime
int upcxx::init(&argc, &argv);
int upcxx::finalize();
* Number of processes in the parallel job and my ID

uint32_t upcxx::ranks(); // THREADS in UPC
uint32_t upcxx::myrank(); // MYTHREAD in UPC

Add “using namespace upcxx;”to save typing “upcxx::”

upﬁ+ 11

Hello World in UPC++

* Any legal C/C++ program is also a legal UPC++ program

 If you compile and run it with P processes, it will run P
copies of the program, also known as SPMD

#include <upcxx.h>
#include <iostream>

using namespace upcxx; // save typing “upcxx::”

int main (int argc, char sxxargv)
{
init(&argc, &argv); // initialize UPC++ runtime
std::cout << "Hello, I'm rank " << myrank() << " of "
<< ranks() << ".\n";
finalize(); // shut down UPC++ runtime
return 0,

up@* 12 [

BERKELEY LAB

Example: Monte Carlo Pi Calculation

» Estimate Pi by throwing darts at a unit square
 Calculate percentage that fall in the unit circle

-Area of square =r2 = 1

-Area of circle quadrant = ¥4 * n r = n/4
 Randomly throw darts at x,y positions
« If X2 + y?2 < 1, then point is inside circle
« Compute ratio:

—# points inside / # points total

- 1 = 4*ratio

r =1

upﬁ+ 13

Pi in UPC++ (ported from the UPC version)

 Independent estimates of pi:

main (int argc, char **argv) ({
int i, hits, trials = 0; Each thread gets its own
double pi; copy of these variables

if (argec '= 2)trials = 1000000; |Each thread can use
input arguments

else trials = atoi(argv|[l]);

Initialize random in
math library

srand (myrank () *17) ;

for (i=0; i < trials; i++) hits += hit();
pi = 4.0*hits/trials;
printf ("PI estimated to %f.", pi);

Each thread calls “hit” separately

upC - B

Helper Code for Pi in UPC++ (same as UPC)

* Required includes:

#include <stdio.h>
#include <math.h>

#include <upcxx.h> // #include <upc.h> for UPC

* Function to throw dart and calculate where it hits:
int hit() {
int const rand max = OxFFFFFF;
double x = ((double) rand()) / RAND MAX;
double y = ((double) rand()) / RAND MAX;
if ((x*x + y*y) <= 1.0) {
return(l) ;
} else {
return (0) ;
}
}

up(’ 15 [

BERKELEY LAB

Shared vs. Private
Variables

S

Private vs. Shared Variables in UPC++

* Normal C++ variables and objects are allocated in the

private memory space for each rank.

« Shared variables are allocated only once, with thread O
shared_var<int> ours; // use sparingly: performance
int mine;

« Shared variables may not have dynamic lifetime: may not

occur in a function definition, except as static. Why?

Rank, Rank, Rank,

(7))

7]

o

T O ours: | Shared
T O :

© © ;

- Q.] : :

_g 7)) mine: mine: X X) mine:

o Private
O
¢

Shared Variables

Declaration:
shared _var<T> ours;

Explicit read and write with member functions get and put
ours.get();
ours.put(const val);

Implicit read and write a shared variable in an expression

— Type conversion operator “T ()” is overloaded to call get

int mine = ours; // C++ compiler generates an
implicit type conversion from shared_var<T> to T

“__"

- Assignment operator “=" is overloaded to call put

ours = 5;
— Compound operators such as “+=" and “-=" involve both a read
Q+ and a write. Note that these are not atomic operations. =
up 1 8 BERKELEY LAB

Pi in UPC++;: Shared Memory Style

 Parallel computing of pi, but with a bug

shared var<int> hits; shared variable to
main (int argc, char **argv) ({ record hits
int i, my trials = 0;

int trials = atoi(argv[l]); divide work up evenly
my trials = (trials + ranks() - 1) /ranks () ;
srand (myrank () *17) ;

for (i=0; i < my trials; i++)

hits += hit(); accumulate hits
barrier () ;

if (myrank() == 0) {

printf ("PI estimated to %$f.", 4.0*hits/trials);

} What is the problem with this program?

up(’ 1o [

BERKELEY LAB

Pi in UPC: Shared Memory Style

* Like pthreads, but use shared accesses judiciously
shared var<int> hits; | same shared scalar variable
shared lock hit lock; | create alock
main (int argc, char **arqgv) { private hit count
int i, my hits, my trials = 0;
int trials = atoi(argv[1l])
my trials = (trials + THREADS - 1) /THREADS;
srand (MYTHREAD*17) ;

for (i=0; i < my trials; i++) accumulate hits
my hits += hit() ; locally

hit lock.lock() ;

hits += my_ hits; accumulate

hit lock.unlock(); across threads

barrier;

if (myrank == 0)
printf ("PI: %f", 4.0*hits/trials);

} =y
up(C: - [

Shared Arrays

Declaration:
shared_array<Type> sa;

Initialization (should be called collectively):
sa.init(size_t array_size, sizt_t blk_size);

Finalization (should be called collectively)
sa.finalize();

Accessing Arrays elements:

salindex] = ...;
. = salindex];
cout << salindex]:

upﬁ+ 21

Shared Arrays Are Cyclic By Default

« Shared scalars always live in thread O
« Shared arrays are spread over the ranks

« Shared array elements are spread across the processes
shared array<int> x, y, z;

x.init (ranks()) ; [* 1 element per process */
y.init(3*ranks()); [*3 elements per process */
z.init (3*3); [* 2 or 3 elements per process */
* In the pictures below, assume ranks() = 4
~Blue elts have affinity to rank 0 Think of linearized
C array, then map
x . .
in round-robin

y . . . < As a 2D array, y is

logically blocked

by columns
z 1 || -

Z is not

up(’ 22 R

Pi in UPC: Shared Array Version

* Alternative fix to the race condition
» Have each thread update a separate counter:
-But do it in a shared array

-Have one thread compute sum

all_hits is

shared array<int> all hits; shared by all
main(int argc, char **argv) { processors,

all hits.init(ranks()) ; just as hits was

for (i=0; i1 < my trials; i++)

all hits[myrank()] += hit(); update element
barrier () ; with local affinity
if (myrank() == 0) {

for (1i=0; i < ranks(); i++) hits += all hits[i];
printf ("PI estimated to %f.", 4.0*hits/trials);
}

up: -

Asynchronous
Task Execution

UPC++ Async

« C++ 11 async function
std: :future<T> handle
= std::async(Function&& f, Args&&.. args);
handle.wait();

« UPC++ async function
// Remote Procedure Call
upcxx::async(rank)(Function f, T1 argl, T2 arg2,..);
upcxx: :async_wait();

// Explicit task synchronization

upcxx: :event e;

upcxx: :async(place, &e)(Function f, T1 argl, ..);
wait();

up(’ 25

Async Task Example

#include <upcxx.h>

void print_num(int num)

{ printf(“myid %u, arg: %d\n”, MYTHREAD, num);
}
int main(int argc, char **argv)
{
for (int 1 = 0; 1 < upcxx::ranks(); i++) A
upcxx: :async(i)(print_num, 123);
}
upcxx::async_wait(); // wait for all remote tasks to complete
return 0;
}

up(’ 26 Rl

BERKELEY LAB

upﬁ+ num: 1003 27

Async with C++11 Lambda Function

using namespace UupcxxX;

// Rank @ spawns async tasks
for (int i = 0; i < ranks(); i++) {
// spawn a task expressed by a lambda function
async(i) ([l (int)
{ printf("num: %d\n”,); ¥,

); // argument to the A function
+

async_wait(); // wait for all tasks to finish

mpirun —n 4 ./test_async

Output:

num: 1000
num: 1001
num: 1002

Finish-Async Programming Ildiom

using namespace UpPCXX;

// Thread 0 spawns async tasks
finish {
for (int i = @0; i < ranks(); i++) {
async(i)([] (int num)
{ printf("num: %d\n”, num); },
1000+1);
5
} // All async tasks are completed

u,b ¢ 28

Example: Building A Task Graph

using namespace UpcCxxX;
event el, e2, e3;

async(P1, &el)(taskl);
async(P2, &el)(task2);
async_after(P3, &el, &e2)(task3);
async(P4, &e2)(task4);

async_after(P5, &e2, &e3)(task5);
async_after(P6, &e2, &e3)(task6);

async_wait(); // all tasks will be done

up ¢ 29

Progress Function for Async Tasks

« Each UPC++ rank decides when to execute incoming
tasks and send outgoing tasks by polling the task queue:
int advance(int max_in, int max_out)

— max_in maximum number of incoming tasks to be
processed before returning

- max_out maximum number of outgoing tasks to be
processed before returning
« Support different progress models, for example:
- Call advance() from the default thread
- Create a dedicated progress thread for polling

 Important Progress Properties

- Blocking functions in UPC++ call advance() internally to
guarantee progress. These only include: async_wait(),
barrier(), event.wait(), finish and finalize().

— Other UPC++ functions are non-blocking

u,b ¢ 30

Dynamic Memory
Management and
Bulk Data Transfer

Dynamic Global Memory Management

 Global address space pointers (pointer-to-shared)
global ptr<Type> ptr;

* Dynamic shared memory allocation
global ptr<T> allocate<T>(uint32_t where,
size t count);
void deallocate(global ptr<T> ptr);

Example: allocate space for 512 integers on rank 2
global ptr<int> p = allocate<int>(2, 512);

Remote memory allocation is not
available in MPI-3, UPC or SHMEM.

u,b ¢ 32

More on Global Pointers

 Global pointers examples:
global_ptr<int> pl;
global_ptr<void> p2;
global_ptr<void x> p3;

* Query the location (owner) of the data
Uint32_t where()

» Get the local pointer (virtual memory address)
Tx raw_ptr()

 Pointer arithmetic is the same as that for local pointers
- There is no phase field in the global pointer

« Can dereference a pointer to read from or write to the
global location
xptr or ptrlil

u,b ¢ 33

One-Sided Data Transfer Functions

// Copy count elements of T from src to dst
upcxx: :copy<i>(global _ptr<T> src,
global_ptr<T> dst,

size t count);

// Implicit non-blocking copy

upcxx::async_copy<I>(global ptr<T> src,
global _ptr<T> dst,
size t count);

// Synchronize all previous asyncs
upcxx::async_wait();

Similar to upc_memcpy_nb extension in UPC 1.3

upﬁ+ 34

u,b ¢ 35

UPC++ Translation Example

shared array <int> sa;
sa.init(100, 1);
sa[0] =1; // “[1” and “=" overloaded

C++ Compiler

tmp_ref = sa.operator [] (0);
tmp_ref.operator = (1);

UPC++ Runtime Runtime
___ Address
Translation
Yes Is tmp_ref No Overheads

local?

e

Local Access Remote Access

N
A
rrrrrrr ""|

When Address Translation Overheads Matter?

Case 1: access local data Case 2: access remote data
1. Get the partition id of the 1. Get the partition id of the

global address (1 cycle) global address (1 cycle)

2. Check if the partition is 2. Check if the partition is
local (1 cycle) local (1 cycle)

3. Get the local address of 3. Get the local address of
the partition (1 cycle) the partition (1 cycle)

4. Access data through the 4. Access data through the
local address (1 cycle) network (~10% cycles)

3 CPU cycles for address 3 CPU cycles for address
translation vs. 1 cycle for translation vs. ~10% cycles
real work for real work

(Bad: 3X overhead)

up(C’ o F)

How to Amortize Address Translation Overheads

 Move data in chunks
copy(src, dst, count);

non-blocking async_copy 1is even better

 Cast pointer-to-shared to pointer-to-local

Proccess 1's perspective

global_ptr<int> spl

global_ptr<int> Sp2 —
int *p1 = (int *)sp1; /

int *p2 = (int *)sp2; -

Physical Shared-memory | : Virtual Address Space UPC++ Process

[

upC - [

Completion Events for Non-blocking Put

Source buffer Dest. buffer
User
owns
buffers : : x
| | I
[[I
| I I
[[I
| I I
[| I
System S) :
owns
buffers
I AN
I I
I NB op starts Local completion 1 Remote completion
\\ 4 1

u,b ¢ 38

Signaling Copy in UPC++

async_copy_and_signal(global _ptr<T> src,
global_ptr<T> dst,
size_t count,
event *signal_event,
event *xlocal_completion,
event xremote_completion);

* Three key events for a non-blocking put

—Initiator side events :
* local completion: the src buffer is reusable
« remote completion: the data has arrived in the dst
buffer
- Target side event :
« signal event: the data has arrived in the dst buffer

+ oy
up(C %o Rl
EERRETENEAD

How-to

UPC++ Cheat Sheet for UPC Programmers

UPC UPC++
Num. of threads THREADS ranks()
My ID MYTHREAD myrank()
Shared variable shared Type s shared var<Type> s
Shared array shared [bf] Type A[sz] shared_array<Type> A

A.init(sz, bf)

Pointer-to-shared shared Type *ptr global_ptr<Type> ptr
Dynamic memory shared void * global ptr<Type>
allocation upc_alloc(nbytes) allocate<Type=>(place, count)

Bulk data transfer upc memcpy(dst, src, sz) copy<Type=>(src, dst, count)

Affinity query upc_threadof(ptr) ptr.where()
Synchronization upc_lock t shared lock
upc_barrier barrier()

+ 1 Rl
le C Homework: how to translate upc forall? seryLEY LAB

A “Compiler-Free” Approach for PGAS

* Leverage C++ standards and

+

UPC++ .. .
Templat ! ;c:gls Compllers
e Header
Files vy — Implement UPC++ as a C++

template library

UPC @ C+
(Progr:n)' D Com+p:|er - C++ templates can be used as a
mini-language to extend C++

AERREEE @ syntax

UPC++ |, _
Runtime . Object Many new features in C++11
-) Linker <:|
GASNet |* r”c':I'I':e - E.g., type inference, variadic
System templates, lambda functions, r-
Libs value references

- C++ 11 is well-supported by
major compilers

up(C’ ‘

Installing UPC++

Get source from Bitbucket
git clone https://bitbucket.org/upcxx/upcxx.git

Get the optional multidimensional arrays package
cd upcxx/include
git clone https://bitbucket.org/upcxx/upcxx—arrays.git

Standard autotools build process
./Bootstrap
Create a separate build directory and cd to it

configure ——with—-gasnet=/path/to/${conduit}-{seq|par}.mak
—prefix=/path/to/install CXX=upc++_backend_compiler
make; make install

UPC++ is preinstalled on NERSC Edison (Cray XC30)
export MODULEPATH=$MODULEPATH: /usr/common/usg/degas/modulefiles
module load upc++

Or
. /usr/common/usg/degas/upcxx/default-intel/bin/upcxx_vars.sh

For details about installation instructions, please see
https://bitbucket.org/upcxx/upcxx/wiki/Installing%20QUPC++

upC’ 13 |l

Compiling UPC++ Programs

* The upc++ compiler wrapper works like the MPI
equivalent mpic++. For example,
compile hello.cpp to hello.o
upc++ —c hello.cpp
complile hello.cpp and link it to a.out
upc++ hello.cpp

print the command line that upc++ would
execute

upc++ —show
print the help message
upc++ —h
* You can also get UPC++ makefile definitions and shell
environment variables to customize for your app.

https://bitbucket.org/upcxx/upcxx/wiki/Compiling%20UPC++%20Applications

i&gb(i+ 44

Running UPC++ Programs

* Run it like a MPI (multi-process) program, for example,
—-On systems with MPI installed, mpirun
-On a Cray, aprun

» Use the conduit-specific gasnet spawner

« Commonly used GASNet env variables
Increase the size of the global

partition per rank
export GASNET_MAX_SEGSIZE=256MB

Disable process—-shared memory nodes
export GASNET_MAX_SUPERNODE=1

upﬁ+ 45

Application
Examples

Random Access Benchmark (GUPS)

// shared uint64_t Table[TableSize]; in UPC
shared_array<uint64_t> (TableSize);

void RandomAccessUpdate()

{

uinté4_t ran, 1i;
ran = starts(NUPDATE / ranks() x myrank());

| - for(i = myrank(); i < NUPDATE; i += ranks()) {
Main | ran = (ran << 1) ~ ((int64_t)ran < @ ? POLY : 0);
update [ran & (TableSize-1)] "= ran;
loop)

}

Global data layout
o1 2,3 4|5 6,|7|8,|9 10|11 12|13 14 | 15

local data layout
Rank O 0O 4 8 |12 Rank 1 1 5 9 |13

Rank 2 2 6 10 14 Rank3 | 3 | 7 | 11 | 15

upC - - B

Random Access Performance (GUPS)

GUPS on Intel Xeon Phi (MIC)

1.00 -
UPC
=®=JPC++
0.10
7
o
-
o
0.01
0.00

1 2 4 8 16 32
Num. of Processes

60

Better

GUPS

1.00 -

0.10 -

0.01 -

0.00 -

0.00

GUPS on IBM BGQ

UPC
“0=UPC++
L T I | I T T T
T~ AN<T 0O ONTOONT O ON
— M OANLU—ANA T OO
— ANWOO O v«
— N < o

Num. of Processes

Performance difference is negligible at large scale

up(C’

= A
48 r:}l ‘"I|

BERKELEY LAB

BoxLib

A Software Framework for Block-
Structured AMR Applications

Used in many active research projects:

MAESTRO - low Mach number astrophysics
CASTRO - compressible radiation/hydrodynamics
Nyx — cosmology (baryon plus dark matter evolution)
LMC — low Mach number combustion
CNSReact — compressible reacting flow
ACTuARy — atmospheric chemical transport
PMAMR — subsurface modeling (AMANZI-S)

l .:-"’ \ “‘ tp ‘i‘ J)
Source: “BoxLib: A Software Framework for Block- A et .grgy Research
. . o Scientific:.Computing Center
Structured AMR Applications” by Ann Almgren 2t
http://www.speedup.ch/workshops/w42 2013/ann.pdf

P
L

A
rrrrrrr ‘"'|

BERKELEY LAB

up(C’

Comm. Patterns in BoxLib

Each process does the
following:

// Pack data and figure out
// communication neighbors

MPI Irecv(..);
MPI Irecv(..);

MPI_Isend(..);
MPI_Isend(..);

// Local computation for
overlap

MPI_Waitall(..);

// Unpack data and continue

up(C

@ Fine-Fine
® Physical BC
B Coarse-Fine

7

Cells in each box are stored in
column- major order. Boxes are
laid out in Z-order in 3D space.
Each processor gets a contiguous
chunk of boxes of equal size.

A
Z%Z%

~
A
5 O rr/r>| ‘"1

BERKELEY LAB

Message Passing Protocols

Eager protocol for short msgs. « Rendezvous protocol for long msgs.

Sender Receiver Sender Receiver
d
Pa eader
Yioaq togegr
~| ez oo rocv 2991 et
Tell sen :
buffered 7 by Recv
Message {n Seng m ,
AN eSSa /
@ matched ‘ 9€ pay;
by Recv Dag

Message matching is done at the
receiver. The sender needs to know the
receive buffer address to do RDMA and

upQ+ avoid buffering. 51 Rl

Inattentive CPUs may
cause extra lags.

Active Receive (Sender Side Message Matching)

Sender Receiver
Actively
te recy
send comp\e O fo;: Recv
Vessage |3 sender
matched Seno'

by Send paJ//oa(;n ®Ssage

Signal the
completion
event

« Message matching is done at the sender
« The sender uses signaling put to transfer the
message payload and notify the receiver for

completion

. « The completion event is like a semaphore and can
upQ be used to count multiple operations

52

<~
A
rrrrrrr ‘"'|

BERKELEY LAB

BoxLib Communication Performance

SMC benchmark on Edison, 128 processes, 1
process per numa node, 12 openmp threads per

process

MPI w. OpenMP UPC++ w. OpenMP

No Total Time : 8.2 Total Time . 7.9

overlap Communication time: 1.8 Communication time: 1.6
Chemistry time: 2.6 Chemistry time: 2.6
Hyp-Diff time: 3.8 Hyp-Diff time: 3.8

Overlap | Total Time : 8.4 Total Time . 7.8
Communication time: 1.8 Communication time: 1.3
Chemistry time: 2.9 Chemistry time: 2.8
Hyp-Diff time: 3.8 Hyp-Diff time: 3.8

up(C

53

N
A
rrrrrrr ""|

Progress thread in UPC++

« Mitigate CPU inattentiveness for better communication
and computation overlaps

progress_thread_start()

progress_thread_stop()
* Three threading modes

—Non thread-safe: main thread explicitly transfers
progress control to the progress thread and stop it
before making UPC++ calls

- Thread-safe with GASNet PAR mode: will need non-
thread-specific handle support from GASNet-EX to
match the UPC++ usage model

- Thread-safe with pthread mutex and GASNet SEQ
mode: use a coarse-grained lock for gasnet calls

Zélj(:f 54

Application: Full-Waveform Seismic Imaging

 Method for developing models of earth structure, applicable to ...
* basic science: study of interior structure and composition
e petroleum exploration and environmental monitoring
* nuclear test-ban treaty verification
 Modelis trained to predict (via numerical simulation) seismograms
recorded from real earthquakes or controlled sources
* Training defines a non-linear regression problem, solved iteratively

Hotspot volcanic islands Seismic shear-wave velocity Mlnlmlze:

Macdonald Samoa Marquesas Hawaii | beneath the central Pacific
Pitcairn x Tahiti

x(m) = [d — g(m)]
i\ i\

> i :
S Seismic Observed Predicted
low-velocity =
fingers 3 model waveform waveforms
Model Prediction
Observed Data

A ove: global full-waveform seismic model
u Mum2 (French et al., 2013, Science

55
Collaboration Wlt)h Scott French et al, Berkeley Seismological Lab BEALENLAS

Application: Full-Waveform Seismic Imaging

Seismic waveforms
Obs.

SEM Simulations Pred.

\

Model
Optimization

/

NACT + Eqn. (2)
mit!

—m'+ém

No Yes
4——— < Converged? > STOP

Distributed

......... G(G(z

GtG[ix, ix]

+= GtG i[:,:]

Convergent Matrix Library

Hessian

Process invoking update() ssia
update

NUMA domain

local 1
storage |

Jacoblan
panels
I
D. a

Perform Manages
NACT matrix
computation abstraction

Eventually on all UPC++ processes ...
GtG.commit(); // barrier
// fetch local pointer
float *mat = GtG.get local data();
// ScalLAPACK
// MPI-IO collective write

up(C’

ConvergentMatrix<float,

Binned
updates

NUMA domain

UPC++ 1.

Jacob/an
panels

async executes update

:copyand upcxx:

local 1
storage |
-'>

> GtG(M, M);

. / for' each locally computed update
GtG.update(GtG_i, slice idx i);

Internal binning, upcxx :

:async invocation

NUMA domain
UPC++ 1.

local 1
Jacobian oca

panels storage |

-5

A
reeeeee)| !

BERKELEY LAB

Alternative implementation: MPI-3 RMA

« Have to “design for” the MPI implementation
« NERSC Edison (XC30), so using Cray MPICH 7.0.3 (MPICH 3.0.x)
« Per-accumulate lock / unlock with exclusive locks
« Faster than shared (with or without single epoch)
« Would another implementation be faster? (possibly, but hard to say ...)
* In any case, similar code complexity to UPC++

Weak Scallng VS. UPC++ 4000 Weak Scaling (NERSC Edison)
. =8 UPC++ 3
« Distributed matrix size fixed (180 GB) 3500 w—m MPI-3 RMA
- Dataset size scaled w/ concurrency g S
O 2500 i
* 64 updates per MPI or UPC++ E
0 2000 S S—
task + threads in NUMA domain g oo -
- NERSC Edison (Cray XC30) Eiog o=
| © GNU Compilers 4.8.2 (-03) ool ® k - -
"q") « Cray MPICH 7.0.3 1 | ‘
)| © Upto 12,288 cores ST 768 3072 12288
+ Matrix size: 180GB Cores

BERKELEY LAB

tps:/fgithub.com/swfrench/convergent-matrix-mpi 0
upc S - [

Scientific results: A whole-mantle model

Geophysical Journal International

Geophys. J. Int. (2014) 199, 1303-1327 doi: 10.1093/gji/ggu334
GJI Seismology

Whole-mantle radially anisotropic shear velocity structure from
spectral-element waveform tomography

* First-ever whole-mantle seismic model from numerical waveform
tomography

* Reveals new details of deep structure not seen before

« Made feasible by Gauss-Newton
scheme, enabled by UPC++

Right: Broad plumes in
the earth’s lower
mantle, including those
beneath Pitcairn,
Samoa, and other
hotspots.

Left: 3D rendering of
low-velocity structure
beneath the Hawaii
hotspot.

’ I , \\ ‘\ \‘ \ ‘e *
(French and Romanowicz, ' 58 .
. .. “EERS 20 HT T +20
2015, in revision) Depth (km) dinVs (%) ' ’

Alternative implementation: MPI-3 RMA
Why the performance disparity?

« Very different approaches to achieving “generality”
Determines what optimizations are available to programmer

UpCXX: :async < MPI Accumulate
VS. —
(general functions) (general data types)

- Explicit buffer management
« Customized update function

Opaque internal MPI buffers
Generalized MPI data types +

with domain knowledge pre-defined merge ops
 Progress at both sourceand -+ Progress is impl.-specific and
target is controllable not controllable at target
« One way bulk data movement - Data may take more than one

can be guaranteed trip to ensure passive target
(ex: bulk accumulate in foMPI)

+ . .
- ‘ More opportunities to exploit —
up@p (problem / domain specific knowledge °°]'

Multidimensional
Arrays in UPC++

Multidimensional Arrays

* Multidimensional arrays are a common data structure in
HPC applications

* However, they are poorly supported by the C family of
anguages, including UPC

—-Layout, indexing must be done manually by the user
—No built-in support for subviews

* Remote copies of array subsets pose an even greater
problem

-Require manual packing at source, unpacking at
destination

-In PGAS setting, remote copies that are logically
one-sided require two-sided coordination by the user

upﬁ+ 61

UPC++ Multidimensional Arrays

* True multidimensional arrays with sizes specified at
runtime

» Support subviews without copying (e.g. view of interior)

« Can be created over any rectangular index space, with
support for strides

 Local-view representation makes locality explicit and
allows arbitrarily complex distributions

—Each rank creates its own piece of the global data
structure

* Allow fine-grained remote access as well as one-sided
bulk copies

u,b ¢ 62

UPC++ Arrays Based on Titanium

* Titanium is a PGAS language based on Java
* Line count comparison of Titanium and other languages:

NAS Parallel Benchmarks

2000 .
% “ MPIl+Fortran = UPC - Titanium
o 1500
O
© 1000 +—
7))
£ 500 —— —— —
=, | . — .
NPB-CG NPB-FT NPB-MG
AMR Chombo C++/Fortran/MPI Titanium
AMR data structures 35000 2000
AMR operations 6500 1200
Elliptic PDE Solver 42007 1500

* Somewhat more functionality in PDE part of C++/Fortran

Up(coun - [

Titanium vs. UPC++

* Main goal: provide similar productivity and performance
as Titanium in UPC++

* Titanium is a language with its own compiler
—-Provides special syntax for indices, arrays

-PhD theses have been written on compiler
optimizations for multidimensional arrays (e.g. Geoff
Pike specifically for Titanium)

* Primary challenge for UPC++ is to provide Titanium-like
productivity and performance in a library

-Use macros, templates, and operator/function
overloading for syntax

—-Provide specializations for performance

upﬁ+ 64

Overview of UPC++ Array Library

* A point is an index, consisting of a tuple of integers
point<2> 1b = {{1, 1}}, ub = {{20, 10}};

* A rectangular domain is an index space, specified with a
lower bound, upper bound, and optional stride
rectdomain<2> r (lb, ub); [1,1]

* An array is defined over a rectangular

domain and indexed with a point
ndarray<double, 2> A(r); A[lb] = 3.14;

[20,10]

* One-sided copy operation copies all elements in the

intersection of source and destination domains
ndarray<double, 2, global> B = ...;

B.async copy(A); // copy from A to B
async wait(); // wait for copy completion

u,b ¢ 65

Multidimensional Arrays in UPC++ (and Titanium)

* Titanium arrays have a rich set of operations

BB I

—

translate restrict slice (n dim to n-1) transpose

* None of these modify the original array, they just create
another view of the data in that array

* You create arrays with a RectDomain and get it back
later using A.domain() for array A
— A Domain is a set of points in space
- A RectDomain is a rectangular one
» Operations on Domains include +, -, * (union, different
intersection)

u,b ¢ 66

Example: 3D 7-Point Stencil

» Code for each timestep: View of interior of A

// Copy ghost zones from previous timestep.
for (int j = 0; j < NEIGHBORS; j++)

allA[neighbors[j]].async_copy(A.shrink (1))

async_wait(); // sync async cop‘m One-line copy

barrier(); // wait for puts from all nodes
// Local computation. Special foreach loop
foreach” (p, interior domain) ({ iterates °Ver_arbitrary
B[p] = WEIGHT * A[p] + domain
A[p + PT(0, 0, 1)] + A[p + PT(0, 0, -1)] +
A[p + PT(0, 1, 0)] + A[p + PT(0, -1, 0)] +
A[p + PT(1, 0, 0)] + A[p + PT(-1, 0, 0)];

) ——

} i — Point constructor
// Swap grids.

SWAP (A, B); SWAP(allA, allB); Implemented using |
uij’ ’ ’ a y a ’ Iambda, SO u;u ‘B;R;ﬁﬂ

Natonal

Arrays in Adaptive Mesh Refinement

 AMR starts with a coarse grid
over the entire domain

* Progressively finer AMR
levels added as needed over
subsets of the domain

* Finer level composed of
union of regular subgrids,
but union itself may not be
regular

* Individual subgrids can be
represented with UPC++
arrays

* Directory structure can be used to represent union of all
subgrids

u,bQ 68

Example: Ghost Exchange in AMR

Proc 0

my_grids-’:

all grids—

Proc 1

| |

N I N\

"ghost" cells

foreach (1, my grids.domain()) ({

foreach (a, all grids.domain()) {

if (1 !'= a) «—— Avoid null copies
my grids[l].copy(all grids[a].shrink(1l));

}; | Copy from interior of other grid -

};

« Can allocate arrays in a global index spac
up@ library compute intersections

<~
A
rrrrrrr ‘"'|

69

BERKELEY LAB

Syntax of Points

* A point<N> consists of N coordinates

* The point class template is declared as plain-old data
(POD), with an N-element array as its only member
template<int N> struct point {

cint t x[N];

};

—-Can be constructed using initializer list
point<2> 1b = {{1, 1}};

* The PT function creates a point in non-initializer contexts
point<2> 1b = PT(1, 1);

—-Implemented using variadic templates in C++11,
explicit overloads otherwise

'	(f’ 70

Array Template

* Arrays represented using a class template, with element
type and dimensionality arguments

template<class T, int N,
class F1l, class F2>
class ndarray;

 Last two (optional) arguments specify locality and layout
—Locality can be local (i.e. elements are located in
the local memory space) or global (elements may
be located elsewhere)
—-Layout can be strided, unstrided, row, column;
more details later

* Template metaprogramming used to encode type
attices for implicit conversions

upé 71

Array Implementation

 Local and global arrays have significant differences in
their implementation

-Global arrays may require communication
 Layout only affects indexing
* Implementation strategy:

ndarray template Handles layout
global tiarray and

local tiarray templates Manage locality

UPC++ Bac_:l_(ve_n_d Shared- Backends provide

UPC++ Message & Memors s NI Ty

s y primitives

GASNet Gdckal _
o] Runtime layer

* Macros and template metaprogramming used to

2 éaterface between layers . By

BERKELEY LAB

Foreach Implementation

* Macros and templates allow definition of foreach loops

« C++11 implementation using type inference and lambda:

#define foreach(p, dom) \
foreach (p, dom, UNIQUIFYN(foreach ptr , p))

#define foreach (p, dom, ptr) \
for (auto ptr = (dom).iter(); 'ptr .done; \
ptr .done = true) \

ptr = [&] (const decltype(ptr .dummy pt()) é&p)

* Pre-C++11 implementation also possible using sizeof
operator

-However, loop is flattened, so performance is much
slower

i&gb(i% 73

C++11 Foreach Translation

* Lambda encapsulates body, passed to loop template

template<int N> struct rditer {
template<class F>» rditer &operator=(const F &func) {
rdloop<N>::loop(func, pO.x, pl.x, loop_stride.x);
return *this;

}
}s

* Loop template implemented recursively, with base case a
template specialization that calls body (not shown)
—-Result is N-d loop; GCC and Clang optimize it well

template<int N> struct rdloop {

template<class F, class... Is>
static void loop(const F &func, const int *1lwb, const int *upb,
const int* stride, Is... is) {

for (int x = *lwb, u = *upb, s = *stride; X < u; x += s)
rdloop<N-1>::loop(func, lwb+l, upb+l, stride+l, is..., X);

} .
upt - [

Layout Specializations

» Arrays can be created over any logical domain, but are
laid out contiguously

-Physical domain may not match logical domain
—Non-matching stride requires division to get from
logical to physical

(px[0] - base[0]) *side factors[0]/stride[0] +
(px[1] - base[l])*side factors[l]/stride[l] +
(px[2] - base[2]) *side factors[2] /stride[2]

* Introduce template specializations to restrict layout
-strided: any logical or physical stride
-unstrided: logical and physical strides match

—-row. matching strides + row-major format
« Default in UPC++ to provide best performance
upQ*—column: matching strides + column-major 75

Array Library Evaluation

 Evaluation of array library done by porting benchmarks
from Titanium to UPC++

—-Again, goal is to match Titanium’s productivity and
performance without access to a compiler

« Benchmarks: 3D 7-point stencil, NAS CG, FT, and MG

* Minimal porting effort for these examples, providing
some evidence that productivity is similar to Titanium

-Less than a day for each kernel
—-Array code only requires change in syntax
—Most time spent porting Java features to C++

u,b ¢ 76

NAS Benchmarks on One Node (GCC)

Running Time (s)
>

Better

S
e

NAS Benchmarks

oo
|

B Titanium CG B UPC++ CG
~ Titanium FT TUPC++ FT

N
|

1 2 4 8
Number of Cores

Stencil Weak Scaling (GCC)

. 3 A
8192 Stencil 256° Grid/Core

4096

1024 — -*=Titanium
— *UPC++

th 4 [[[[[[[[[[[[[|
R R T SIS
. Number of Cores

S
A

Array Library Summary

* We have built a multidimensional array library for
UPC++

-Macros and template metaprogramming provide a lot
of power for extending the core language

-UPC++ arrays can provide the same productivity
gains as Titanium

-Specializations allow UPC++ to match Titanium’s
performance

« Some issues remain

—-Improve performance of one-sided array copies
« Performance somewhat slower than manual
packing/unpacking, as will be shown in miniGMG results
-GCC and Clang optimize complex template code
well, but other compilers do not .
G - - - il
u,b « We are not the only ones to run into this (e.g. Raja, HPX) [

Lawrence Berkeley Natonal Laborator

Case Study: miniGMG

* We evaluate the productivity and performance of three
implementations of miniGMG, a multigrid benchmark

* The three implementations use different communication
strategies enabled by the PGAS model

1. Fine-grained communication, at the natural
granularity of the algorithm

2. Bulk communication, with manual packing and
unpacking by the user
One-sided analogue of message passing

3. Higher-level array-based communication that
offloads the work to an array library
Still semantically one-sided

y -é@le evaluate performance on two current platforms "

Multigrid Overview

* Linear Solvers (Ax=Db) are ubiquitous in scientific computing
- Combustion, Climate, Astrophysics, Cosmology, etc.

« Multigrid exploits the nature of elliptic PDEs to provide a
hierarchical approach with O(N) computational complexity

« Geometric Multigrid is specialization in which the linear
operator (A) is simply a stencil on a structured grid (i.e.
matrix-free)

upﬁ+ 81

MiniGMG Overview

« 3D Geometric Multigrid benchmark designed one subdomain
to proxy MG solves in BoxLib and

CHOMBO-based AMR applications m

Collection_ of
Defines a cubical problem domain Suned by an
- Decomposed into cubical subdomains (boxes) wpes |
- Rectahedral collections of subdomains are assigned
to processes
- Decomposition preserved across all levels of V-Cycle

MPI+OpenMP parallelization

Configured to use...
— Fixed 10 U-Cycles (V-Cycle truncated when boxes are coarsened to 43)

- 7-pt stencil with Gauss Seidel Red-Black (GSRB) smoother that requires
nearest-neighbor communication for each smooth or residual calculation.

- BiCGStab coarse-grid (bottom) solver
Communication pattern is thus...

- Fixed 6 nearest-neighbor communication

- Message sizes vary greatly as one descends through the V-Cycle
(128KB -> 128 bytes -> 128KB)

upQ+ - Requires neighbor synchronization on each step (e.g. two-sided MPI) 82

<~
A
rrrrrrr ‘"1

BERKELEY LAB

Array Creation in miniGMG

void create grid(..., int 1li, int 1k, int 1k, int szi,
int szj, int szk, int ghosts) {

Existing Grid Creation Code
double *grid = upcxx::allocate<double>(...);

Logical Domain of Grid
rectdomain<3> rd(PT(li-ghosts, 1j-ghosts, lk-ghosts),

PT(li+szi+ghosts, 1j+szj+ghosts,
lk+szk+ghosts));

point<3> padding = ...; Padding of Grid Dimensions
ndarray<double, 3> garray(grid, rd, true, padding);

Create Array Descriptor Grid Domain Padding
over Existing Grid Memory

Column-Major

La ut ~ A
upC: z - B

Communication Setup for miniGMG Arrays

point<3> dirs = {{ di, dj, dk }}, po = {{ @, O, © }};
for (int d = 1; d <= 3; d++) {

if (dirs[d] != @)
dst = dst.border(ghosts, -d * dirs[d], 9);

Circular Domain Shift
at Boundaries

if (dirs[d] == -1 && src.domain().lwb()[d] < ©)
src = src.translate(p@.replace(d, dst.domain().upb()[d] -
ghosts));

else if (dirs[d] == 1 && dst.domain().lwb()[d] < ©O)
src = src.translate(p@.replace(d, -src.domain().upb()[d] +
ghosts));

Compute Intersection
rectdomain<3> isct = dst.domain()*src.domain().shrink(ghosts);

Save Views of Source and Destination Restricted to Intersection
send_arrays[PT(level, g, nn, i, j, k)] = src.constrict(isct);
recv_arrays[PT(level, g, nn, i, j, k)] = dst.constrict(isct);

2427(:% 84

<
A
rrrrrrr ‘"1

BERKELEY LAB

Bulk Communication Strategy

* Bulk version uses manual packing/unpacking

-Similar to MPI code, but with one-sided puts instead
of two-sided messaging

®© o
o
N
o
w

recv

i buffer
send recv

" buffers buffer

[1]

o

HERr-NEN

[T []

+ [L [o [[
¥ —1 (unit stride) —1 (unit stride)
u,b(85

Fine-Grained Communication Strategy

* Fine-Grained version does multiple one-sided puts of
contiguous data

-Puts are at natural granularity of the algorithm

box 2 box 3
emote) (re
€@
box 0 o bo
| g |
|
\

+ [L [o [[
¥ —1 (unit stride) —1 (unit stride)
up(C a6

Array Communication Strategy

» Array version logically copies entire ghost zones,
delegating actual procedure to array library

—-Copies have one-sided semantics

box 2 box 3
emote) (re
<«
box 0 o bo
L (‘ 1e

+ ° ° ° ° ° °
¥ —1 (unit stride) —1 (unit stride)
up(C a7

Communication Coordination

« Shared array used to coordinate communication

shared_array<global ptr<subdomain_type>, 1>
global_boxes;

 Bulk version must carefully coordinate send and receive
buffers between ranks

—-Must ensure right buffers are used, same ordering
for packing and unpacking elements

—-Special cases for ghost zones at faces, edges, and
corners

—Most difficult part of code

* Minimal coordination required for fine-grained and array

-Only need to obtain location of target grid from
shared array

u,b ¢ 88

Ghost-Zone Exchange Algorithms

Bulk Fine-Grained Array
Barrier Yes Yes Yes
Pack Yes No No
Async_ nei;h%?)rring c1o:|2:gia§l:ls : ! per :
Puts/Copies rank segment neighboring grid
Async Wait Yes Yes Yes
Barrier Yes Yes Yes
Unpack Yes No No
Setup + Exchange | °% 537 399

* Pack/unpack parallelized using OpenMP in bulk version
upQ*—Effectively serialized in fine-grained and array s [l

BERKELEY LAB

Bulk Copy Code

« Packing/unpacking code in bulk version:

for (int k = 0; k < dim_k; k++) {
for (int j = @; j < dim_j; j++) {
for (int 1 = 0; i < dim_i; i++) {
int read ijk = (i+ read i) + (j+ read _j)*
read_pencil + (k+ read_k)* read _plane;
int write_ijk = (i+write_i) + (j+write_j)*
write_pencil + (k+write_k)*write plane;
write[write_ijk] = read[read_ijk];
}
}
}

 Code must be run on both sender and receiver

up(C’

90

<~
A
rrrrrrr ‘"1

BERKELEY LAB

Fine-Grained Copy Code

* Fine-grained code matches shared-memory code, but
with async _copy instead of memcpy:

for (int k = 0; k < dim_k; k++)
for (int j = @; j < dim_j; j++) {
int roff = recv_i + (j+recv_j)*rpencil +
(k+recv_k)*rplane;
int soff = send_i + (j+send_j)*spencil +
(k+send_k)*splane;
async_copy(sbuf+soff, rbuf+roff, dim_i);
}
}

» Takes advantage of fact that source and destination
layouts match

2427(:% 91

<~
A
rrrrrrr ’"'|

BERKELEY LAB

Array Copy Code

 Array version delegates actual copies to array library:

rcv = recv_arrays[PT(level, g, nn, i, j, k)];
rcv.async_copy(send_arrays[PT(level, g, nn, i, j, k)]);

* Array library behavior for cases that occur in miniGMG:

1. If the source and destination are contiguous, then one-sided
put directly transfers data

2. Otherwise, elements packed into contiguous buffer on source

a) If the elements and array metadata fit into a medium
active message (AM), a medium AM is initiated

— AM handler on remote side unpacks into destination
b) Otherwise, a short AM is used to allocate a remote buffer

— Blocking put transfers elements to remote buffer

— Medium AM transfers array metadata

— AM handler on remote side unpacks and deallocates

+
u,b Q buffer 92 ::!U

Platforms and Experimental Setup

« Cray XC30 (Edison), located at NERSC
—Cray Aries Dragonfly network
—Each node has two 12-core sockets
—-We use 8 threads/socket

 IBM Blue Gene/Q (Mira), located at Argonne
-9D torus network
—-Each node has 16 user cores, with 4 threads/core
—-\We use 64 threads/socket

* Fixed (weak-scaling) problem size of 1283 grid/socket

« Two experiments on each platform
-1 MPI process, 8 or 64 OpenMP threads per socket
-8 MPI processes, 1 or 8 OpenMP threads per socket

u,b ¢ 93

« Histogram of message sizes per process, when using 1

Number of Messages Sent

S

Communication Histogram

process/socket, for all three versions on Cray XC30

rs

1.E+07

1.E+06

1.E+05

1.E+04

1.E+03

1.E+02

1.E+01

1.E+00

1 Process/Socket, 128*3/Process

A Bulk/MPI

Fine-Grained

¢ Array
2
A X X X &
A ¢
16 64 256 1024 4096 16384 65536
Message Sizes (Bytes)
94

<~
A
rrrrrrr ‘"'|

BERKELEY LAB

Histogram of 1 MPI Process vs. 8/Socket

« Same overall problem size per socket

* Fewer small messages per process when using 8
processes, but more small messages per socket

1 Process/Socket, 128*3/Process 8 Processes/Socket, 64" 3/Process
1.E+7 1.E+7
e ABuk/MPI | & A Bulk/MPI
O 1.E+6 O 1.E+6
N . n Fine-
N Fine- 7)) Ine.
O 1.E+4 & 1.E+4
o 1.E+3 ¢ o *
s » 2 &2 &2 s B3 o 2 & R
‘S 1.E+2 A-® © 1E+2 Ao
T o
8 1.E+1 _g 1.E+1
§1_E+0 —t—— 1~ 3 1E+0 N R T
= 4 16 64 256 1024 4096 1638465536 2 4 16 64 256 1024 4096 16384

Message Sizes (Bytes) Message Sizes (Bytes)

+ A
up(C os -
EERRETENEAD

Performance Results on Cray XC30

* Fine-grained and array versions do much better with
higher injection concurrency

—-Array version does not currently parallelize
packing/unpacking, unlike bulk/MPI

3.50 3.50
3.00 3.00 Fine-Grained

0 0 == Array

o 2-20 “=#=Fine-Grained ¢ 250 1~ Bulk

Q o =By

£ 2.00 ==Array £ 200 +— VP!

;1 50 Bulk ;1 50

= == MPI c

S 1.00 € 1.00

- -

X 50 - & o 50 m

b -

121 0.00 - K o.00

o 1 8 64 512 4096 f7 8 64 512 4096 32768
m

No. of Processes (x8 OpenMP) No. of Processes (x1 Opeght

m
wpC o [

Performance Results on IBM Blue Gene/Q

* Fine-grained does worse, array better on IBM than Cray

» Using more processes improves fine-grained and array
performance, but fine-grained still significantly slower

14.00 14.00
Fine-Grained
12.00 1200 +———— e
— 7y =>e=Array
~10.00 _ _ ~1000 B
] Fine-Grained] =#=Bulk
€ 8.00 — € 800 — —
= =>&=Array = =o=MPI
%D 6.00 =B ulk — téb 6.00
S 400 == 1P| — £ 400
= =
© 500 m |I‘ © 500 -
0.00 T T T T] u 0.00 T T T T]
1 8 64 512 4096 9 8 64 512 4096 32768
No. of Processes (x64 OpenMP) g No. of Processes (x8 OpenMP)

= A
97 Il

BERKELEY LAB

~§‘ Better
0

miniGMG Summary

 Array abstraction can provide better productivity than
even fine-grained, shared-memory-style code, while
getting close to bulk performance

- Unlike bulk, array code doesn'’t require two-sided
coordination

- Further optimization (e.g. parallelize packing/unpacking)
can reduce the performance gap between array and bulk

- Existing code can be easily rewritten to take advantage of
array copy facility, since changes localized to
communication part of code

upC’ o0 R

Lessons Learned

* Many productive language features can be implemented
in C++ without modifying the compiler
-Macros and template metaprogramming provide a lot
of power for extending the core language

« Many Titanium applications can be ported to UPC++
with little effort

-UPC++ can provide the same productivity gains as
Titanium

* However, analysis and optimization still an open
guestion

—-Can we build a lightweight standalone
analyzer/optimizer for UPC++7?

—-Can we provide automatic specialization at runtime
in C++?

u,b ¢ 99

Takeaways

Communicate more often
- use non-blocking one-sided operations

Move computation instead of data
- use async and event-driven execution

Express algorithms with high-level data structures
- use Titanium-style multidimensional arrays

Easy on-ramp
- Interoperate w. existing MPI+OpenMP codes

We look forward to collaboration!
- share knowledge and experience beyond tools

UPC++: https://bitbucket.org/upcxx

2427(:% 100

