
Kathy Yelick1,2, Yili Zheng1, Amir Kamil1,3

1Lawrence Berkeley National Laboratory
2Department of EECS, UC Berkeley

3Department of EECS, University of Michigan

PGAS 2015 Tutorial
September 16, 2015

Programming Challenges and Solutions

Message Passing Programming
Divide up domain in pieces
Each compute one piece
Exchange (send/receive) data

PVM, MPI, and many libraries

Global Address Space Programming
Each start computing
Grab whatever you need whenever

Global Address Space Languages
and Libraries

~10% of NERSC apps use some kind of PGAS-like model 2

Parallel Programming Problem: Histogram

• Consider the problem of computing a histogram:
-Large number of “words” streaming in from somewhere
-You want to count the # of words with a given property

• In shared memory
-Lock each bucket

A’s B’s C’s … Y’s Z’s

• Distributed memory: the array is huge and spread out
-Each processor has a substream and sends +1 to the

appropriate processor… and that processor “receives”

A’s B’s C’s D’s Y’s Z’s…

3

PGAS = Partitioned Global Address Space

• Global address space: thread may directly read/write
remote data
• Convenience of shared memory

• Partitioned: data is designated as local or global
• Locality and scalability of message passing

G
lo

ba
l a

dd
re

ss
 s

pa
ce x: 1

y:

l: l: l:

g: g: g:

x: 5
y:

x: 7
y: 0

p0 p1 pn

4

UPC: production
(multiple

compilers)

CAF: Features in
FORTRAN
standard

UPC++: DEGAS
research
(HPGAS)

Others: Chapel,
Titanium, X10, …

PGAS

PGAS Languages

5

Private address
space

Global address space

UPC++ Features

Multi-threading

Local
task
queue

Function shipping across nodes Multidimensional
arrays

6

p0 p1 p2

UPC++: PGAS with “Mixins”

• Default execution model is SPMD, but

• UPC++ uses templates (no compiler
needed)
shared_var<int> s;
global_ptr<LLNode> g;
shared_array<int> sa(8);

s: 16

g:

x: 5
y:

x: 7
y: 0

sa:

18 63 27

• Remote methods, async
async(place) (Function f, T1 arg1,…);
async_wait(); // other side does poll();

• Interoperability is key; UPC++ can be use with OpenMP or MPI

• Research in teams for
hierarchical algorithms and
machines
teamsplit (team) { ... }

7

0
1
2
3
4
5
6
7
8
9

10

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

La
te

nc
y

(u
s)

Size of Messages (bytes)

Point-to-Point Latency Comparison on
Edison (Cray XC30)

MPI_Send/Recv
upc_memput
upc_memget

0

5

10

15

20

25

30

35

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

La
te

nc
y

(u
s)

Size (bytes)

Latency between Two MICs via
Infiniabnd

MPI_Send/Recv

upc_memput

upc_memget

Why Should You Care about PGAS?

b
e
t
t
e
r

8

Random Access to Large Memory
Meraculous Genome Assembly Pipeline Graph as Distributed Hash Table

• Remote Atomics
• Dynamic Aggregation
• Software Caching
• Fast I/O (HDF5)
• Bloom filters, locality-aware hashing,…

Grand Challenge: Metagenomes

Gbp
sequenced

 32

 64

 128

 256

 512

 1024

 2048

 4096

 8192

 480 960 1920 3840 7680 15360

Se
co

nd
s

Number of Cores

overall time
kmer analysis

contig generation
scaffolding

ideal overall time

~20% of Edison @ NERSC can
assemble all human genomes
produced worldwide in 2015

Contig generation step:
- Human: 44 hours to 20 secs
- Wheat: “doesn’t run” to 32 secs

- 9 -

UPC++ Execution
Model

UPC++ Basics

• UPC++ reserves all names that start with UPCXX or
upcxx, or that are in the upcxx namespace

• Include “upcxx.h” for using UPC++

• Init and finalize the runtime
int upcxx::init(&argc, &argv);

int upcxx::finalize();

• Number of processes in the parallel job and my ID
uint32_t upcxx::ranks(); // THREADS in UPC

uint32_t upcxx::myrank(); // MYTHREAD in UPC

Tip: Add “using namespace upcxx;” to save typing “upcxx::”

11

Hello World in UPC++

#include <upcxx.h>
#include <iostream>

using namespace upcxx; // save typing “upcxx::”

int main (int argc, char **argv)
{
init(&argc, &argv); // initialize UPC++ runtime
std::cout << ”Hello, I'm rank " << myrank() << " of "

<< ranks() << ".\n";
finalize(); // shut down UPC++ runtime
return 0;

}

• Any legal C/C++ program is also a legal UPC++ program
• If you compile and run it with P processes, it will run P

copies of the program, also known as SPMD

12

Example: Monte Carlo Pi Calculation

• Estimate Pi by throwing darts at a unit square
• Calculate percentage that fall in the unit circle

-Area of square = r2 = 1
-Area of circle quadrant = ¼ * p r2 = p/4

• Randomly throw darts at x,y positions
• If x2 + y2 < 1, then point is inside circle
• Compute ratio:

-# points inside / # points total
- p = 4*ratio

r =1

13

Each thread calls �hit� separately

Initialize random in
math library

Each thread can use
input arguments

Each thread gets its own
copy of these variables

Pi in UPC++ (ported from the UPC version)

• Independent estimates of pi:
main(int argc, char **argv) {

int i, hits, trials = 0;
double pi;

if (argc != 2)trials = 1000000;
else trials = atoi(argv[1]);

srand(myrank()*17);

for (i=0; i < trials; i++) hits += hit();
pi = 4.0*hits/trials;
printf("PI estimated to %f.", pi);

}

14

Helper Code for Pi in UPC++ (same as UPC)

• Required includes:
#include <stdio.h>
#include <math.h>
#include <upcxx.h> // #include <upc.h> for UPC

• Function to throw dart and calculate where it hits:
int hit() {

int const rand_max = 0xFFFFFF;
double x = ((double) rand()) / RAND_MAX;
double y = ((double) rand()) / RAND_MAX;
if ((x*x + y*y) <= 1.0) {

return(1);
} else {

return(0);
}

}

15

Shared vs. Private
Variables

Private vs. Shared Variables in UPC++

• Normal C++ variables and objects are allocated in the
private memory space for each rank.

• Shared variables are allocated only once, with thread 0
shared_var<int> ours; // use sparingly: performance
int mine;

• Shared variables may not have dynamic lifetime: may not
occur in a function definition, except as static. Why?

Shared

G
lo

ba
l a

dd
re

ss

sp
ac

e

Private
mine: mine: mine:

Rank0 Rank1 Rankn

ours:

17

Shared Variables

Declaration:
shared_var<T> ours;

Explicit read and write with member functions get and put
T ours.get();
ours.put(const T& val);

Implicit read and write a shared variable in an expression
- Type conversion operator “T()” is overloaded to call get

int mine = ours; // C++ compiler generates an
implicit type conversion from shared_var<T> to T

- Assignment operator “=” is overloaded to call put
ours = 5;

- Compound operators such as “+=” and “-=” involve both a read
and a write. Note that these are not atomic operations.

18

Pi in UPC++: Shared Memory Style

shared variable to
record hits

divide work up evenly

What is the problem with this program?

accumulate hits

• Parallel computing of pi, but with a bug
shared_var<int> hits;
main(int argc, char **argv) {

int i, my_trials = 0;
int trials = atoi(argv[1]);
my_trials = (trials + ranks() - 1)/ranks();
srand(myrank()*17);
for (i=0; i < my_trials; i++)

hits += hit();
barrier();
if (myrank() == 0) {

printf("PI estimated to %f.", 4.0*hits/trials);
}

}

19

Pi in UPC: Shared Memory Style

create a lock

accumulate hits
locally

accumulate
across threads

private hit count

same shared scalar variable
• Like pthreads, but use shared accesses judiciously

shared_var<int> hits;
shared_lock hit_lock;

main(int argc, char **argv) {
int i, my_hits, my_trials = 0;
int trials = atoi(argv[1]);
my_trials = (trials + THREADS - 1)/THREADS;
srand(MYTHREAD*17);
for (i=0; i < my_trials; i++)

my_hits += hit();
hit_lock.lock();
hits += my_hits;
hit_lock.unlock();
barrier;
if (myrank == 0)

printf("PI: %f", 4.0*hits/trials);
}

20

Shared Arrays

Declaration:
shared_array<Type> sa;

Initialization (should be called collectively):
sa.init(size_t array_size, sizt_t blk_size);

Finalization (should be called collectively)
sa.finalize();

Accessing Arrays elements:
sa[index] = ...;
... = sa[index];
cout << sa[index];

21

Shared Arrays Are Cyclic By Default

• Shared scalars always live in thread 0
• Shared arrays are spread over the ranks
• Shared array elements are spread across the processes

shared_array<int> x, y, z;
x.init(ranks()); /* 1 element per process */
y.init(3*ranks()); /* 3 elements per process */
z.init(3*3); /* 2 or 3 elements per process */

• In the pictures below, assume ranks() = 4
-Blue elts have affinity to rank 0
x

y

z

As a 2D array, y is
logically blocked
by columns

Think of linearized
C array, then map
in round-robin

z is not
22

• Alternative fix to the race condition
• Have each thread update a separate counter:

-But do it in a shared array
-Have one thread compute sum

shared_array<int> all_hits;
main(int argc, char **argv) {
all_hits.init(ranks());
for (i=0; i < my_trials; i++)

all_hits[myrank()] += hit();
barrier();
if (myrank() == 0) {

for (i=0; i < ranks(); i++) hits += all_hits[i];
printf("PI estimated to %f.", 4.0*hits/trials);

}
}

Pi in UPC: Shared Array Version

all_hits is
shared by all
processors,
just as hits was

update element
with local affinity

23

Asynchronous
Task Execution

UPC++ Async

• C++ 11 async function
std::future<T> handle
= std::async(Function&& f, Args&&… args);

handle.wait();

• UPC++ async function
// Remote Procedure Call
upcxx::async(rank)(Function f, T1 arg1, T2 arg2,…);
upcxx::async_wait();

// Explicit task synchronization
upcxx::event e;
upcxx::async(place, &e)(Function f, T1 arg1, …);
e.wait();

25

Async Task Example

#include <upcxx.h>

void print_num(int num)
{
printf(“myid %u, arg: %d\n”, MYTHREAD, num);

}

int main(int argc, char **argv)
{
for (int i = 0; i < upcxx::ranks(); i++) {
upcxx::async(i)(print_num, 123);

}
upcxx::async_wait(); // wait for all remote tasks to complete
return 0;

}

26

Async with C++11 Lambda Function

using namespace upcxx;

// Rank 0 spawns async tasks
for (int i = 0; i < ranks(); i++) {
// spawn a task expressed by a lambda function
async(i)([] (int num)

{ printf("num: %d\n”, num); },
1000+i); // argument to the λ function

}
async_wait(); // wait for all tasks to finish

mpirun –n 4 ./test_async

Output:
num: 1000
num: 1001
num: 1002
num: 1003 27

Finish-Async Programming Idiom

using namespace upcxx;

// Thread 0 spawns async tasks
finish {
for (int i = 0; i < ranks(); i++) {
async(i)([] (int num)

{ printf("num: %d\n”, num); },
1000+i);

}
} // All async tasks are completed

28

Example: Building A Task Graph

using namespace upcxx;
event e1, e2, e3;

t1

e
1

t2

t4t3

t5

e
3

e
2

t6

async(P1, &e1)(task1);
async(P2, &e1)(task2);

async_after(P3, &e1, &e2)(task3);
async(P4, &e2)(task4);
async_after(P5, &e2, &e3)(task5);

async_after(P6, &e2, &e3)(task6);

async_wait(); // all tasks will be done

29

Progress Function for Async Tasks

• Each UPC++ rank decides when to execute incoming
tasks and send outgoing tasks by polling the task queue:
int advance(int max_in, int max_out)
- max_in maximum number of incoming tasks to be

processed before returning
- max_out maximum number of outgoing tasks to be

processed before returning
• Support different progress models, for example:

-Call advance() from the default thread
-Create a dedicated progress thread for polling

• Important Progress Properties
-Blocking functions in UPC++ call advance() internally to

guarantee progress. These only include: async_wait(),
barrier(), event.wait(), finish and finalize().

-Other UPC++ functions are non-blocking
30

Dynamic Memory
Management and

Bulk Data Transfer

Dynamic Global Memory Management

• Global address space pointers (pointer-to-shared)
global_ptr<Type> ptr;

• Dynamic shared memory allocation
global_ptr<T> allocate<T>(uint32_t where,

size_t count);
void deallocate(global_ptr<T> ptr);

Example: allocate space for 512 integers on rank 2
global_ptr<int> p = allocate<int>(2, 512);

Remote memory allocation is not
available in MPI-3, UPC or SHMEM.

32

More on Global Pointers

• Global pointers examples:
global_ptr<int> p1;
global_ptr<void> p2;
global_ptr<void *> p3;

• Query the location (owner) of the data
Uint32_t where()

• Get the local pointer (virtual memory address)
T* raw_ptr()

• Pointer arithmetic is the same as that for local pointers
-There is no phase field in the global pointer

• Can dereference a pointer to read from or write to the
global location
*ptr or ptr[i]

33

One-Sided Data Transfer Functions

// Copy count elements of T from src to dst
upcxx::copy<T>(global_ptr<T> src,

global_ptr<T> dst,
size_t count);

// Implicit non-blocking copy
upcxx::async_copy<T>(global_ptr<T> src,

global_ptr<T> dst,
size_t count);

// Synchronize all previous asyncs
upcxx::async_wait();

Similar to upc_memcpy_nb extension in UPC 1.3

34

UPC++ Translation Example

shared_array <int>	sa;

sa.init(100,	1);	

sa[0] = 1;		//	“[]”	and	“=”	overloaded

C++	Compiler

UPC++	Runtime

Local	Access

Is	tmp_ref
local?

Yes No

tmp_ref =	sa.operator [] (0);

tmp_ref.operator = (1);

Remote	Access

Runtime
Address
Translation
Overheads

35

When Address Translation Overheads Matter?

Case 1: access local data
1. Get the partition id of the

global address (1 cycle)
2. Check if the partition is

local (1 cycle)
3. Get the local address of

the partition (1 cycle)
4. Access data through the

local address (1 cycle)

3 CPU cycles for address
translation vs. 1 cycle for
real work
(Bad: 3X overhead)

Case 2: access remote data
1. Get the partition id of the

global address (1 cycle)
2. Check if the partition is

local (1 cycle)
3. Get the local address of

the partition (1 cycle)
4. Access data through the

network (~104 cycles)

3 CPU cycles for address
translation vs. ~104 cycles
for real work
(Good: 0.3% overhead)

36

How to Amortize Address Translation Overheads

• Move data in chunks
copy(src, dst, count);

non-blocking async_copy is even better

• Cast pointer-to-shared to pointer-to-local

Physical Shared-memory Virtual Address Space

int *p1 = (int *)sp1;

global_ptr<int> sp1
global_ptr<int> sp2

Proccess 1’s perspective

int *p2 = (int *)sp2;

P1 P2

UPC++ Process

37

Completion Events for Non-blocking Put

Source buffer Dest. buffer
User
owns
buffers

System
owns
buffers

NB op starts Local completion Remote completion

38

Signaling Copy in UPC++

async_copy_and_signal(global_ptr<T> src,
global_ptr<T> dst,
size_t count,
event *signal_event,
event *local_completion,
event *remote_completion);

• Three key events for a non-blocking put
-Initiator side events :

• local completion: the src buffer is reusable
• remote completion: the data has arrived in the dst

buffer
-Target side event :

• signal event: the data has arrived in the dst buffer

39

How-to

UPC++ Cheat Sheet for UPC Programmers

UPC UPC++

Num. of threads THREADS ranks()

My ID MYTHREAD myrank()

Shared variable shared Type s shared_var<Type> s

Shared array shared [bf] Type A[sz] shared_array<Type> A
A.init(sz, bf)

Pointer-to-shared shared Type *ptr global_ptr<Type> ptr

Dynamic memory
allocation

shared void *
upc_alloc(nbytes)

global_ptr<Type>
allocate<Type>(place, count)

Bulk data transfer upc_memcpy(dst, src, sz) copy<Type>(src, dst, count)

Affinity query upc_threadof(ptr) ptr.where()

Synchronization upc_lock_t shared_lock

upc_barrier barrier()

Homework: how to translate upc_forall?
41

C++
Compiler

UPC++
Program

UPC++
Templat
e Header

Files

Linker

UPC++
idioms

are
translated

to C++

Object
file w.

runtime
calls

Exe

GASNet

System
Libs

UPC++
Runtime

• Leverage C++ standards and
compilers
- Implement UPC++ as a C++

template library
- C++ templates can be used as a

mini-language to extend C++
syntax

• Many new features in C++11
- E.g., type inference, variadic

templates, lambda functions, r-
value references

- C++ 11 is well-supported by
major compilers

A “Compiler-Free” Approach for PGAS

42

Installing UPC++

• Get source from Bitbucket
git clone https://bitbucket.org/upcxx/upcxx.git

• Get the optional multidimensional arrays package
cd upcxx/include
git clone https://bitbucket.org/upcxx/upcxx-arrays.git

• Standard autotools build process
./Bootstrap
Create a separate build directory and cd to it
configure --with-gasnet=/path/to/${conduit}-{seq|par}.mak
--prefix=/path/to/install CXX=upc++_backend_compiler
make; make install

• UPC++ is preinstalled on NERSC Edison (Cray XC30)
export MODULEPATH=$MODULEPATH:/usr/common/usg/degas/modulefiles
module load upc++
Or
. /usr/common/usg/degas/upcxx/default-intel/bin/upcxx_vars.sh

For details about installation instructions, please see
https://bitbucket.org/upcxx/upcxx/wiki/Installing%20UPC++

43

Compiling UPC++ Programs

• The upc++ compiler wrapper works like the MPI
equivalent mpic++. For example,
compile hello.cpp to hello.o
upc++ -c hello.cpp
compile hello.cpp and link it to a.out
upc++ hello.cpp
print the command line that upc++ would
execute
upc++ -show
print the help message
upc++ -h

• You can also get UPC++ makefile definitions and shell
environment variables to customize for your app.
https://bitbucket.org/upcxx/upcxx/wiki/Compiling%20UPC++%20Applications

44

Running UPC++ Programs

• Run it like a MPI (multi-process) program, for example,
-On systems with MPI installed, mpirun
-On a Cray, aprun

• Use the conduit-specific gasnet spawner

• Commonly used GASNet env variables
Increase the size of the global
partition per rank
export GASNET_MAX_SEGSIZE=256MB

Disable process-shared memory nodes
export GASNET_MAX_SUPERNODE=1

45

Application
Examples

Random Access Benchmark (GUPS)

// shared uint64_t Table[TableSize]; in UPC
shared_array<uint64_t> Table(TableSize);

void RandomAccessUpdate()
{
uint64_t ran, i;
ran = starts(NUPDATE / ranks() * myrank());
for(i = myrank(); i < NUPDATE; i += ranks()) {
ran = (ran << 1) ^ ((int64_t)ran < 0 ? POLY : 0);
Table[ran & (TableSize-1)] ^= ran;

}
}

0 4 8 12 1 5 9 13

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 6 10 14 3 7 11 15

Rank 0 Rank 1

Rank 2 Rank 3

Global data layout

local data layout

Main
update
loop

47

0.00

0.00

0.01

0.10

1.00

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

G
U

PS

Num. of Processes

GUPS on IBM BGQ

UPC

UPC++

0.00

0.01

0.10

1.00

1 2 4 8 16 32 60

G
U

PS

Num. of Processes

GUPS on Intel Xeon Phi (MIC)

UPC
UPC++

Random Access Performance (GUPS)

B
et

te
r

Performance difference is negligible at large scale

48

BoxLib

Applications

A number of BoxLib-based codes are being used in active
research, including

MAESTRO – low Mach number astrophysics
CASTRO – compressible radiation/hydrodynamics
Nyx – cosmology (baryon plus dark matter evolution)
LMC – low Mach number combustion
CNSReact – compressible reacting flow
ACTuARy – atmospheric chemical transport
PMAMR – subsurface modeling (AMANZI-S)

Almgren CCSE

Source: “BoxLib: A Software Framework for Block-
Structured AMR Applications” by Ann Almgren

A Software Framework for Block-
Structured AMR Applications

Used in many active research projects:

http://www.speedup.ch/workshops/w42_2013/ann.pdf

49

Comm. Patterns in BoxLib

// Pack data and figure out
// communication neighbors

MPI_Irecv(…);
MPI_Irecv(…);
…
MPI_Isend(…);
MPI_Isend(…);
…

// Local computation for
overlap

MPI_Waitall(…);

// Unpack data and continue

Data Structures and Operations (continued)

Fine-Fine
Physical BC
Coarse-Fine

Single-level operations
Fill boundary data from same-level grids
Fill data using physical boundary conditions
Integrate data at a level

Patch by patch for explicit algorithms
Solve over all patches at a level for implicit algorithms

Almgren CCSE

Cells in each box are stored in
column- major order. Boxes are
laid out in Z-order in 3D space.
Each processor gets a contiguous
chunk of boxes of equal size.

Each process does the
following:

50

Message Passing Protocols

Eager protocol for short msgs. • Rendezvous protocol for long msgs.

Message matching is done at the
receiver. The sender needs to know the
receive buffer address to do RDMA and
avoid buffering.

Sender Receiver

Message
buffered

Message
matched
by Recv

Sender Receiver

Message
matched
by Recv

Inattentive CPUs may
cause extra lags.

51

Active Receive (Sender Side Message Matching)

• Message matching is done at the sender
• The sender uses signaling put to transfer the

message payload and notify the receiver for
completion

• The completion event is like a semaphore and can
be used to count multiple operations

Sender Receiver

Actively
post Recv
to the
senderMessage

matched
by Send

Signal the
completion
event

52

BoxLib Communication Performance

MPI w. OpenMP UPC++ w. OpenMP
No
overlap

Total Time : 8.2
Communication time: 1.8
Chemistry time: 2.6
Hyp-Diff time: 3.8

Total Time : 7.9
Communication time: 1.6
Chemistry time: 2.6
Hyp-Diff time: 3.8

Overlap Total Time : 8.4
Communication time: 1.8
Chemistry time: 2.9
Hyp-Diff time: 3.8

Total Time : 7.8
Communication time: 1.3
Chemistry time: 2.8
Hyp-Diff time: 3.8

SMC benchmark on Edison, 128 processes, 1
process per numa node, 12 openmp threads per
process

53

Progress thread in UPC++

• Mitigate CPU inattentiveness for better communication
and computation overlaps

progress_thread_start()
progress_thread_stop()

• Three threading modes
-Non thread-safe: main thread explicitly transfers

progress control to the progress thread and stop it
before making UPC++ calls
-Thread-safe with GASNet PAR mode: will need non-

thread-specific handle support from GASNet-EX to
match the UPC++ usage model
-Thread-safe with pthread mutex and GASNet SEQ

mode: use a coarse-grained lock for gasnet calls
54

Application: Full-Waveform Seismic Imaging
• Method	for	developing	models	of	earth	structure, applicable	to	…

• basic	science:	study	of	interior	structure	and	composition

• petroleum	exploration	and	environmental	monitoring

• nuclear	test-ban	treaty	verification

• Model	is	trained	to	predict	(via	numerical	simulation)	seismograms	

recorded	from	real	earthquakes	or	controlled	sources

• Training	defines	a	non-linear	regression	problem,	solved	iteratively

1000 km

Deep
mantle

Ocean
floor

HawaiiMarquesas
Tahiti

Samoa
Pitcairn

Macdonald
Hotspot volcanic islands

North

Seismic shear-wave velocity
beneath the central Pacific

low-velocity
fingers

low-velocity
plumes

Model Prediction

Observed Data

Time (s)

�(m) =
1

2
kd� g(m)k22

Seismic

model

Observed	

waveform

Predicted	

waveforms

Above:	global	full-waveform	seismic	model	
SEMum2	(French	et	al.,	2013,	Science)

Minimize:

Collaboration with Scott French et al, Berkeley Seismological Lab
55

ConvergentMatrix: An array abstraction for distributed dense-matrix assembly with

asynchronous updates

CS294 Fall 2013: Modern Parallel Languages
Scott French

sfrench@seismo.berkeley.edu

I. INTRODUCTION

In large-scale inverse problems [1] (e.g. regression), one
must often assemble and manipulate dense matrices that are
too large to fit “in-core” on a single shared-memory com-
puter – instead requiring a distributed-memory approach.
Further, it is also common that the elements of these matrices
are themselves the result of (possibly many) distributed
computations. While the PBLAS and ScaLAPACK [2], for
example, provide a convenient abstraction for linear algebra
operations on distributed dense matrices, the problem of
distributed-matrix assembly is typically left to the user.

One particular class of assembly problem is that which
consists only of augmented assignments to distributed matrix
elements with an operator that is, or can be assumed to be
for practical purposes, commutative and associative, e.g. the
+= operator. Under this scenario, the stream of concurrent
update operations to any given matrix element may be
arbitrarily reordered, so long as each augmented assignment
is applied in isolation (i.e. is atomic w.r.t. the others). Here,
we explore the efficacy of implementing a distributed matrix
abstraction for this particular class of assembly problem
using UPC++ [3], a partitioned global address space (PGAS)
extension to the C++ language.

A. A motivating example

The above class of distributed assembly problem is
commonly encountered in inverse theory – namely, in the
assembly of a Gauss-Newton estimate for the Hessian of
a given misfit functional. For example, in the case of the
generalized least-squares misfit

�(m) =
1

2
kd� g(m)k22 + prior terms . . .

where d contains observed data, m is a proposed model,
and g(·) is the (non-linear) forward operator that predicts d
given m, the Hessian estimate is given by GTG, where G
is the typically non-sparse Jacobian of the forward operator:
Gij = @gi(m)/@mj .

Often, for inverse problems considering large numbers
of data, the Jacobian G (dimd ⇥ dimm where dimd �
dimm) is too large to form explicitly and we instead
form GTG (dimm ⇥ dimm) directly. Typically, column-
strided panels of the Jacobian, denoted G(i), are produced

GtG[ix,ix] += GtG_i[:,:]

L
o
c
a
l

D
is
tr
ib
u
te
d

Figure 1. A schematic illustration of the strided update operation discussed
in the text.

concurrently by distributed computations – one for each
datum i of size k, such that G(i) is k ⇥ n, where (1) n
is typically an order of magnitude smaller than dimm due
to thresholding of small partial-derivative values, and (2) k
is at least an order of magnitude smaller than n. For each i,
the (smaller) symmetric matrix GT

(i)G(i) must be “added”
to the global GTG, with the mapping between elements
given by a strided slicing operation; or, in pseudocode
GtG[ix,ix] += GtG_i[:,:] where ix is an indexing
array (see Fig. I-A).

II. DESIGN

A. Requirements

An implementation of a distributed dense-matrix abstrac-
tion tailored to the class of assembly problem detailed above
should provide:

1) Support for distribution schemes common in parallel
dense linear algebra (i.e. cyclic, block, block-cyclic);

2) Distributed augmented-assignment operations (for
commutative and associative operators), which are
applied in isolation of each other;

3) Generality, with no fixed assumptions regarding sym-
metry or rank of updates;

4) Minimal need for synchronization, with the exception
of a barrier-like “freeze” operation, which is guaran-
teed to return only after all updates have been applied
and the distributed matrix has converged to its final
value; and

local
storage

local
storage

OpenMP UPC++
NUMA domain

Pr
oc

es
s k

local
storage

ConvergentMatrix<float,...> GtG(M, M);
...
// for each locally computed update
GtG.update(GtG_i, slice_idx_i);Jacobian

panels
Internal binning, upcxx::copy and upcxx::async invocation

OpenMP UPC++
NUMA domain

Pr
oc

es
s 0

Jacobian
panels

OpenMP UPC++
NUMA domain

Pr
oc

es
s N

Jacobian
panels

GtG.commit(); // barrier
// fetch local pointer
float *mat = GtG.get_local_data();
// ScaLAPACK
// MPI-IO collective write

Hessian
update

Binned
updates

async executes update async executes update

Manages
matrix

abstraction

Perform
NACT

computation

Eventually on all UPC++ processes ...

Process invoking update()

Obs.
C010397A
C010398B
C011002D

SEM Simulations Pred.

Model
Optimization

STOP

Seismic waveforms

Converged?
YesNoNACT + Eqn. (2)

+ 270 more ...

Application: Full-Waveform Seismic Imaging

Convergent Matrix Library

56

Alternative implementation: MPI-3 RMA
• Have to “design for” the MPI implementation

• NERSC Edison (XC30), so using Cray MPICH 7.0.3 (MPICH 3.0.x)
• Per-accumulate lock / unlock with exclusive locks

• Faster than shared (with or without single epoch)
• Would another implementation be faster? (possibly, but hard to say ...)
• In any case, similar code complexity to UPC++

https://github.com/swfrench/convergent-matrix-mpi

Weak scaling vs. UPC++
• Distributed matrix size fixed (180 GB)
• Dataset size scaled w/ concurrency

• 64 updates per MPI or UPC++
task + threads in NUMA domain

• NERSC Edison (Cray XC30)
• GNU Compilers 4.8.2 (-O3)
• Cray MPICH 7.0.3
• Up to 12,288 cores
• Matrix size: 180GBSe
tu

p

57

• First-ever whole-mantle seismic model from numerical waveform
tomography

• Reveals new details of deep structure not seen before
• Made feasible by Gauss-Newton

scheme, enabled by UPC++

Scientific results: A whole-mantle model

Right: Broad plumes in
the earth’s lower
mantle, including those
beneath Pitcairn,
Samoa, and other
hotspots.

Geophysical Journal International
Geophys. J. Int. (2014) 199, 1303–1327 doi: 10.1093/gji/ggu334

GJI Seismology

Whole-mantle radially anisotropic shear velocity structure from
spectral-element waveform tomography

S. W. French1,∗ and B. A. Romanowicz1,2,3

1Berkeley Seismological Laboratory, McCone Hall, University of California, Berkeley, CA 94720, USA. E-mail: sfrench@seismo.berkeley.edu
2Institut de Physique du Globe de Paris, 1 Rue Jussieu, F-752382 Paris Cedex 05, France
3Collège de France, 11 Place Marcelin Berthelot, F-75005 Paris, France

Accepted 2014 August 29. Received 2014 August 19; in original form 2014 June 16

S U M M A R Y
The radially anisotropic shear velocity structure of the Earth’s mantle provides a critical win-
dow on the interior dynamics of the planet, with isotropic variations that are interpreted in
terms of thermal and compositional heterogeneity and anisotropy in terms of flow. While
significant progress has been made in the more than 30 yr since the advent of global seis-
mic tomography, many open questions remain regarding the dual roles of temperature and
composition in shaping mantle convection, as well as interactions between different domi-
nant scales of convective phenomena. We believe that advanced seismic imaging techniques,
such as waveform inversion using accurate numerical simulations of the seismic wavefield,
represent a clear path forwards towards addressing these open questions through application
to whole-mantle imaging. To this end, we employ a ‘hybrid’ waveform-inversion approach,
which combines the accuracy and generality of the spectral finite element method (SEM) for
forward modelling of the global wavefield, with non-linear asymptotic coupling theory for
efficient inverse modelling. The resulting whole-mantle model (SEMUCB-WM1) builds on
the earlier successful application of these techniques for global modelling at upper mantle and
transition-zone depths (≤800 km) which delivered the models SEMum and SEMum2. Indeed,
SEMUCB-WM1 is the first whole-mantle model derived from fully numerical SEM-based
forward modelling. Here, we detail the technical aspects of the development of our whole-
mantle model, as well as provide a broad discussion of isotropic and radially anisotropic model
structure. We also include an extensive discussion of model uncertainties, specifically focused
on assessing our results at transition-zone and lower-mantle depths.

Key words: Inverse theory; Body waves; Surface waves and free oscillations; Seismic
anisotropy; Seismic tomography; Computational seismology.

1 I N T RO D U C T I O N

Global seismic tomography has made considerable progress over
the past 30 years in identifying robust, large-scale features in the
seismic velocity structure of the Earth’s mantle, including the large
low shear velocity provinces (LLSVPs) in the deep mantle (e.g.
Dziewonski et al. 1977; Lekić et al. 2012) and high-velocity anoma-
lies associated with subducted slabs (e.g. van der Hilst et al. 1997),
although the depth distribution of the latter is still debated (e.g.
Fukao & Obayashi 2013). The earliest 3-D global models, such

∗Now at: The National Energy Research Scientific Computing Center
(NERSC), Lawrence Berkeley National Laboratory, Berkeley, CA 94720,
USA.

as those of Dziewonski et al. (1977) and Woodhouse & Dziewon-
ski (1984), focusing on the lower and upper mantle, respectively,
were the first to obtain images of long-wavelength heterogeneity
(>5000 km). Since then, several generations of models have been
developed with steadily improving resolution. More recent global
studies, including both whole-mantle (e.g. Panning & Romanowicz
2006; Simmons et al. 2006, 2010; Houser et al. 2008; Kustowski
et al. 2008; Ritsema et al. 2011) and upper-mantle models (e.g.
Lekić & Romanowicz 2011a; Debayle & Ricard 2012; Schaeffer &
Lebedev 2013), with some claiming lateral resolution on the order of
1000 km, have extended the interpretable spectrum of model struc-
ture while largely confirming the long-wavelength features seen
previously (e.g. Lekić et al. 2012). At the same time, shorter wave-
length features (<2500 km) do not tend to correlate well across
global models (Becker & Boschi 2002; Dziewonski 2005), as

C⃝ The Authors 2014. Published by Oxford University Press on behalf of The Royal Astronomical Society 1303

 by guest on January 4, 2015
http://gji.oxfordjournals.org/

D
ow

nloaded from

Geophysical Journal International
Geophys. J. Int. (2014) 199, 1303–1327 doi: 10.1093/gji/ggu334

GJI Seismology

Whole-mantle radially anisotropic shear velocity structure from
spectral-element waveform tomography

S. W. French1,∗ and B. A. Romanowicz1,2,3

1Berkeley Seismological Laboratory, McCone Hall, University of California, Berkeley, CA 94720, USA. E-mail: sfrench@seismo.berkeley.edu
2Institut de Physique du Globe de Paris, 1 Rue Jussieu, F-752382 Paris Cedex 05, France
3Collège de France, 11 Place Marcelin Berthelot, F-75005 Paris, France

Accepted 2014 August 29. Received 2014 August 19; in original form 2014 June 16

S U M M A R Y
The radially anisotropic shear velocity structure of the Earth’s mantle provides a critical win-
dow on the interior dynamics of the planet, with isotropic variations that are interpreted in
terms of thermal and compositional heterogeneity and anisotropy in terms of flow. While
significant progress has been made in the more than 30 yr since the advent of global seis-
mic tomography, many open questions remain regarding the dual roles of temperature and
composition in shaping mantle convection, as well as interactions between different domi-
nant scales of convective phenomena. We believe that advanced seismic imaging techniques,
such as waveform inversion using accurate numerical simulations of the seismic wavefield,
represent a clear path forwards towards addressing these open questions through application
to whole-mantle imaging. To this end, we employ a ‘hybrid’ waveform-inversion approach,
which combines the accuracy and generality of the spectral finite element method (SEM) for
forward modelling of the global wavefield, with non-linear asymptotic coupling theory for
efficient inverse modelling. The resulting whole-mantle model (SEMUCB-WM1) builds on
the earlier successful application of these techniques for global modelling at upper mantle and
transition-zone depths (≤800 km) which delivered the models SEMum and SEMum2. Indeed,
SEMUCB-WM1 is the first whole-mantle model derived from fully numerical SEM-based
forward modelling. Here, we detail the technical aspects of the development of our whole-
mantle model, as well as provide a broad discussion of isotropic and radially anisotropic model
structure. We also include an extensive discussion of model uncertainties, specifically focused
on assessing our results at transition-zone and lower-mantle depths.

Key words: Inverse theory; Body waves; Surface waves and free oscillations; Seismic
anisotropy; Seismic tomography; Computational seismology.

1 I N T RO D U C T I O N

Global seismic tomography has made considerable progress over
the past 30 years in identifying robust, large-scale features in the
seismic velocity structure of the Earth’s mantle, including the large
low shear velocity provinces (LLSVPs) in the deep mantle (e.g.
Dziewonski et al. 1977; Lekić et al. 2012) and high-velocity anoma-
lies associated with subducted slabs (e.g. van der Hilst et al. 1997),
although the depth distribution of the latter is still debated (e.g.
Fukao & Obayashi 2013). The earliest 3-D global models, such

∗Now at: The National Energy Research Scientific Computing Center
(NERSC), Lawrence Berkeley National Laboratory, Berkeley, CA 94720,
USA.

as those of Dziewonski et al. (1977) and Woodhouse & Dziewon-
ski (1984), focusing on the lower and upper mantle, respectively,
were the first to obtain images of long-wavelength heterogeneity
(>5000 km). Since then, several generations of models have been
developed with steadily improving resolution. More recent global
studies, including both whole-mantle (e.g. Panning & Romanowicz
2006; Simmons et al. 2006, 2010; Houser et al. 2008; Kustowski
et al. 2008; Ritsema et al. 2011) and upper-mantle models (e.g.
Lekić & Romanowicz 2011a; Debayle & Ricard 2012; Schaeffer &
Lebedev 2013), with some claiming lateral resolution on the order of
1000 km, have extended the interpretable spectrum of model struc-
ture while largely confirming the long-wavelength features seen
previously (e.g. Lekić et al. 2012). At the same time, shorter wave-
length features (<2500 km) do not tend to correlate well across
global models (Becker & Boschi 2002; Dziewonski 2005), as

C⃝ The Authors 2014. Published by Oxford University Press on behalf of The Royal Astronomical Society 1303

 by guest on January 4, 2015
http://gji.oxfordjournals.org/

D
ow

nloaded from

Left: 3D rendering of
low-velocity structure
beneath the Hawaii
hotspot.

(French and Romanowicz,
2015, in revision) 58

Alternative implementation: MPI-3 RMA
Why the performance disparity?
• Very different approaches to achieving “generality”
• Determines what optimizations are available to programmer

upcxx::async
(general functions)

• Explicit buffer management
• Customized update function

with domain knowledge
• Progress at both source and

target is controllable
• One way bulk data movement

can be guaranteed

MPI_Accumulate
(general data types)

• Opaque internal MPI buffers
• Generalized MPI data types +

pre-defined merge ops
• Progress is impl.-specific and

not controllable at target
• Data may take more than one

trip to ensure passive target
(ex: bulk accumulate in foMPI)

vs.

More opportunities to exploit
problem / domain specific knowledge 59

Multidimensional
Arrays in UPC++

Multidimensional Arrays

• Multidimensional arrays are a common data structure in
HPC applications

• However, they are poorly supported by the C family of
languages, including UPC
-Layout, indexing must be done manually by the user
-No built-in support for subviews

• Remote copies of array subsets pose an even greater
problem
-Require manual packing at source, unpacking at

destination
-In PGAS setting, remote copies that are logically

one-sided require two-sided coordination by the user
61

UPC++ Multidimensional Arrays

• True multidimensional arrays with sizes specified at
runtime

• Support subviews without copying (e.g. view of interior)

• Can be created over any rectangular index space, with
support for strides

• Local-view representation makes locality explicit and
allows arbitrarily complex distributions
-Each rank creates its own piece of the global data

structure

• Allow fine-grained remote access as well as one-sided
bulk copies

62

UPC++ Arrays Based on Titanium

• Titanium is a PGAS language based on Java
• Line count comparison of Titanium and other languages:

0

500

1000

1500

2000

NPB-CG NPB-FT NPB-MG

Li
ne

s
of

 C
od

e

NAS Parallel Benchmarks
MPI+Fortran UPC Titanium

AMR Chombo C++/Fortran/MPI Titanium
AMR data structures 35000 2000

AMR operations 6500 1200
Elliptic PDE Solver 4200* 1500

* Somewhat more functionality in PDE part of C++/Fortran
code 63

Titanium vs. UPC++

• Main goal: provide similar productivity and performance
as Titanium in UPC++

• Titanium is a language with its own compiler
-Provides special syntax for indices, arrays
-PhD theses have been written on compiler

optimizations for multidimensional arrays (e.g. Geoff
Pike specifically for Titanium)

• Primary challenge for UPC++ is to provide Titanium-like
productivity and performance in a library
-Use macros, templates, and operator/function

overloading for syntax
-Provide specializations for performance

64

Overview of UPC++ Array Library
• A point is an index, consisting of a tuple of integers

• A rectangular domain is an index space, specified with a
lower bound, upper bound, and optional stride

• An array is defined over a rectangular
domain and indexed with a point

• One-sided copy operation copies all elements in the
intersection of source and destination domains

ndarray<double, 2> A(r); A[lb] = 3.14;

point<2> lb = {{1, 1}}, ub = {{20, 10}};

rectdomain<2> r(lb, ub);

ndarray<double, 2, global> B = ...;
B.async_copy(A); // copy from A to B
async_wait(); // wait for copy completion

65

[1,1]

[20,10]

Multidimensional Arrays in UPC++ (and Titanium)

• Titanium arrays have a rich set of operations

• None of these modify the original array, they just create
another view of the data in that array

• You create arrays with a RectDomain and get it back
later using A.domain() for array A
-A Domain is a set of points in space
-A RectDomain is a rectangular one

• Operations on Domains include +, -, * (union, different
intersection)

translate restrict slice (n dim to n-1) transpose

66

Example: 3D 7-Point Stencil

• Code for each timestep:
// Copy ghost zones from previous timestep.
for (int j = 0; j < NEIGHBORS; j++)

allA[neighbors[j]].async_copy(A.shrink(1));
async_wait(); // sync async copies
barrier(); // wait for puts from all nodes
// Local computation.
foreach (p, interior_domain) {

B[p] = WEIGHT * A[p] +
A[p + PT(0, 0, 1)] + A[p + PT(0, 0, -1)] +
A[p + PT(0, 1, 0)] + A[p + PT(0, -1, 0)] +
A[p + PT(1, 0, 0)] + A[p + PT(-1, 0, 0)];

};
// Swap grids.
SWAP(A, B); SWAP(allA, allB);

Special foreach loop
iterates over arbitrary

domain

One-line copy

Point constructor

View of interior of A

Implemented using
lambda, so “;” needed67

Arrays in Adaptive Mesh Refinement

• AMR starts with a coarse grid
over the entire domain

• Progressively finer AMR
levels added as needed over
subsets of the domain

• Finer level composed of
union of regular subgrids,
but union itself may not be
regular

• Individual subgrids can be
represented with UPC++
arrays

• Directory structure can be used to represent union of all
subgrids

68

Example: Ghost Exchange in AMR

foreach (l, my_grids.domain()) {
foreach (a, all_grids.domain()) {
if (l != a)

my_grids[l].copy(all_grids[a].shrink(1));
};
};

Proc 0 Proc 1
my_grids

all_grids

• Can allocate arrays in a global index space
• Let library compute intersections

"ghost" cells

Avoid null copies

Copy from interior of other grid

69

Syntax of Points

• A point<N> consists of N coordinates
• The point class template is declared as plain-old data

(POD), with an N-element array as its only member
template<int N> struct point {
cint_t x[N];
...

};
-Can be constructed using initializer list

point<2> lb = {{1, 1}};

• The PT function creates a point in non-initializer contexts
point<2> lb = PT(1, 1);

-Implemented using variadic templates in C++11,
explicit overloads otherwise

70

Array Template

• Arrays represented using a class template, with element
type and dimensionality arguments
template<class T, int N,

class F1, class F2>
class ndarray;

• Last two (optional) arguments specify locality and layout
-Locality can be local (i.e. elements are located in

the local memory space) or global (elements may
be located elsewhere)
-Layout can be strided, unstrided, row, column;

more details later

• Template metaprogramming used to encode type
lattices for implicit conversions

71

Array Implementation

• Local and global arrays have significant differences in
their implementation
-Global arrays may require communication

• Layout only affects indexing
• Implementation strategy:

• Macros and template metaprogramming used to
interface between layers

GASNet

UPC++
Active

Message
s

UPC++ Backend

global_tiarray and
local_tiarray templates

ndarray template

Shared-
Memor

y
Backen

d

Handles layout

Manage locality

Backends provide
communication

primitives

Runtime layer

72

Foreach Implementation

• Macros and templates allow definition of foreach loops

• C++11 implementation using type inference and lambda:
#define foreach(p, dom) \

foreach_(p, dom, UNIQUIFYN(foreach_ptr_, p))

#define foreach_(p, dom, ptr_) \
for (auto ptr_ = (dom).iter(); !ptr_.done; \

ptr_.done = true) \
ptr_ = [&](const decltype(ptr_.dummy_pt()) &p)

• Pre-C++11 implementation also possible using sizeof
operator
-However, loop is flattened, so performance is much

slower
73

C++11 Foreach Translation

• Lambda encapsulates body, passed to loop template
template<int N> struct rditer {
template<class F> rditer &operator=(const F &func) {
rdloop<N>::loop(func, p0.x, p1.x, loop_stride.x);
return *this;

}
};

• Loop template implemented recursively, with base case a
template specialization that calls body (not shown)
-Result is N-d loop; GCC and Clang optimize it well

template<int N> struct rdloop {
template<class F, class... Is>
static void loop(const F &func, const int *lwb, const int *upb,

const int* stride, Is... is) {
for (int x = *lwb, u = *upb, s = *stride; x < u; x += s)
rdloop<N-1>::loop(func, lwb+1, upb+1, stride+1, is..., x);

}
}; 74

Layout Specializations

• Arrays can be created over any logical domain, but are
laid out contiguously
-Physical domain may not match logical domain
-Non-matching stride requires division to get from

logical to physical
(px[0] – base[0])*side_factors[0]/stride[0] +
(px[1] – base[1])*side_factors[1]/stride[1] +
(px[2] – base[2])*side_factors[2]/stride[2]

• Introduce template specializations to restrict layout
-strided: any logical or physical stride
-unstrided: logical and physical strides match
-row: matching strides + row-major format

• Default in UPC++ to provide best performance
-column: matching strides + column-major 75

Array Library Evaluation

• Evaluation of array library done by porting benchmarks
from Titanium to UPC++
-Again, goal is to match Titanium’s productivity and

performance without access to a compiler

• Benchmarks: 3D 7-point stencil, NAS CG, FT, and MG

• Minimal porting effort for these examples, providing
some evidence that productivity is similar to Titanium
-Less than a day for each kernel
-Array code only requires change in syntax
-Most time spent porting Java features to C++

76

NAS Benchmarks on One Node (GCC)

2

4

8

16

32

64

128

1 2 4 8 16

R
un

ni
ng

 T
im

e
(s

)

Number of Cores

NAS Benchmarks
Titanium CG UPC++ CG
Titanium FT UPC++ FT
Titanium MG UPC++ MG

B
et

te
r

77

Stencil Weak Scaling (GCC)

4
8

16
32
64

128
256
512

1024
2048
4096
8192

Pe
rf

or
m

an
ce

 (G
B

/s
)

Number of Cores

Stencil 2563 Grid/Core

Titanium
UPC++

B
et

te
r

78

Array Library Summary

• We have built a multidimensional array library for
UPC++
-Macros and template metaprogramming provide a lot

of power for extending the core language
-UPC++ arrays can provide the same productivity

gains as Titanium
-Specializations allow UPC++ to match Titanium’s

performance
• Some issues remain

-Improve performance of one-sided array copies
• Performance somewhat slower than manual

packing/unpacking, as will be shown in miniGMG results
-GCC and Clang optimize complex template code

well, but other compilers do not
• We are not the only ones to run into this (e.g. Raja, HPX)
• Need to lean on compiler implementers to do a better job

79

Case Study: miniGMG

• We evaluate the productivity and performance of three
implementations of miniGMG, a multigrid benchmark

• The three implementations use different communication
strategies enabled by the PGAS model

1. Fine-grained communication, at the natural
granularity of the algorithm

2. Bulk communication, with manual packing and
unpacking by the user
• One-sided analogue of message passing

3. Higher-level array-based communication that
offloads the work to an array library
• Still semantically one-sided

• We evaluate performance on two current platforms
80

Multigrid Overview

• Linear Solvers (Ax=b) are ubiquitous in scientific computing
-Combustion, Climate, Astrophysics, Cosmology, etc.

• Multigrid exploits the nature of elliptic PDEs to provide a
hierarchical approach with O(N) computational complexity

• Geometric Multigrid is specialization in which the linear
operator (A) is simply a stencil on a structured grid (i.e.
matrix-free)

“MG V-Cycle”

81

miniGMG Overview

• 3D Geometric Multigrid benchmark designed
to proxy MG solves in BoxLib and
CHOMBO-based AMR applications

• Defines a cubical problem domain
- Decomposed into cubical subdomains (boxes)
- Rectahedral collections of subdomains are assigned

to processes
- Decomposition preserved across all levels of V-Cycle

• MPI+OpenMP parallelization
• Configured to use…

- Fixed 10 U-Cycles (V-Cycle truncated when boxes are coarsened to 43)
- 7-pt stencil with Gauss Seidel Red-Black (GSRB) smoother that requires

nearest-neighbor communication for each smooth or residual calculation.
- BiCGStab coarse-grid (bottom) solver

• Communication pattern is thus…
- Fixed 6 nearest-neighbor communication
- Message sizes vary greatly as one descends through the V-Cycle

(128KB -> 128 bytes -> 128KB)
- Requires neighbor synchronization on each step (e.g. two-sided MPI) 82

Array Creation in miniGMG

void create_grid(..., int li, int lk, int lk, int szi,
int szj, int szk, int ghosts) {

...
double *grid = upcxx::allocate<double>(...);

rectdomain<3> rd(PT(li-ghosts, lj-ghosts, lk-ghosts),
PT(li+szi+ghosts, lj+szj+ghosts,

lk+szk+ghosts));
point<3> padding = ...;
ndarray<double, 3> garray(grid, rd, true, padding);
...

}

Existing Grid Creation Code

Logical Domain of Grid

Padding of Grid Dimensions

Create Array Descriptor
over Existing Grid Memory

Grid Domain

Column-Major
Layout

Padding

83

Communication Setup for miniGMG Arrays

point<3> dirs = {{ di, dj, dk }}, p0 = {{ 0, 0, 0 }};
for (int d = 1; d <= 3; d++) {
if (dirs[d] != 0)
dst = dst.border(ghosts, -d * dirs[d], 0);

if (dirs[d] == -1 && src.domain().lwb()[d] < 0)
src = src.translate(p0.replace(d, dst.domain().upb()[d] -

ghosts));
else if (dirs[d] == 1 && dst.domain().lwb()[d] < 0)
src = src.translate(p0.replace(d, -src.domain().upb()[d] +

ghosts));
}

rectdomain<3> isct = dst.domain()*src.domain().shrink(ghosts);

send_arrays[PT(level, g, nn, i, j, k)] = src.constrict(isct);
recv_arrays[PT(level, g, nn, i, j, k)] = dst.constrict(isct);

Circular Domain Shift
at Boundaries

Compute Intersection

Save Views of Source and Destination Restricted to Intersection

84

Bulk Communication Strategy

• Bulk version uses manual packing/unpacking
-Similar to MPI code, but with one-sided puts instead

of two-sided messaging

i (unit stride) i (unit stride)

send
buffers

recv
buffer

box 2
(remote)

box 0
(local)

box 3
(remote)

1 32 4
box 1

(remote)

1

2

3

4 recv
buffer

85

Fine-Grained Communication Strategy

• Fine-Grained version does multiple one-sided puts of
contiguous data
-Puts are at natural granularity of the algorithm

i (unit stride) i (unit stride)

box 2
(remote)

box 0
(local)

box 3
(remote)

2 box 1
(remote)

1

86

Array Communication Strategy

• Array version logically copies entire ghost zones,
delegating actual procedure to array library
-Copies have one-sided semantics

i (unit stride) i (unit stride)

box 2
(remote)

box 0
(local)

box 3
(remote)

box 1
(remote)

2

1

87

Communication Coordination

• Shared array used to coordinate communication
shared_array<global_ptr<subdomain_type>, 1>
global_boxes;

• Bulk version must carefully coordinate send and receive
buffers between ranks
-Must ensure right buffers are used, same ordering

for packing and unpacking elements
-Special cases for ghost zones at faces, edges, and

corners
-Most difficult part of code

• Minimal coordination required for fine-grained and array
-Only need to obtain location of target grid from

shared array
88

Ghost-Zone Exchange Algorithms

• Pack/unpack parallelized using OpenMP in bulk version
-Effectively serialized in fine-grained and array

Bulk Fine-Grained Array

Barrier Yes Yes Yes

Pack Yes No No

Async
Puts/Copies

1 per
neighboring

rank

1 for each
contiguous

segment

1 per
neighboring grid

Async Wait Yes Yes Yes

Barrier Yes Yes Yes

Unpack Yes No No

~ Line Count of
Setup + Exchange 884 537 399

89

Bulk Copy Code

• Packing/unpacking code in bulk version:
...
for (int k = 0; k < dim_k; k++) {

for (int j = 0; j < dim_j; j++) {
for (int i = 0; i < dim_i; i++) {

int read_ijk = (i+ read_i) + (j+ read_j)*
read_pencil + (k+ read_k)* read_plane;

int write_ijk = (i+write_i) + (j+write_j)*
write_pencil + (k+write_k)*write_plane;

write[write_ijk] = read[read_ijk];
}

}
}

• Code must be run on both sender and receiver
90

Fine-Grained Copy Code

• Fine-grained code matches shared-memory code, but
with async_copy instead of memcpy:
...
for (int k = 0; k < dim_k; k++)

for (int j = 0; j < dim_j; j++) {
int roff = recv_i + (j+recv_j)*rpencil +

(k+recv_k)*rplane;
int soff = send_i + (j+send_j)*spencil +

(k+send_k)*splane;
async_copy(sbuf+soff, rbuf+roff, dim_i);

}
}

• Takes advantage of fact that source and destination
layouts match

91

Array Copy Code

• Array version delegates actual copies to array library:
rcv = recv_arrays[PT(level, g, nn, i, j, k)];
rcv.async_copy(send_arrays[PT(level, g, nn, i, j, k)]);

• Array library behavior for cases that occur in miniGMG:
1. If the source and destination are contiguous, then one-sided

put directly transfers data
2. Otherwise, elements packed into contiguous buffer on source

a) If the elements and array metadata fit into a medium
active message (AM), a medium AM is initiated

– AM handler on remote side unpacks into destination
b) Otherwise, a short AM is used to allocate a remote buffer

– Blocking put transfers elements to remote buffer
– Medium AM transfers array metadata
– AM handler on remote side unpacks and deallocates

buffer 92

Platforms and Experimental Setup

• Cray XC30 (Edison), located at NERSC
-Cray Aries Dragonfly network
-Each node has two 12-core sockets
-We use 8 threads/socket

• IBM Blue Gene/Q (Mira), located at Argonne
-5D torus network
-Each node has 16 user cores, with 4 threads/core
-We use 64 threads/socket

• Fixed (weak-scaling) problem size of 1283 grid/socket
• Two experiments on each platform

-1 MPI process, 8 or 64 OpenMP threads per socket
-8 MPI processes, 1 or 8 OpenMP threads per socket

93

Communication Histogram

• Histogram of message sizes per process, when using 1
process/socket, for all three versions on Cray XC30

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

4 16 64 256 1024 4096 16384 65536

N
um

be
r o

f M
es

sa
ge

s
Se

nt

Message Sizes (Bytes)

1 Process/Socket, 128^3/Process

Bulk/MPI
Fine-Grained
Array

94

Histogram of 1 MPI Process vs. 8/Socket

• Same overall problem size per socket
• Fewer small messages per process when using 8

processes, but more small messages per socket

1.E+0

1.E+1

1.E+2

1.E+3

1.E+4

1.E+5

1.E+6

1.E+7

4 16 64 256 1024 4096 1638465536N
um

be
r o

f M
es

sa
ge

s
Se

nt

Message Sizes (Bytes)

1 Process/Socket, 128^3/Process

Bulk/MPI

Fine-
Grained

1.E+0

1.E+1

1.E+2

1.E+3

1.E+4

1.E+5

1.E+6

1.E+7

4 16 64 256 1024 4096 16384N
um

be
r o

f M
es

sa
ge

s
Se

nt

Message Sizes (Bytes)

8 Processes/Socket, 64^3/Process

Bulk/MPI

Fine-
Grained

95

Performance Results on Cray XC30

• Fine-grained and array versions do much better with
higher injection concurrency
-Array version does not currently parallelize

packing/unpacking, unlike bulk/MPI

B
et

te
r

B
et

te
r

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

8 64 512 4096 32768

R
un

ni
ng

 T
im

es
 (s

)

No. of Processes (x1 OpenMP)

Fine-Grained
Array
Bulk
MPI

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

1 8 64 512 4096

R
un

ni
ng

 T
im

es
 (s

)

No. of Processes (x8 OpenMP)

Fine-Grained
Array
Bulk
MPI

96

Performance Results on IBM Blue Gene/Q

• Fine-grained does worse, array better on IBM than Cray
• Using more processes improves fine-grained and array

performance, but fine-grained still significantly slower

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

1 8 64 512 4096

Ru
nn

in
g	
Ti
m
es
	(s
)

No.	of	Processes	(x64	OpenMP)

Fine-Grained

Array

Bulk

MPI

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

8 64 512 4096 32768

Ru
nn

in
g	
Ti
m
es
	(s
)

No.	of	Processes	(x8	OpenMP)

Fine-Grained

Array

Bulk

MPI

B
et

te
r

B
et

te
r

97

miniGMG Summary

• Array abstraction can provide better productivity than
even fine-grained, shared-memory-style code, while
getting close to bulk performance
-Unlike bulk, array code doesn’t require two-sided

coordination

-Further optimization (e.g. parallelize packing/unpacking)
can reduce the performance gap between array and bulk

-Existing code can be easily rewritten to take advantage of
array copy facility, since changes localized to
communication part of code

98

Lessons Learned

• Many productive language features can be implemented
in C++ without modifying the compiler
-Macros and template metaprogramming provide a lot

of power for extending the core language
• Many Titanium applications can be ported to UPC++

with little effort
-UPC++ can provide the same productivity gains as

Titanium
• However, analysis and optimization still an open

question
-Can we build a lightweight standalone

analyzer/optimizer for UPC++?
-Can we provide automatic specialization at runtime

in C++?
99

Takeaways

• Communicate more often
- use non-blocking one-sided operations

• Move computation instead of data
- use async and event-driven execution

• Express algorithms with high-level data structures
- use Titanium-style multidimensional arrays

• Easy on-ramp
- interoperate w. existing MPI+OpenMP codes

• We look forward to collaboration!
- share knowledge and experience beyond tools

UPC++: https://bitbucket.org/upcxx
100

