
Lawrence Berkeley National Laboratory

Managing Hierarchy with

Teams in the SPMD

Programming Model

Amir Kamil

Lawrence Berkeley Lab

Berkeley, CA, USA

April 28, 2014

1

Single Program, Multiple Data Model

• The single program, multiple data (SPMD) execution

model is the dominant programming model at scale

- A fixed set of threads execute the same program

- Synchronization and communication primarily

through collective operations

2

Program Start

Barrier

Print Print Print Print Print Print Print Print

Program End

Print

public static void main(String[] args) {

 System.out.println("Hello from " + Ti.thisProc());

 Ti.barrier();

 if (Ti.thisProc() == 0) System.out.println("Done.");

}

Thread Teams

• Thread teams are basic units of cooperation

- Groups of threads that cooperatively execute code

- Collective operations over teams

• Flat teams provided by MPI, GASNet

• Hierarchical teams used in Titanium, UPC++, HCAF,

DASH

- Expressive: match structure of algorithms, machines

- Safe: eliminate many sources of deadlock

- Composable: enable clean composition of multiple

algorithms or tasks

- Efficient: allow users to take advantage of machine

structure, resulting in performance gains
3

Team Data Structure

• Teams represented as tree structure

• Team structure can be created manually or

automatically based on machine hierarchy

Team T = Ti.defaultTeam();

- Unbalanced structures can be created manually

4

4

5

6

7

0

1

2

3

0, 1, 2, 3, 4, 5, 6, 7

0, 1, 2, 3

0, 1 2, 3

4, 5, 6, 7

4, 5 6, 7

Team-Usage Constructs

• Syntactic constructs specify dynamic scope of teams

 teamsplit(rowTeam) {

 Reduce.add(mtmp, myResults0, rpivot);

 }

- Collectives and queries such as Ti.thisProc()

are with respect to currently scoped team

• Constructs can be nested, and recursion can be used to

dynamically handle team hierarchy of arbitrary depth

5

=

0 1 2 3

4 5 6 7

8 9 10 11

T1

T2

T3

Example: Sorting

• Titanium distributed sorting application using new

hierarchical constructs

• Three pieces: sequential, shared memory, and

distributed

- Sequential quick sort from Java 1.4 library

- Shared memory merge sort

• Hierarchical teams used to express recursive algorithm

- Distributed memory sample sort

• Teams used to optimize communication and to compose

with shared-memory sort

• Goal: better performance than flat sample sorting, which

assumes no threads share memory

6

Shared-Memory Team Hierarchy

• Team hierarchy for shared-memory

part of computation is binary tree

• Trivial construction

• Threads walk down to bottom

of hierarchy, sort, then walk

back up, merging along the way

7

0, 1, 2, 3, 4, 5

0, 1, 2

0, 1 2

0 1

3, 4, 5

3, 4 5

3 4

static void divideTeam(Team t) {

 if (t.size() > 1) {

 t.splitTeam(2);

 divideTeam(t.child(0));

 divideTeam(t.child(1));

 }

}

Shared-Memory Computational Logic

• Control logic for sorting and merging

 static void sortAndMerge(Team t) {

 if (Ti.numProcs() == 1) {

 allRes[myProc] = sequentialSort(myData);

 } else {

 teamsplit(t) {

 sortAndMerge(t.myChildTeam());

 }

 Ti.barrier();

 if (Ti.thisProc() == 0) {

 int otherProc = myProc + t.child(0).size();

 int[1d] myRes = allRes[myProc];

 int[1d] otherRes = allRes[otherProc];

 int[1d] newRes = target(t.depth(), myRes,

 otherRes);

 allRes[myProc] = merge(myRes, otherRes, newRes);

 }

 }

 }
8

Walk down

team hierarchy

Walk up,

merging

along

the way

Sort at bottom

Distributed-Memory Logic

• Flat distributed code

 static void flatSort() {

 myData = sampleAndDistribute(myData, Ti.thisProc());

 sequentialSort(myData);

 }

• Hierarchical distributed code

 static void hierarchicalSort() {

 Team team = Ti.defaultTeam();

 myData = sampleAndDistribute(myData, team);

 teamsplit(t) {

 sharedMemorySort(myData);

 }

 }

9

Parallelize and aggregate

communication between

shared-memory domains Shared-memory sort within

shared-memory domains

Split into shared-

memory domains

Performance of Flat vs. Hierarchical Sort

10

0

5

10

15

20

25

1 2 4 8 16 32 64 128 256 512

Ti
m

e
 (

s)

NUMA Nodes (6 cores/node)

Distributed Sort (Cray XE6)
(10,000,000 elements/core, 10,000 samples/core)

flat (distribution) hierarchical (distribution)
flat (sort) hierarchical (sort)

Limitations of Hierarchical Teams

• Hierarchical teams have proven to be very effective in

structuring execution in SPMD programs

- Represent logical view of execution

- Can be synthesized from physical structure of

execution resources

• However, they are not sufficient to represent the

structure of data

- Data are located at specific memory locations in a

machine

- Not necessarily one-to-one mapping between

execution and memory units

• Need combination of physical memory structure (where

data should be located) and logical execution structure

(how data will be operated on)
11

Hierarchical Resources

• A place (X10, UPC++) or locale (Chapel, HCAF)

represents a location in the machine

- Includes memory and/or execution resources

• Hierarchical places model hierarchy of resources

• Places can have memory units, execution units, or both

- e.g. cache hierarchy modeled using memory-only

places
12

4

5

6

7

0

1

2

3

$

$

$

$

$

$

$

$

0, 1, 2, 3, 4, 5, 6, 7

0, 1, 2, 3

0, 1 2, 3

4, 5, 6, 7

4, 5 6, 7

6 7 4 5 2 3 0 1

$ $ $ $ $ $ $ $

Data Hierarchy

• Data hierarchy: full hierarchical structure of data

- Encompasses hierarchical teams and places

- Allow synthesis from hierarchical teams, places, or

both

• Multidimensional hierarchy required in order to match

multidimensional data structures

13

0 1

2, 3, 4, 5 6, 7, 8, 9

2 3

4 5

6 7

8 9

0 1

2 3

4 5

6 7

8 9

Hierarchically Tiled Arrays

• Hierarchically Tiled Arrays (HTAs) are well-suited to

managing hierarchy in data-parallel programs

• Likely to be useful as distributed data structure in SPMD

- Support global-view/team-view collective operations

- Also support local-view computation
14

HTA Creation

• An HTA is created over a rectangular index space and a

data hierarchy

 hta<T, N> array(RD(PT(0, 0), PT(8, 8)),

 data_hierarchy);

• Support block-cyclic and user-defined distributions,

ghost/shadow regions, and replication for .5D algorithms

15

0 1

2, 3, 4, 5 6, 7, 8, 9

2 3

4 5

6 7

8 9

0 1

2 3

4 5

6 7

8 9

HTA Operations

• Access sub-tile (e.g. bottom-left tile)

 array(1, 0)(1, 0)

• Access element

 array[PT(7, 0)]

 array(1, 0)[PT(7, 0)]

 array(1, 0)(1, 0)[PT(7, 0)]

• Collective operations over tile or slice of HTA

 array(1, 0).reduce(op)

 array.slice(1, 1).map_reduce(mop, rop)

• Update ghost regions

 array.update()

 array.async_update()
16

Summary

• Hierarchical teams have been successful in expressing

hierarchical algorithms and mapping execution onto

hierarchical machines in SPMD programs

• Hierarchical places provide an abstraction of the

resources in a machine

• Hierarchically Tiled Arrays (HTAs) proven to be valuable

in data-parallel programming, likely will be in SPMD as

well

• We are working on unifying these concepts in the

DEGAS project

- UPC++ at LBL, HCAF at Rice

- In the process of finalizing design/interface, starting

on implementation
17

