Lawrence Berkeley National Laboratory

Towards a Portable Model for
Mapping Locality to Hierarchical
Machines

Amir Kamil and Katherine Yelick
Lawrence Berkeley Lab
Berkeley, CA, USA
June 24, 2015

DYNAMIC EXASCALE GLOBAL ADDRESS SPACE

Hierarchical Machines

« Parallel machines have hierarchical structure

,

¥ eMBL3
Cache

Dual Socket AMD
MagnyCours

Quad Socket Intel
Nehalem EX

- Intel’ Scalable
- Memory Buffer

« Expect this hierarchical trend to continue with manycore

-3
A
rrrrrrr ""|

BERKELEY LAB

Application Hierarchy

* Applications can reduce communication costs by
adapting to machine hierarchy

Slow, avoid

0,1,2,3,4,5
Fast,
allow / \

0,1,2 3,4,5

* Applications may also have Orﬁﬂ 3,%5;
4

iInherent, algorithmic hierarchy
—Recursive algorithms 0f]1 3

—Composition of multiple algorithms
—Hierarchical division of data

-3
A
3 ""|

BERKELEY LAB

Example: Hierarchical Sort in Titanium

 Hierarchical sort adapts to machine hierarchy by using
sample sort between shared-memory domains

» Within a shared-memory domain, it runs divide-and-
conquer merge sort

Distributed Sort Weak Scaling (Cray XE6)

™ flat (distribution) hierarchical (distribution) O
20 M flat (sort) M hierarchical (sort)

Z15

:)

Ei] :
A A AR I')
O I I I I I I I I I |

1 2 4 8 16 32 64 128 256

NUMA Nodes (6 cores/node)

Hierarchy Mapping

* Program’s view of hierarchy must be mapped onto the
actual hierarchy of a machine in a portable manner

* |deal features of mapping facility:

-Mapping should only affect performance, not
correctness

-Changing the mapping should require few if any
changes to source code
E.g. Chapel’s domain maps

-High-level default mappers should be provided
E.g. Divide into fast-communication domains

—-Users should be able to write their own mappers
E.g. Map a binary tree onto the machine

- Changing the mapping should be sufficient to port
code to a new machine 5

Overview

» Goal is to design a hierarchy model in UPC++ that
makes it easy to express and map application-level
hierarchy onto a machine

* We survey some existing approaches to see what we
can learn

-Existing models include Sequoia, Legion, Titanium,
Hierarchical Place Trees, and HCAF

-Approach must be applicable to UPC++'s SPMD
+Async model of execution

* We present a high-level strawman proposal for hierarchy
in UPC++

Sequoia Model

* Programmer specifies inner tasks and leaf tasks
- Inner tasks decompose computation into smaller pieces
- Leaf tasks perform actual computation
- Communication restricted to arguments, return values
* A machine file describes the structure of a particular
machine

* A mapping file maps a task hierarchy onto a machine
— Also determines depth, width of hierarchy and task parameters

[matmul : : inner J

/\

[matmul: :inner matmul : :inner]

' !

[matmul: :leaf] [matmul: :leaf]

-3
A
rrrrrrr |"'|

BERKELEY LAB

Legion Model

 Legion based on division of all nodes
data into memory regions and ‘

p_nodes_pvs

all-private

exeCUtlon Into taSkS p_pw_nogzge: p_shr_nodes _ghost_nodes
— Tasks declare the regions they ‘ = i [So] [54] ..] 8] [S4] - B
access and required access (a) Node region tree.

properties

- Subtasks’ regions and access
properties must be subset of
parents’

* A mapper maps regions and
tasks onto machine at runtime

- Simple default mapper provided

— APl provided to allow custom
mappers to be written

7
-3
A
S ik |"'|

BERKELEY LAB

Titanium Model

 Hierarchical teams of cooperating threads

« Application determines appropriate hierarchy and
explicitly maps data and execution accordingly
- Runtime provides a machine-based hierarchy for reference

* Dynamically scoped language constructs for executing

on teams

0,123,4,5,6,7,8,9,10, 11

—

0,1,2,3,45 6,7,8,9, 10, 11
01,2 3,4,5 6,7,8 9,10, 11

L/\I_;_ l/?_
0,1 2 3,4 5

l/?_ L/
8 910

11

nalEn

C I

team t = Ti.defaultTeam();
teamsplit(t) {
sampleAndDistribute(data);
teamt2 =
binaryTree(Ti.currentTeam());
teamsplit(t2) {
mergeSort(data);
}

} <
A
o Bl |"'|

BERKELEY LAB

HPT Model

 Hierarchical place trees (HPT) model hierarchy of
resources
- Places can have memory units, execution units, or both

* An execution configuration specifies the structure of a
particular machine

« Application maps data, execution onto configuration
void MatMul(double[.] A, double].] B, double[.] C) {
,1,2,3,4,5,6,7

if (here.isLeafPlace()) { Ci//_‘_\é
for (point [i, j, k] : [myA, myB, myC])

CIijjl += AliK] * Bkl N ol
}else { 0,123 4,5 || 6,7
dist d = here.getCartesianView(2); IPANA N AN AY
finish ateach (point p : d) Of121]1121|13] 14]|I5]]16]]7
MatMul(block(A, d)|p, block(B, d, 0)|p, vV Vv vV Vv v v v v
block(C, d, 1)|p); SILSH LSILS) LSSl Lslts

} :
} 10 Rl

BERKELEY LAB

Proposed HCAF Model

 Hierarchy in HCAF based on
Cartesian resource hierarchies

- Tree with Cartesian topology at each
level

 Application statically expresses
hierarchy using Cartesian
extension of hierarchical teams

« HCAF compiler models machine
using Cartesian extension of
HPTs

» Goal is to map application
hierarchy onto machine hierarchy
using compiler analysis

Strawman Proposal for Hierarchy in UPC++

 Hierarchical place tree (HPT) represents machine
hpt h = get_full _hpt();

— Structure can be specified at program startup, modified at
runtime, or divided into subsets of machine

 Mapper maps a user-level structure onto an HPT
mapper ml = fast_ comm_mapper();
mapper m2 = k_ary_tree_mapper(2);

» Hierarchical team represents user’s view of execution
and is mapped to an HPT

team t1(h, m1); // fast-communication domains
team t2(h, m2); // binary tree

 Data structures map to HPT or team using
multidimensional mappers 12 Rl

BERKELEY LAB

Example: Hierarchically Tiled Array

 An HTA is created over a rectangular index space, a
hierarchy of tile sizes, an HPT or team, and a mapper

hta<T, N> array(RD(PT(O, 0), PT(8, 8)), tiling, hpt, mapper);

« Support regular (e.g. block-cyclic, diagonal) and user-
defined mappings, as well as space-filling curves

I_I I_I 0,123,4,5,6,7,8,9
L m

0,1,2,3| | 4 5116,7,8,9

I 0 1 2 3 6 7 3 9
L=

L=
o

Summary

A hierarchical programming system must provide an
expressive and portable means of mapping the
programmer’s view of hierarchy onto a machine

« Mapping should be easy to change to tune performance
or port to a new machine

» Existing programming systems either impose a restricted
programming model or require the user to manually map
hierarchy onto the machine

* We are designing a model of hierarchy in UPC++ that
iIncorporates the best ideas from existing systems in
order to facilitate hierarchy mapping

14

