
Implementing High-Performance Geometric Multigrid Solver With Naturally
Grained Messages

Hongzhang Shan, Samuel Williams, Yili Zheng, Amir Kamil, Katherine Yelick

Computational Research Division
Lawrence Berkeley National Laboratory

Berkeley, CA 94720, USA
{hshan, swwilliams, yzheng, akamil, kayelick}@lbl.gov

Abstract—Structured grid linear solvers often require man-
ually packing and unpacking of communication data to achieve
high performance. Orchestrating this process efficiently is
challenging, labor-intensive, and potentially error-prone. In this
paper, we explore an alternative approach that communicates
the data with naturally grained message sizes without manual
packing and unpacking. This approach is the distributed ana-
logue of shared-memory programming, taking advantage of the
global address space in PGAS languages to provide substantial
programming ease. However, its performance may suffer from
the large number of small messages. We investigate the runtime
support required in the UPC++ library for this naturally
grained version to close the performance gap between the
two approaches and attain comparable performance at scale
using the High-Performance Geometric Multgrid (HPGMG-
FV) benchmark as a driver.

Keywords-HPGMG; Naturally-Grained Messages; VIS func-
tions; Group Synchronization; PGAS; UPC++;

I. INTRODUCTION

High-Performance Geometric Multigrid (HPGMG-FV) is

a benchmark designed to proxy linear solvers based on finite-

volume geometric multigrid [10]. As a proxy application,

it has been used by many companies and DOE labs to

conduct computer science research. It implements the full

multigrid F-cycle with a fully parallel, distributed V-Cycle.

Its communication is dominated by ghost exchanges at

each grid level and restriction and interpolation operations

across levels. The primary data structure is a hierarchy of

three-dimensional arrays representing grids on the physical

domain. The computation involves stencil operations that are

applied to points on the grids, sometimes one grid at a time

and sometimes using a grid at one level of refinement to

update another. The interprocessor communication therefore

involves updating ghost regions on the phases of subdomains

of these grids. Given the performance characteristics of

current machines, and the discontiguous nature of the data

on some of the faces of these grids, the ghost regions

data must be packed at the source process and unpacked

correspondingly at the destination process to ensure high

performance and scalability. The multigrid computation has

several different types of operators that may involve different

packing patterns, as one must deal with unions of sub-

domains, deep ghost-zone exchanges, and communication

with edge and corner neighbors. The manual packing and

unpacking process is therefore very complex and error-

prone.

A different approach is to implement the algorithm in

a more natural way by expressing communication at the

data granularity of the algorithm (sequences of contiguous

double-precision words) without manual message aggrega-

tion. The PGAS programming model provides a suitable

environment for us to evaluate this approach. The global

address space and efficient one-sided communication enable

communication to be expressed with simple copies from one

data structure to another on a remote process, analogous to

shared-memory programming but using puts or gets rather

than calls to memcpy. We refer to this as naturally grained
communication, since the messages match the granularity of

the memory layout in the data structure. For example, copy-

ing a face of a multidimensional array may be accomplished

with a few large messages if it is in the unit-stride direction

or numerous small messages consisting of individual double-

precision words if it is in the maximally strided direction.

As illustrated above, codes developed with natural mes-

sage sizes often generate a large number of small messages.

Unfortunately, current HPC systems often favor large mes-

sages, so flooding the network with millions of small mes-

sages may significantly degrade application performance.

To address this issue, we investigate what features the

runtime system can provide to enable a naturally expressed

implementation to be competitive with a highly tuned but

more complex version. We use the open-source UPC++

[20] library as our framework for this study, examining

features such as 1) exploiting hardware cache-coherent

memory systems inside a node to avoid message overhead,

2) library support for communicating non-contiguous data,

and 3) group synchronization. With these three features,

our naturally-grained implementation attains performance

comparable to the highly tuned bulk-communication version

at up to 32K processes on the Cray XC30 platform.

2015 9th International Conference on Partitioned Global Address Space Programming Models

978-1-5090-0185-9 2015

U.S. Government Work Not Protected by U.S. Copyright

DOI 10.1109/PGAS.2015.12

38

2015 9th International Conference on Partitioned Global Address Space Programming Models

978-1-5090-0185-9 2015

U.S. Government Work Not Protected by U.S. Copyright

DOI 10.1109/PGAS.2015.12

38

�������

�	
��
���

�	
������

����������	�

���	������	�
���	������	�
���������	���

Figure 1. The full geometric multigrid cycle.

II. RELATED WORK

To improve the performance of non-contiguous data trans-

fers, Chen et al. studied coalescing fine-grained messages

at compile time for UPC applications [4]. However, their

work required compiler support to find optimization can-

didates, which is very difficult for complex C/C++ codes.

Willcock et al. implemented message coalescing for AM++

based on message types [17]. Their work requires certain

implementation parameters, such as the buffer length to hold

the messages, to be set properly to improve performance. On

the other hand, in our work, the runtime provides explicit

support for non-contiguous messages, which maximizes

performance at the cost of some programming effort from

the application writer.

Regarding synchronization, Belli and Hoefler [1] proposed

a notified-access mechanism to reduce synchronization over-

head for one-sided messages in producer-consumer algo-

rithms. D. Bonachea et al. [3] proposed a signaling-put

mechanism to couple data transfer and synchronization for

point-to-point communication. In our approach, we propose

an asymmetric group-synchronization mechanism to avoid

global barriers in nearest-neighbor communication. While it

may potentially provide less performance than directly using

point-to-point synchronization, it provides a simple interface

that is similar to a barrier.

In our prior work [14], we developed a naturally grained

version of the miniGMG benchmark. However, we did not

attempt to optimize performance of the naive implementa-

tion. Furthermore, HPGMG is much more complicated due

to its full multigrid cycle, level-by-level domain decompo-

sition, and redistribution of the workload to a subset of the

processes when there is not enough work at coarser levels

in the multigrid cycle.

A number of performance studies have also been done

using the Global address space Programming Interface,

GPI-2 [15], [12], [9], [8], which is a library-based PGAS

model and does not involve compiler optimizations specific

to parallel computation or data movement. Our focus is

somewhat different, namely to examine runtime support

mechanisms that enable a naturally grained implementation

to compete with highly tuned bulk-copy versions.

III. HPGMG-FV

In this paper, we use a UPC++ port of HPGMG-FV [10]

as a driver for our PGAS communication optimizations.

HPGMG-FV solves the variable-coefficient PDE b∇·β∇u =
f using the finite-volume method on a structured grid. As

such, it is superficially similar to miniGMG [13], [18] which

we used as a basis for our previous work [14]. However,

unlike miniGMG, HPGMG uses Full Multigrid (FMG) and

a distributed V-Cycle. As shown in Figure 1, first, the right-

hand side of the finest grid (e.g. 2563 on [0,1]3) is restricted

to the coarsest grid (e.g. 13 on [0,1]3) and an accurate

solution is obtained at this level. The solution on the coarsest

grid is interpolated to provide a good initial vector on the

next finer level (e.g. interpolate the 13 solution to provide

an initial guess for the 23 grid). A V-cycle starting with

this new finer grid improves the solution (e.g. a V-cycle

from 23 to 13 and back). Then, interpolation predicts the

solution for the next finer grid (43) and a following deeper

V-cycle makes it better and so on. Ultimately, a good initial

guess is interpolated to the 2563 grid and one final V-cycle

is performed. Within the recursive V-Cycle, a series of pre-

and post-smooths are performed and the restriction of the

residual is used to provide the right-hand side for the next

coarser grid.

A. Domain Decomposition

The grids with different spacings (e.g. 2563 vs. 1283

on [0,1]3) form hierarchical grids or levels. Each level is

represented by a cubical domain and is partitioned into

cubical boxes in i, j, k directions. The box is the basic

partition unit and distributed among the processes. Boxes

can be either smaller, the same size, or larger on coarser

levels, depending on the size of the process subset assigned

to work on the level. But the total number of cells is

always 8× less. Each box maintains a list of vectors

3939

to represent vectors u, r, f , etc. shown in Figure 1. In

addition, the box size is augmented with ghost zones, which

replicate data from neighboring boxes or computed based on

boundary conditions when non-periodic boundary conditions

are applied. Therefore, only the data in the i direction is

contiguous. Figure 2 illustrates the box layout for the two-

dimensional case. The shaded areas for box 0 represent the

ghost zones. At most, the ghost-zone data may come from 8

different neighboring boxes to fill in the 8 ghost regions. In

three dimensions, the neighboring boxes can be as many as

26, indicating that one box may have to communicate with

26 different neighbors to fill in its ghost zones.

box 2

(local)

box 1

(remote)

box 3

(remote)

apply

boundary

condition
using box 0’s

own data

apply boundary

condition based

on ghost zone
data received

from box 1

b

fill ghost zone

with data from

(remote) box 1

fill ghost zone

with data from

(local) box 2

apply boundary

condition based

on ghost zone
data received

from box 2

fill ghost zone

with data from

(remote) box 3

box 0

(local)

Figure 2. 2D illustration of the ghost zone exchange and boundary
condition in the 3D HPGMG-FV.

One major difference from miniGMG lies in the domain

decomposition. In miniGMG, the domain decomposition is

preserved across restrictions. Therefore, there is no com-

munication needed for restriction and interpolation. How-

ever, in HPGMG-FV, the domain decomposition is level-by-

level basis. When there is insufficient work, computation

is redistributed onto a subset of the processes. At the

extreme, only one process needs to work on the coarsest

level. This changes the distribution of message sizes to

favor smaller messages. Moreover, communication becomes

necessary when restricting the grids to coarser levels or

interpolating the solutions to finer ones and thus inflates the

message count at the agglomeration threshold.

B. MPI Communication Orchestration

There are three major communication operations in

HPGMG-FV. The first consists of the ghost exchanges inside

the smooth and residual functions, which occur at the same

grid level. The other two occur across levels inside the

restriction and interpolation operations, respectively. Follow-

ing, we will describe how these communications are setup

and executed in the highly tuned MPI implementation.

The execution of each communication operation is divided

into four steps and highlighted in Figure 3(a).

1) Packing: Post MPI_Irecv operations. Pack the data

into a series of 1D buffers based on precomputed

information, with each buffer targeting one neighbor

process.

2) Sending: Initiate MPI_Isend operations, with one

message for each neighboring process.

3) Receiving: Call MPI_Waitall to wait for incoming

data.

4) Unpacking: Unpack the 1D buffers based on precom-

puted information into the corresponding ghost zones

of the local boxes.

These steps are common in many MPI applications that

use structured grids. They ensure pairwise synchronization

and aggregate data to amortize overhead. Each process only

needs to send and receive one message for each of its

neighbors. However, setting up data structures to control

the packing and unpacking operations is challenging. Each

process needs to figure out exactly which surfaces of its local

boxes need to be sent to each neighbor and how to pack them

into the 1D buffers so that they get correctly unpacked at

the destination. This process is not only complex but also

error-prone, as one must deal with unions of subdomains,

deep ghost-zone exchanges, and communication with edge

and corner neighbors. It comprises about 20% of the total

HPGMG-FV source code and is the most difficult part of

the code to write.

The following is a simplified description of the setup

process.

1) Prepare for packing: For each local box and every

direction, find the neighboring boxes, compute the

sending surfaces, and record the surface information

and the corresponding offset in the 1D sending buffer

into an auxiliary data structure. Sort the data structure

according to process ranks and box coordinates.

2) Prepare for unpacking: For each local box and every

direction, find the neighboring boxes, compute the

receiving ghost zone, and record the zone information

and the corresponding offset in the 1D receiving buffer

into an auxiliary data structure. Sort the data structure

according to process ranks and box coordinates.

The purpose of sorting is to guarantee that the data packed

at the source will be unpacked to their corresponding des-

tination boxes correctly. The resulting metadata are cached

for fast replay during execution.

The communication operations in the restriction and

interpolation phases are organized similarly to the ghost-

zone exchanges. The main difference is that the information

in the auxiliary data structures represents inter-level rather

than intra-level neighbors.

4040

2

(a)� (b)� (c)�
i (unit stride)� i (unit stride)� i (unit stride)� i (unit stride)� i (unit stride)� i (unit stride)�

send
buffers

recv
buffer

box 2
(remote)

box 0
(local)

b

box 1
(remote)

recv
buffer

box 2
(remote)

box 0
(local)

box 1
(remote)

box 2
(remote)

box 0
(local)

box 1
(remote)

2

2

2

1

2 4 3 1

2
3

4

2

2

Figure 3. Communication styles for a) MPI, b) Naturally grained UPC++ (Baseline), and c) Natural version with VIS support.

C++ Compiler UPC++
Program

UPC++
Template

Header Files

Linker

UPC++ idioms
are translated

to C++

Object file w.
runtime calls

Executable

GASNet

System Libs

UPC++
Runtime

Figure 4. UPC++ Implementation Software Stack

IV. UPC++

UPC++ [20] is a PGAS programming extension for C++.

It adopts a template library-based implementation but in-

cludes PGAS language features such as those from UPC,

Titanium [19] and Phalanx [6]. As shown in Figure 4,

the UPC++ implementation is built on top of the GASNet

communication library [7] and allows the application to call

GASNet directly if needed. In this section, we describe

the functions used in developing the UPC++ versions of

HPGMG-FV, which include explicit data transfers, shared-

memory support, VIS functions, and synchronization. These

features enable us to write parallel programs with naturally

contiguous messages and achieve performance comparable

to the bulk version without manually packing and unpacking

the communication data.

A. Global Communication

A UPC++ parallel job runs in SPMD fashion and each pro-

cess has a unique rank, which can be used to identify the pro-

cess for communication and remote task execution. In UPC++,

a global address is represented by a global_ptr<T> type,

which points to one or more shared objects of type T. Global

data movement can be done by calling the non-blocking

async_copy function:

async_copy(global_ptr<T> src,
global_ptr<T> dst,
size_t count);

Both the src and dst buffers are required to be contiguous,

and count is the number of elements of type T. A call

to async_copy initiates the data transfer and returns,

allowing communication to be overlapped with computation

or other communication. The user can query the completion

status of a non-blocking copy using async_try or wait

for its completion using async_wait. UPC++ also supports

other communication operations such as blocking copies

and implicit read and write through global pointers and

references.

B. Hardware-Supported Shared-Memory Access

UPC++ also provides an address-localization (or privatiza-
tion in UPC++ terminology) feature that takes advantage

of hardware-supported cache-coherent shared memory if

available. The user application can query if a global pointer

can be addressed directly and if so, convert it to a local

pointer as follows:

global_ptr<T> global_pointer;
if (global_pointer.is_local()) {
T* local_pointer = (T *) global_pointer;
...

}

4141

If the memory location referenced by

global_pointer can be directly accessed by the calling

process through a hardware-supported shared-memory

mechanism (e.g., process-shared memory), the cast results

in the corresponding local pointer to the memory location.

This local pointer provides more efficient data access,

since the runtime system can use direct load and store

instructions, avoiding the overheads of address translation

and going through the underlying message-communication

layers.

C. Non-contiguous Remote Access

For non-contiguous data transfers, we developed a tem-

plate function called async_copy_vis to support the

strided data access.

template<typename T>
async_copy_vis(

global_ptr<T> src, global_ptr<T> dst,
size_t, *srcstrides, size_t *dststrides,
size_t *count, size_t dims);

Here, the src and dest are the starting addresses

for the source and destination regions, and dststrides
and srcstrides are the stride lengths in bytes of all

dimensions, assuming the data are linearly organized from

dimension 0 to dimension dims. The count array contains

the slice size of each dimension. For example, count[0]
should be the number of bytes of contiguous data in the

leading (rightmost) dimension.

The async_copy_vis function will in turn call the

the Vector, Indexed and Strided (VIS) library functions in

GASNet [2]. The GASNet VIS implementation packs non-

contiguous data into contiguous buffers internally and then

uses active messages to transfer the data and unpack at the

destination.

The strategy used by the GASNet VIS implementation

is very similar to the array-based code described in our

previous work [14]. We chose to use GASNet VIS rather

than higher-level arrays is to minimize the changes required

to the naturally grained implementation of HPGMG. But

the multi-dimensional array version of HPGMG is currently

under development, which can be applied to more general

cases.

D. Group Synchronization

The primary communication pattern in stencil applica-

tions such as HPGMG-FV is nearest-neighbor communi-

cation, which requires synchronization between processes

to signal when data have arrived and when it may be

overwritten. The simplest way to implement this synchro-

nization is to use global barriers. However, this tends to

hurt performance at scale, since it incurs a significant

amount of unnecessary idle time on some processes due

to load imbalance or interference. In contrast, a point-

to-point synchronization scheme that only involves the

necessary processes can achieve much better performance

and smooth workload variations over multiple iterations if

there is no single hotspot, as in our case. As a result,

we implemented a sync_neighbor(neighbor_list)
function that only synchronizes with the group of processes

enumerated by the neighbor_list. Unlike team barriers,

the neighbor_list is asymmetric across ranks, so that

only one call is required from each rank, whereas team

barriers would require one call per neighbor on each rank.

The current experimental implementation is based on

point-to-point synchronization, with UPC++ shared arrays

representing flag variables, and by spin-waiting until all the

individual synchronizations have completed. The algorithm

is as follows:

for (i = 0; i < number of neighbors; i++)
{set flag on neighbor i};

int nreceived = 0;
while (nreceived < number of neighbors) {
for (i = 0; i < number of neighbors; i++)
if (check[i] == 1) {
if (received flag from neighbor i)

{check[i] = 0; nreceived++;}
advance();

}

The actual implementation also includes the proper fences

to ensure operations are properly ordered. The advance
function in UPC++ is used to make progress on other tasks

while waiting.

V. IMPLEMENTATION IN UPC++

A. UPC++ Bulk Version

Our initial UPC++ version of HPGMG-FV, which we

refer to as the bulk version, follows the same strategy of

manually packing and unpacking communication buffers

as in the MPI code. Unlike the MPI code, however, the

bulk UPC++ implementation allocates the communication

buffers in the global address space and uses one-sided put

operations to transfer data instead of two-sided sends and

receives. Synchronization is implemented using a point-to-

point mechanism similar to signaling put [3]. The bulk

version delivers performance similar to the highly tuned MPI

implementation; Figure 5 shows the best solver time for both

MPI and the UPC++ bulk versions and the corresponding data

are listed in Table I.

In the following sections, we will describe in detail the

natural version of HPGMG-FV which does not manually

pack and unpack data and compare its performance with the

bulk version.

B. UPC++ Natural Version

In order to avoid having to manually pack and unpack

data, we rewrote the communication portion of the UPC++

bulk implementation to copy contiguous chunks of data. We

refer to this as the natural or naturally grained version,

since it performs copies at the natural granularity of the

4242

Table I
BEST SOLVER TIME (SECONDS) ON CRAY XC30

Cores 8 64 512 4096 32768

MPI 0.351 0.373 0.387 0.388 0.409
UPC++ 0.348 0.366 0.382 0.385 0.405

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

	�
�� ���� ���
� ���
	�

��
�
��
��

��
	

��
��

�
���
��

�������
��������

���

�����������

Figure 5. The performance of MPI and UPC++ bulk implementations on
the Cray XC30 platform. The results are almost the same.

data layout, as would be done in shared memory. We made

no changes to the computation part of the bulk code.

We allocate the HPGMG box data in the global address

space, allowing remote ranks to directly access box data

rather than going through send and receive buffers. When

ghost data are needed, a rank can simply locate the neighbor-

ing box ID and use it to reference the data directly by calling

async_copy, avoiding the tedious and error-prone packing

and unpacking operations. This procedure is illustrated in

Figure 3(b). Each contiguous piece of data is directly copied

from source to destination in one message. Since the 3D

box is linearized in memory, only the data in dimension i is

contiguous. Furthermore, since the ghost zones are allocated

together with box data, the message size can be no more than

the size of the box in dimension i, while the minimum size

is one double-precision value (8 bytes) in the case of the

non-contiguous k dimension.

The following is the code used to copy a ghost zone

directly from source to destination:

for (k = 0; k < dim_k; k ++) {
for (j = 0; j < dim_j; j ++) {
int recv_off = recv_i +

(j+ recv_j) * recv_pencil
+

(k+ recv_k) * recv_plane ;
int send_off = send_i +

(j+ send_j)* send_pencil +
(k+ send_k)* send_plane ;

async_copy(send_buf +send_off,

recv_buf +recv_off,dim_i);
}

}

The dim_k, dim_j, dim_i values are the ghost-

zone sizes in dimensions k, j, and i, respectively. The

send_buf, send_i, send_j, and send_k variables

represent the starting address and offsets of the source

region, while recv_buf, recv_i, recv_j, and recv_k
are the starting address and offsets of the destination region.

Finally, send_pencil and send_plane are the stride

lengths of the source data in the j, and k dimensions

while recv_pencil and recv_plane are the corre-

sponding stride lengths of the destination region. To avoid

redundant computation, we save the source and destination

information for each ghost zone for reuse. Compared to the

bulk implementation, we completely avoid the complicated

communication setup.
1) Optimizations: The above baseline implementation

avoids the extra copying to pack and unpack data into

and out of communication buffers. However, it results in

a large number of small messages, which can seriously hurt

application performance.

One optimization is that if the source and destination

ranks are on the same physical node, and the hardware and

runtime system support shared memory across processes,

we can directly copy the data from source to destination

without going through the runtime library. UPC++ provides

such support allowing global pointers to be checked for

locality and to be cast to local pointers. We can then use

the local pointer to treat a copy across co-located ranks

as a local copy operation. While UPC++ automatically

performs this check and optimization when async_copy
is called, we actually perform such check before entering the

above communication loops and deferring to the local copy

code if the destination is locally accessible, thus avoiding

the overhead of calling into the runtime library on every

iteration.

A second optimization is to use the async_copy_vis
functions when the destination is not locally accessible,

which aggregate the small messages into large ones. Its

effect is similar to manually packing and unpacking data

but performed by the runtime library instead of the user.

Another optimization is to use group synchronization

rather than global barriers. To avoid race conditions, syn-

chronization is necessary at the beginning of the communica-

tion phase to ensure that the destination targets are available,

as well as at the end to signify that data transfer has

completed. For simplicity, the baseline implementation uses

global barriers to perform these synchronizations, which

results in excessive synchronization overhead. The optimized

version, on the other hand, uses the group synchronization

mechanism described in §IV-D, which has a similar interface

as a barrier but only involves the neighboring ranks at the

cost of requiring each rank to determine its set of neighbors

4343

before synchronization. However, we do amortize the cost

over many iterations of the HPGMG algorithm by keeping

track of neighbor information.

We further optimize synchronization by reducing the two

synchronizations above to just one in each communication

phase. In our experiments, we use the Chebyshev polynomial

smoother, which alternately performs ghost exchanges on

two variables, resulting in a double-buffering effect and al-

lowing us to eliminate one synchronization on each variable.

VI. RESULTS

A. Experimental Setup

We evaluate flat MPI and UPC++ implementations of

HPGMG-FV on Edison, a Cray XC30 system located at

NERSC [5]. It is comprised of 5,576 compute nodes, each

of which contains two 12-core Intel Ivy Bridge out-of-order

superscalar processors running at 2.4 GHz, and is connected

by Cray’s Aries (Dragonfly) network. On Edison, the third

rank of the dragonfly is substantially tapered and, as in

all experiments that run in production mode, there is no

control over job placement. Each core includes private 32KB

L1 and 256KB L2 caches, and each processor includes a

shared 30MB L3 cache. Nominal STREAM [16] bandwidth

to DRAM is roughly 103 GB/s per compute node.

The problem size is set as one 1283 box per rank, and

we report the best solve time. In order to simplify analysis,

in our experiments, we set the DECOMPOSE_LEX macro

to switch from recursive data ordering to lexicographical

ordering of data. We run 8 ranks per socket, 16 processes

per node, so that it is easier to maintain that all processes

have equal number of boxes at the finest grid level under all

concurrencies. Under such configurations, we expect the 64

processes attached to each Aries NIC to be arranged into a

plane. Such a strategy has the effect of increasing off-node

and network communication. Since we want to examine

the communication effects at as large scale as possible on

today’s systems, thus we choose to use the process-only

configurations.

B. Performance

Figure 6 shows the weak-scaling performance of different

implementations as a function of the number of processes

on the Cray XC30 platform. The enumerated optimizations

are incremental from the baseline.

As expected, the highly tuned UPC++ bulk version

(labeled as “Bulk”) obtains the best overall performance

(comparable to MPI as shown in section V-A), while

the original implementation with naturally grained message

sizes (labeled as “Baseline”) delivers the worst performance.

When 8 processes are used (all inside a single socket), the

natural version is about 1.44× slower than the bulk version.

When 64 processes are used (4 nodes), the performance

gap increases to 2.2×. Nevertheless, at 32K processes, the

performance gap only increases to 2.4×. Thus, there are

��

���

����

�����

������

�� ��
�

��
�

��
�

��
��

��
��

��
��

��
��
�

��
��
�

��
��
�

��
��
�

��
��
��

��
��
��

��
��
��

��
��
��
�

��
��
��
�

��
��
��
�

��
��
��
��

��
��

�
��
��
�	

��
��
�

����
����
�	���
���

	
��
���
����������
��

	
��
���
�����������
��

Figure 7. Microbenchmark showing GASNet’s performance on put
operations on the Cray XC30 platform using 2 processes inside one node.
The lower blue curve represents the baseline where shared-memory support
is exploited in neither the benchmark nor the runtime. The higher red
curve represents the benefit of enabling shared memory in the UPC++ and
GASNet runtimes.

two major performance issues to be addressed: on-node

performance and inter-node performance.

When shared-memory support is enabled in UPC++ (la-

beled as “+SHM”), performance improves substantially.

Figure 7 illustrates its performance effect by comparing

performance with and without shared-memory support in

a microbenchmark that consists solely of one-sided put

operations between two processes on the same node. As

expected, there is a significant performance gap between the

two versions.

Moreover, we distinguish the local data movements and

remote ones explicitly in our code. This not only helps us

to avoid the overhead of going through the UPC++ runtime

but also enables us to perform special optimization for local

operations, such as eliminating short loops. The improved

performance is labeled as ”+Local Opt”, which can maintain

parity with bulk performance up to 64 processes. However,

for higher concurrency, its performance stills falls far behind

of the bulk version.

C. Scalability

To further improve performance at scale, we make use

of the non-contiguous function async_copy_vis, which

can aggregate fine-grained (doubleword-sized) messages tar-

geted at the same destination process into one big message.

Due to the linear data organization of the 3D box data, the

ghost zone communicated in the ±i directions are highly

strided in memory, requiring many 8-byte messages if VIS

is not used. As one scales (using lexicographical order-

ing), communication in ±i direction progresses from en-

tirely zero-overhead, on-socket communication, to requiring

communication over the PCIe bus, to communicating over

the Aries NIC. Similarly, communication in ±j progresses

from zero-overhead, on-node communication to requiring

4444

����

����

�� �

��!�

��"�

����

����

"� ! � #��� �$!� %�&!"�

��
�
��
��

��
	

��
��

�
���
��

�������
��������

��
������
'����
'��	���
���
'����
'
��������	�
�����

Baseline +SHM +Local +VIS +Group Bulk
Manual buffer packing �
Cast global ptr to local � � � � �

Eliminate short loops � � � �
Use GASNet VIS � �

Synchronization barrier barrier barrier barrier group P2P

Figure 6. HPGMG Performance on Edison as a function of optimizations in the runtime. Here, we use 8 UPC++ ranks (or 8 MPI ranks) per socket, 16
per node. OpenMP is not used. The table shows which optimizations are employed for each implementation.

communication on rank-1 of the Aries Dragonfly. By using

GASNet VIS to coalesce these small messages into one large

message, the performance improves greatly at scale as shown

by the “+VIS” line in Figure 6.
Table II illustrates the communication requirements by

highlighting the on-node and network communication links

exercised as a function of concurrency (assuming ideal

job scheduling). The inflection points in Figure 6 are well

explained by this model. The flood of small messages at low

concurrencies map entirely to on-node links and thus do not

substantially impede performance. Conversely, at 32K, PCIe

overheads are exercised, resulting in degraded performance.

Table II
MAPPING OF HPGMG-FV COMMUNICATION PATTERNS (FINEST GRID

SPACING ONLY) TO NETWORK TOPOLOGY AS A FUNCTION OF SCALE.
HERE, “RANK” REFERS TO THE RANK OF THE ARIES DRAGONFLY

ASSUMING IDEAL JOB SCHEDULING.

messages 8 64 512 4K 32K

±i 1282×8B on-socket on-socket on-socket on-node PCIe
±j 128×1KB on-socket on-node PCIe rank-1 rank-1
±k 128×1KB on-socket PCIe rank-1 rank-2 rank-3

Our final optimization is to use group synchronization

rather than the naı̈ve global barriers in the previous shared-

memory implementations. The communication pattern for

HPGMG is primarily nearest-neighbor (either intra-level or

inter-level), so it is only necessary to synchronize with

neighboring ranks. While global barriers can simplify the

implementation, they can cause performance to suffer as a

result of interference or load imbalance. In order to minimize

changes to the source code, we replaced barriers with

the sync_neighbor(neighbors) function described

in §IV-D, which uses point-to-point communication under

the hood to synchronize with the ranks in the neighbor list.

This further improves performance as shown by the “+Group

Sync” line in Figure 6, resulting in a final performance that

is comparable to the highly tuned bulk UPC++ and MPI im-

plementations. Further performance improvement probably

relies on overlapping communication and computation, but

will not be explored in this paper.

VII. CONCLUSIONS

In this paper, using High-Performance Geometric Multi-

grid (HPGMG-FV) as our driving application, we studied the

runtime support needed for UPC++ to enable codes developed

with naturally grained message sizes to obtain performance

comparable to highly tuned MPI and UPC++ codes. Compared

to the latter, which often require complex packing and un-

packing operations, the natural versions provide substantial

programming ease and productivity. However, their perfor-

mance may suffer from a large number of small messages.

To improve their performance, the runtime library needs

to take advantage of hardware-supported shared memory,

non-contiguous data transfers, and efficient group synchro-

nization. With support for these features, the natural version

of HPGMG-FV can deliver performance comparable to the

version with manual packing and unpacking, showing that

it is possible to obtain good performance with the lower

4545

programming effort of naturally grained message sizes.

To support non-contiguous data transfer, UPC++ develops

a multidimensional domain and array library [11] which can

automatically compute the intersection of two boxes and

fill the ghost regions. This version of the HPGMG -FV is

currently under development.

In addition, we believe that many parallel applications

with non-contiguous data-access patterns will gain in both

productivity and performance if future network hardware

supports: 1) scatter and gather operations for multiple

memory locations; 2) remote completion notification of

one-sided data transfers; 3) lower overheads and higher

throughputs for small messages.

ACKNOWLEDGEMENTS

This material is based upon work supported by the Ad-

vanced Scientific Computing Research Program in the U.S.

Department of Energy, Office of Science, under Award Num-

ber DE-AC02-05CH11231. This research used resources of

the National Energy Research Scientific Computing Center

(NERSC), which is supported by the Office of Science of the

U.S. Department of Energy under Contract No. DE-AC02-

05CH11231.

REFERENCES

[1] R. Belli and T. Hoefler. Notified access: Extending remote
memory access programming models for producer-consumer
synchronization. In 29th IEEE International Parallel and
Distributed Processing Symposium (IPDPS), 2015.

[2] D. Bonachea. Proposal for extending the UPC memory
copy library functions and supporting extensions to GASNet.
Technical Report LBNL-56495, Lawrence Berkeley National
Lab, October 2004.

[3] D. Bonachea, R. Nishtala, P. Hargrove, and K. Yelick.
Efficient Point-to-Point Synchronization in UPC . In 2nd
Conf. on Partitioned Global Address Space Programming
Models (PGAS06), 2006.

[4] W.-Y. Chen, C. Iancu, and K. Yelick. Communication
optimizations for fine-grained upc applications. In The
Fourteenth International Conference on Parallel Architectures
and Compilation Techniques, 2005.

[5] www.nersc.gov/systems/edison-cray-xc30/.

[6] M. Garland, M. Kudlur, and Y. Zheng. Designing a unified
programming model for heterogeneous machines. In Proceed-
ings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, SC ’12, 2012.

[7] GASNet home page. http://gasnet.cs.berkeley.edu/.

[8] GPI website. http://www.gpi-site.com/gpi2/benchmarks/.

[9] D. Grnewald. BQCD with GPI: A case study. In W. W. Smari
and V. Zeljkovic, editors, HPCS, pages 388–394. IEEE, 2012.

[10] https://hpgmg.org.

[11] A. Kamil, Y. Zheng, and K. Yelick. A local-view array library
for partitioned global address space C++ programs. In ACM
SIGPLAN International Workshop on Libraries, Languages
and Compilers for Array Programming, 2014.

[12] R. Machado, C. Lojewski, S. Abreu, and F.-J. Pfreundt.
Unbalanced tree search on a manycore system using the GPI
programming model. Computer Science - R&D, 26(3-4):229–
236, 2011.

[13] miniGMG compact benchmark. http://crd.lbl.gov/
groups-depts/ftg/projects/current-projects/xtune/miniGMG.

[14] H. Shan, A. Kamil, S. Williams, Y. Zheng, and K. Yelick.
Evaluation of PGAS communication paradigms with geomet-
ric multigrid. In 8th International Conference on Partitioned
Global Address Space Programming Models (PGAS), October
2014.

[15] C. Simmendinger, J. JŁgerskpper, R. Machado, and C. Lo-
jewski. A PGAS-based implementation for the unstructured
CFD solver TAU. In Proceedings of the 5th Conference
on Partitioned Global Address Space Programming Models,
PGAS ’11, 2011.

[16] www.cs.virginia.edu/stream/ref.html.

[17] J. J. Willcock, T. Hoefler, and N. G. Edmonds. AM++: A
generalized active message framework. In The Nineteenth
International Conference on Parallel Architectures and Com-
pilation Techniques, 2010.

[18] S. Williams, D. D. Kalamkar, A. Singh, A. M. Deshpande,
B. Van Straalen, M. Smelyanskiy, A. Almgren, P. Dubey,
J. Shalf, and L. Oliker. Implementation and optimization
of miniGMG - a compact geometric multigrid benchmark.
Technical Report LBNL 6676E, Lawrence Berkeley National
Laboratory, December 2012.

[19] K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Li-
blit, A. Krishnamurthy, P. Hilfinger, S. Graham, D. Gay,
P. Colella, and A. Aiken. Titanium: A high-performance Java
dialect. Concurrency: Practice and Experience, 10(11-13),
September-November 1998.

[20] Y. Zheng, A. Kamil, M. B. Driscoll, H. Shan, and K. Yelick.
UPC++: A PGAS extension for C++. In 28th IEEE In-
ternational Parallel and Distributed Processing Symposium
(IPDPS), 2014.

4646

