
Towards a Sequentially Consistent Memory Model for PGAS
Languages

Amir Kamil Jimmy Su Katherine Yelick
Computer Science Division, University of California, Berkeley

{kamil,jimmysu,yelick}@cs.berkeley.edu

August 1, 2006

A key question in the design of partitioned global address space (PGAS) languages is the memory consistency model: In
what order are memory operations performed by one thread observed on another? For simplicity, one would like the operations
to appear in the order specified in the original program, i.e., any reorderings performed by the compiler or hardware should
not be observable. In practice, parallel language designers have been reluctant to use such a strongsequentially consistent
semantics because memory operations are often overlapped and reordered for performance reasons, and requiring that all
threads see the same memory order requires the insertion of expensive memory fence instructions. In UPC, the programmer
controls the memory consistency model using strict and relaxed accesses, but in practice, most codes are written with all
accesses relaxed, even though the semantics of relaxed accesses are not well understood by many users. Titanium adopts
Java’s original weak memory model, which is also quite subtle, and in Co-Array Fortran, Fortress, and Chapel, the memory
model is not clearly specified.

Such complex or underspecified models are very confusing to many programmers, and they tend to prefer a simpler
and less error-prone specification such as sequential consistency. However, providing sequential consistency is nontrivial,
requiring memory fences to be placed around conflicting memory accesses to prevent them from being reordered explicitly by
the compiler or implicitly by the hardware. Two memory accessesconflict if they can access the same location, they can occur
concurrently, and at least one of them is a write. These fences can adversely affect runtime performance, since they prohibit
some optimizations and also incur a significant runtime cost in PGAS settings. In order to minimize the cost of sequential
consistency, the number of required fences, and therefore the set of conflicting accesses, must be minimized. In combination
with concurrency analysis, pointer analysis can be used to precisely determine this set.

In this presentation we introduce a pointer analysis that is designed for a distributed setting, and single-program multiple-
data (SPMD) languages in particular. The analysis takes into account a hierarchical machine model, in which individual
threads are grouped into multiple physical address spaces, all of which constitute the whole program, as shown in Figure1.
In this model, a pointer may refer to data only within a single thread, to data associated with any threads within a physical
address space (e.g. an SMP node), or to any thread in the machine. A pointer has a designatedwidth restricting the memory it
can refer to: a pointer of widthw on threadT can only reference memory in the subtree of the machine rooted at levelw and

Figure 1: A hierarchical grouping of threads into physical address spaces and an overall machine.

1

Number of Static Fences in Generated Code

0

200

400

600

800

1000

1200

1400

1600

fft gas gsrb gsrb* lu-fact pi pps sort demv spmv

Benchmark

Fe
nc

es

concurrency concurrency+pointer concurrency+multilevel pointer

Sparse Matrix Vector Multiply

0.1

1

10

100

1 2 4 8 16
of processors

sp
ee

du
p

relaxed no analysis concurrency+multilevel pointer

Figure 2: Fence results for some Titanium programs, and a performance comparison using one of the programs. The fence
results use various levels of analysis: concurrency analysis only, concurrency analysis with single-level pointer analysis, and
concurrency analysis with multilevel pointer analysis. The performance results compare a relaxed memory version of the code
with sequentially consistent versions. Speedup is over the sequentially consistent version using no analysis.

containingT .
The pointer analysis examines the program once, taking advantage of the SPMD nature of the program to compute the

result for all threads simultaneously. Like other pointer analyses, the analysis associates allocation sites withabstract loca-
tions. In addition, abstract locations in the analysis have a corresponding width, signifying which machines the corresponding
memory can reside on. Three language constructs are particularly important to the analysis:

• Allocation sites: Allocations occur locally, so the resulting abstract location must have width 1.

• Broadcasts: A broadcast operation can communicate a memory address from one thread to the rest. The memory
location can reside in a different physical address space than some of the destination threads, so the resulting abstract
locations must have width 3.

• Assignments: Assignments have global effects, so the analysis must take into account the result of an assignment on
each thread.

The analysis also handles other operations in a SPMD language, some of which can produce abstract locations of width 2.
We present the results of implementing our analysis in the Titanium language, a high performance parallel language based

on Java, and its application to memory model enforcement. The results show that the pointer analysis greatly reduces the
number of memory fences required to enforce sequential consistency, as shown in the left of Figure2. We also compare
relaxed and sequentially consistent versions of a sparse matrix vector multiply kernel written in Titanium. In order to obtain
good performance, the compiler must be able to perform reordering optimizations on the code. Without the concurrency and
pointer analyses, the inserted fences prevent the optimizations from being applied under the sequentially consistent model,
resulting in much poorer performance than under the relaxed model. However, as shown in the right of Figure2, the analyses
reduce the set of fences required to obtain sequential consistency, allowing the compiler to reorder operations and match the
performance of the relaxed version of the program.

Additional work is needed to determine whether our analysis can be applied to a broader class of applications, opti-
mizations, and languages. Applications that use the global address space without awareness of partitioning may prove more
difficult to analyze. Optimizations other than those we examine may prove more susceptible to false positives in the analysis.
Finally, although our pointer analysis is applicable to a broad class of languages, the benchmark results rely on a concurrency
analysis based on Titanium’s textually aligned barriers. Nevertheless, we believe that these results show that sequentially con-
sistent memory models may be possible for shared memory languages, even in a PGAS setting with its high costs of enforcing
ordering on remote accesses.

2

