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Abstract—The Hartree-Fock (HF) method is the fundamen-
tal first step for incorporating quantum mechanics into many-
electron simulations of atoms and molecules, and it is an
important component of computational chemistry toolkits like
NWChem. The GTFock code is an HF implementation that,
while it does not have all the features in NWChem, represents
crucial algorithmic advances that reduce communication and
improve load balance by doing an up-front static partitioning
of tasks, followed by work stealing whenever necessary.

To enable innovations in algorithms and exploit next gen-
eration exascale systems, it is crucial to support quantum
chemistry codes using expressive and convenient programming
models and runtime systems that are also efficient and scalable.
This paper presents an HF implementation similar to GTFock
using UPC++, a partitioned global address space model that
includes flexible communication, asynchronous remote compu-
tation, and a powerful multidimensional array library. UPC++
offers runtime features that are useful for HF such as active
messages, a rich calculus for array operations, hardware-
supported fetch-and-add, and functions for ensuring asyn-
chronous runtime progress. We present a new distributed array
abstraction, DArray, that is convenient for the kinds of random-
access array updates and linear algebra operations on block-
distributed arrays with irregular data ownership. We analyze
the performance of atomic fetch-and-add operations (relevant
for load balancing) and runtime attentiveness, then compare
various techniques and optimizations for each. Our optimized
implementation of HF using UPC++ and the DArrays library
shows up to 20% improvement over GTFock with Global
Arrays at scales up to 24,000 cores.

Keywords-Hartree-Fock, self-consistent field (SCF), quantum
chemistry, PGAS, UPC/UPC++, Global Arrays, performance
analysis, load balancing, work stealing, attentiveness

I. INTRODUCTION

In order to develop the next generation of materials
and chemical technologies, molecular simulations must in-
corporate quantum mechanics to effectively predict useful
properties and phenomena. However, chemical simulations
that include quantum effects are computationally expensive
and frequently scale superlinearly in the number of atoms in
the system simulated. Even for a relatively modest system
like the graphene unit in Figure 1, substantial computing
power is required for an accurate treatment of quantum

Figure 1: A graphene subunit with 36 atoms. The blue and
red blobs show the lowest unoccupied molecular orbital
based on a Hartree-Fock calculation.

effects. Despite the opportunities for exploiting parallelism,
even the most sophisticated and mature chemistry software
tools exhibit scalability problems due to the inherent load
imbalance and difficulty in exploiting data locality in quan-
tum chemistry methods.

The Hartree-Fock (HF) method is the quintessential start-
ing point for doing such ab initio calculations, so most
all quantum chemistry codes provide some sort of HF
implementation. Additionally, the more accurate and very
popular post-Hartree-Fock methods, such as coupled cluster
and many-body perturbation theory, depend on the reference
wavefunction provided by HF. Nearly all quantum chemistry
codes base their post-Hartree-Fock software implementa-
tions on the programming model and data structures used in
the corresponding HF component. It is therefore vital, when
developing modern quantum chemistry codes, to start from
the ground-up with very efficient and scalable programming
constructs in the HF modules.

Unfortunately, the most well-used and scalable HF and
post-HF codes often utilize programming models that do
not embrace modern software capabilities, such as those
provided by C++11 and C++14. For example, NWChem is
generally considered to be the most scalable of all quantum
chemistry codes [1],[2], yet it uses a toolkit called Global



Arrays (explained fully in section II-B), which only supports
distributed arrays containing elements of type int, float,
double, or complex. Even new codes such as GTFock,
which introduce impressive algorithmic enhancements to
HEF, still use the same Global Arrays programming model
without support for features like distributed structures of
objects, active messages, and remote memory management.
UPC++ is parallel programming library that supports these
modern features. Others have recently utilized these capabil-
ities of UPC++ for scientific calculations, while achieving
comparable or better performance than similar implementa-
tions that use only MPI [3], [4].

This paper explores the use of UPC++, a partitioned
global address space (PGAS) extension for C++, for do-
ing HF calculations. We base our implementation on the
GTFock code, but instead of using the Global Arrays (GA)
library for operating on distributed data structures, we use a
new DArray library written in UPC++. The DArray library
incorporates the functionality of GA while supplanting it
with new features, such as the ability to apply user-defined
functions across distributed tiles of the global data structure.
Using DArrays, our UPC++ HF application accomplishes
the same algorithmic improvements as GTFock, while mak-
ing efficient use of unique DArray capabilities. Our mea-
surements show that the UPC++ version of Hartree-Fock
achieves as much as 20% performance improvement over
GTFock with up to 24,000 processor cores.

II. BACKGROUND
A. The Hartree-Fock Method

The goal of the Hartree-Fock (HF) method is to approxi-
mately solve the many-body time-independent Schrédinger
equation, H|¢) = F|¢), where H is the Hamiltonian
operator, which extracts the sum of all kinetic and potential
energies, F, from the wavefunction, [¢)). Here we make
the standard set of assumptions: the Born-Oppenheimer
approximation (in which nuclei are fixed but electrons move
freely), Slater determinant wavefunctions (that easily satisfy
the anti-symmetry principle), and non-relativistic conditions.
After these approximations, our focus resides only on the
electronic terms of the Hamiltonian and the wavefunction:
Hec |¢elec> =K |welec>'

In both HF and post-HF methods, the molecular orbitals
that express the electronic wavefunction consist of a sum of
primitive basis functions from set {¢; }. We desire {¢; } to be
complete, but this is not practical since it generally requires
an infinite number of functions. We therefore truncate to a
finite n value large enough to balance the trade-off between
accuracy and computational cost:

) =D i l6y)
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Typically, each primitive is a Gaussian function centered at
the nucleus location. The HF method attempts to determine

Algorithm 1 The SCF Procedure

Inputs:
1) A molecule (nuclear coordinates, atomic numbers, and /N electrons)
2) A set of basis functions {¢, }

Outputs:
Final energy E, Fock matrix F, density matrix D, coefficient matrix C

—

: Calculate overlap integrals Sy, core Hamiltonian terms Hﬁ‘l’,’“e, and
the two-electron integrals (uv|Ao).
: Diagonalize the overlap matrix § = UsU' and obtain X = Us
: Guess the initial density matrix D.
while E not yet converged do
Calculate F from H,,, D, and (uv|Ao).
Transform F via F’ = XTFX.
E =Y, , Dy 4+ Fiw)
Diagonalize F/ = C’eC'T.
C =X’
Form D from C by Dy, =25
: end while
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the c¢;; values that best minimize the ground state energy
in accordance with the variational principle. By utilizing a
numerical technique for iteratively converging the energy,
each subsequent iteration becomes more and more consistent
with the field that is imposed by the input molecule and basis
set. The method is accordingly called the self-consistent field
(SCF) method, and Algorithm 1 shows its de facto procedure
in pseudocode.

Many SCF iterations are required for energy convergence,
so steps 1-3 of Algorithm 1 cost much less than steps 5-10.
Step 5 normally comprises a majority of the execution time
in Hartree-Fock codes, because each element of the Fock
matrix requires computing several two-electron integrals:

Fij = HE™ + > (2(uv|Ao) — (uA|vo))
Ao

The two-electron integrals on the right-hand side are plen-
tiful and expensive to compute [5]. They take this form:

(r|Ao) = / / 01.(11) 6 (1) 65 (12) o (r2) iy (1)

As mentioned, there are formally O(n*) integrals to compute
within the basis set. However, from the definition in 1, we
see there are only ~ n*/8 unique integrals by permutational
symmetry and the number of non-zero integrals is asymp-
totically O(n?) when Schwartz screening is employed.
While the two-electron integrals comprise the most com-
putation time in SCF, communication and synchronization
overheads can very well dominate, particularly at large scale.
As discussed below (Section II-E), inherent communication
costs arise from the parallel decomposition of HF codes,
leading to load imbalance and synchronization delays. Par-
allel HF applications also exhibit highly diverse accesses
across distributed process memory spaces. As such, HF
is well-suited for a programming model that emphasizes
lightweight and one-sided communication within a single
global address space. This is the subject of the next section.



B. PGAS in Quantum Chemistry

The algorithmic characteristics and resource requirements
of HF (and post-HF) methods clearly motivate the use of
distributed computation. HF tasks are independent and free
to be computed by any available processor. Also, simulating
a molecule of moderate size has considerable memory
requirements that can easily exceed the memory space of
a single compute node. However, at a high level of ab-
straction, indexing into distributed HF data structures need
not be different than indexing shared memory structures.
This programming abstraction is the basis of the partitioned
global address space (PGAS) model for distributing and
interacting with data. In computational chemistry, this model
is advantageous for interacting with arrays and tensors
productively and efficiently.

The PGAS model utilizes one-sided communication se-
mantics, allowing a process to access remote data with
a single communication routine. Remote memory access
(RMA) is particularly advantageous in HF applications for
three primary reasons. First, HF exhibits highly irregular
access patterns due to the intrinsic structure of molecules
and the necessary removal of integrals from the Fock matrix
in a procedure called “screening.” Second, there is a need
for efficient atomic accumulate operations to update tiles
of the global matrices without the explicit participation of
the target process. Finally, dynamic load balancing in HF is
usually controlled by either a single atomic counter [1], or
many counters [6], [7], both of which require a fast one-
sided fetch-and-add implementation.

The NWChem software toolkit [8] paved the way towards
the ubiquity of PGAS in computational chemistry using
the Global Arrays (GA) library and the underlying ARMCI
messaging infrastructure [1], [2]. GTFock followed suit, also
using GA for tiled accesses across the irregularly distributed
Fock and density matrices. The GA model is applicable
to many applications, including ghost cells and distributed
linear algebra, but GA’s primary use today is for quantum
chemistry. GA is limited to a C and Fortran API, but does
have Python and C++ wrapper interfaces. Besides UPC++,
which is the subject of the next section, there exist many
other PGAS runtimes, including but not limited to: Titanium,
X10, Chapel, Co-Array Fortran, and UPC.

C. UPC++ and Multidimensional Arrays

UPC++ is a C++ library for parallel programming with
the PGAS model. It includes features such as global memory
management, one-sided communication, remote function
invocation and multidimensional arrays [3].

1) Multidimensional Arrays: A general multidimensional
array abstraction is very important for scientific applications,
but unfortunately, the support for multidimensional arrays in
the C++ standard library is limited [9]. The UPC++ library
implements a multidimensional array abstraction that incor-
porates many features that are useful in the PGAS setting,

and we build our own distributed array representation on
top of UPC++ multidimensional arrays. Here, we briefly
introduce the concepts that are relevant to implementing the
distributed arrays used in the HF algorithm:

e A point is a set of N integer coordinates, representing
a location in N-dimensional space. The following is an
example of a point in three-dimensional space:

2 }};

o A rectangular domain (or rectdomain) is a regular set of
points between a given lower bound and upper bound,
with an optional stride in each dimension. Rectangular
domains represent index sets, and the following is an
example of the set of points between (1, 1), inclusive,
and (4,4), exclusive:

point<3> p = {{ -1, 3,

rdomain<2> rd( PT(1,1), PT(4,4) );

e A UPC++ multidimensional array, represented by the
ndarray class template, is a mapping of points in a
rectdomain to elements. The following creates a two-
dimensional double array over the rectdomain above:

ndarray<double, 2> A( rd );

UPC++ supports a very powerful set of operations over
domains, including union, intersection, translation, and per-
mutation. Since UPC++ multidimensional arrays can be cre-
ated over any rectangular domain, these domain operations
simplify the expression of many common array operations.
New views of an array’s data can also be created with
transformations on its domain. For example, the following
code transposes an array A into a new array B by creating B
over a transpose of A’s domain, creating a transposed view
of A, and copying that view into B:

rectdomain<ndim> permuted_rd =

A.domain () .transpose () ;
ndarray<T, ndim> B( permuted_rd );
B.copy (A.transpose());

An ndarray represents an array that is stored in a single
memory space. However, the memory space containing an
ndarray may be owned by a remote process; the global
template parameter is used to indicate that a given ndarray
may reside in a remote memory space:

ndarray<T, ndim, global> remote_array;

In keeping with the PGAS model, UPC++ supports one-
sided remote access to an ndarray, both at the granularity
of individual elements and, using the copy operation, a set
of multiple elements.

The one-sided copy operation on ndarrays is an espe-
cially powerful feature. In the call B. copy (2), the library
automatically computes the intersection of the domains of A
and B, packs the elements of A that are in that intersection if
necessary, transfers the data from the process that owns A to
the process that owns B, and unpacks the elements into the
appropriate locations in B. Active messages are used to make



this process appear seamless to the user, and the library also
supports non-blocking transfers using the async_copy ()
method on ndarrays.

A final domain and array feature used in the HF code
is the upcxx_foreach construct, which iterates over
the points in a domain. This allows the expression of
dimensionality-independent loops, such as the following
code that sets all elements of an array A to 0.0:'!

{ Alpt] = 0.0; };

2) Other UPC++ Features: UPC++ shared arrays, a fea-
ture inherited from the Unified Parallel C (UPC) language,
are simple 1D arrays block-cyclically distributed across all
processes. The following declares a shared array:

upcxx_foreach( pt, A )

shared_array<T> A;

where T is the type of the array elements and should be
trivially copyable. Before its first use, a shared array must
be explicitly initialized by calling init () with the array
size and block size as arguments. The creation of a shared
array is collective, which means that the set of processes
storing the array must agree on the same array size and
block size. Shared arrays are limited in that they are only
one-dimensional and have fixed block sizes.

To help move computation and save communication,
UPC++ extends C++11’s async feature for distributed-
memory systems, enabling functions to execute on any node
in a cluster. UPC++ uses C++11 variadic templates to pack-
age function arguments together with the function object and
ships the closure to a remote node via GASNet [10].

D. Distributed Arrays with Irregular Ownership

HF and post-HF methods require storing large, irregularly
distributed arrays. Figure 2 shows examples of regularly
distributed arrays with round-robin and 2D block-cyclic as-
signments, and irregularly distributed arrays with 2D blocks.
In HF, the irregular distributions arise after screening out
negligible integral quantities. For example, the top right of
Figure 2 may represent the initial assignment of the Fock
matrix to processes. However, after determining the number
of non-zeros in the collection of all shell pairs, the matrix is
repartitioned so that each process is assigned approximately
the same number of non-zero tasks. This new distribution
might look more like the bottom left of Figure 2.

Like GA, UPC++ shared arrays can be either regularly
or irregularly distributed, as shown in Figure 2. Unlike GA,
element assignment in UPC++ is round robin by default;
however, irregular arrays with N dimensions containing
elements of type T can easily be created in this manner:

shared_array< ndarray<T,
A.init( my_local_array );

N> > A;

IThis example is just for illustration, since the call A.set (0.0)
accomplishes this much more concisely.
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Figure 2: By default, UPC++ uses a regular round-robin
distribution (upper left), while GA uses a regular 2D block-
cyclic distribution (upper right). After screening and repar-
titioning, HF arrays are irregularly distributed (bottom left).
A tiled access (in red) may span multiple owning processes
(bottom right), in this case ranks 5, 6, 9, 10, 13, and 14.

where each rank defines my_local_array across its
relevant portion of the global rectdomain. GA creates a
similar structure using the NGA_Create_irreg API call.
GA supports arbitrary tiled accesses from the global array;
however, prior to this work, UPC++ did not support such
accesses unless done for each owning process explicitly.
More specifically, if tile is the object represented in red
in Figure 2, then a get call would need to occur for all
ranks 5, 6, 9, 10, 13, and 14. This motivates a higher
level of abstraction when doing tiled access operations.
As a result, we implemented a distributed version of the
multidimensional array library, the implementation of which
is the subject of Section III-B.

E. Load Balancing in Quantum Chemistry

The primary hindrance to scalability in quantum chemistry
codes is often due to load imbalance [11], [12], [7]. Although
individual two-electron integrals do not possess drastic dif-
ferences in execution time, bundles of shell quartets can vary
greatly in cost. It is necessary to designate shell quartets
as task units in HF codes because it enables the reuse of
intermediate quantities shared by basis functions within a
quartet [13], [6]. The goal is to assign these task units
to processors with minimal overhead and a schedule that
reduces the makespan.

NWChem balances load with a centralized dynamic
scheduler, which is controlled by a single global counter
control referred to as nxtval (for “next value”). Each task
has a unique ID, and a call to nxtval fetches the current



ID of an uncomputed task, then atomically adds 1 to the
counter so the next task gets executed. Once the counter
reaches the total number of tasks, all work is done. For this
reason, the performance of RMA fetch-and-add operations is
very important for the scalability of computational chemistry
codes like NWChem and GTFock. This has motivated the
implementation and analysis of hardware-supported fetch-
and-ops on modern interconnects, such as Cray Aries using
the GNI/DMAPP interfaces [14].

The nxtval scheme exhibits measurable performance
degradation caused by network contention, but it can be
alleviated by an informed static partitioning of tasks and
the addition of atomic counters to every process or compute
node [7]. GTFock takes this notion one step further by
following the static partitioning phase with work stealing.
During the local phase, each process only accesses the local
memory counter; however, during the work stealing phase,
the process accesses other counters remotely. As illustrated
in Algorithm 2, each process in GTFock begins an SCF
iteration by prefetching the necessary tiles from the global
density matrix and storing them into a local buffer. After
all local tasks are computed, the global Fock matrix is
updated. Then, each process probes the nxtval counters
of remote processes, looking for work to steal. As we
will see in Section IV-B, this algorithm results in many
more local fetch-and-adds than remote, which has important
performance implications for how the operations take place.

F. Making Progress in PGAS Runtimes

Modern network hardware often supports RDMA (remote
direct memory access), which can transfer contiguous data
without involving the remote CPU at the destination. But
for more complex remote operations such as accumulates,
non-contiguous data copies, and matrix multiplications, the
remote CPU needs to participate in processing the tasks.
In addition, the GASNet communication library used by
UPC++ also requires polling the network regularly to guar-
antee progress. For example, in Algorithm 2, if process A
is busy doing computation in line 5 while process B is

Algorithm 2 Load balance and work stealing

1: Determine total number of tasks (after screening).

2: Statically partition tasks across process grid.

3: Prefetch data from DAarrays.

4: while a task remains in local queue  /* fetch_add local integer */
5: compute task

6: end while

7: update Fock matrix DArray via accumulate

8: for Every process p

9: while a task remains in p’s queue /* fetch_add remote integer */
10: get remote blocks

11: compute task

12: end while

13: update Fock matrix DArray via accumulate

14: end for

trying to steal a task in line 9, then GASNet on process A
may be unable to make progress until the main application
thread can reach line 4 to probe the runtime. This scenario
unfortunately leads to work starvation on process B.

The key design issue here is how to make CPUs attentive
to remote requests without wasting cycles for unneces-
sary polling. For instance, Global Arrays usually enables
asynchronous progress with a software agent that polls
continuously (interrupt-driven progress is less common, but
was used on Blue Gene/P, for example). This explains
why NWChem usually shows the best performance when
each compute node dedicates a spare core to the constantly
polling helper thread [15]. However, the optimal polling rate
is generally application-dependent, so UPC++ provides two
polling options: 1) explicit polling by the user application;
and 2) polling at regular intervals where the user controls
when to start and stop. UPC++ also allows processes on
the same compute node to cross-map each other’s physical
memory frames into its own virtual memory address space
(e.g., via POSIX or System V shared memory API), which
can be used to implement a process-based polling mecha-
nism like Casper [16].

III. DESIGN AND IMPLEMENTATION

This section describes the design and implementation of
our Hartree-Fock in UPC++. We focus on the new DArray
library, which incorporates the functionality of Global Ar-
rays into UPC++.

A. UPC++ Hartree-Fock

We base our UPC++ implementation of HF on the
GTFock code because of its exceptional load balancing ca-
pabilities and support for OpenMP multi-threading. GTFock
itself contains about 5,000 lines of C code, and it uses the
optimized electron repulsion integral library, OptErd [17],
which contains about 70,000 lines of C and Fortran.

Because the main GTFock application is written in C,
porting it to use UPC++ was mostly straightforward for
computational components of the code. In particular, many
GTFock routines solely do calculations (such as two-electron
integrals) with little to no communication. An example is the
local computation of the Fock matrix elements, which is the
computational bottleneck of the application and makes op-
timized use of OpenMP clauses. In some cases, our UPC++
implementation uses C++ objects in place of GTFock’s C
structures, but the port primarily retains the C-style memory
management and data structures.

For communication regions however, porting the GTFock
code required substantial development and even new UPC++
features. In particular, the functionality of Global Arrays
needed to be created using the UPC++ model. To aid with
this, we created the DArray library, which is the subject of
the next section.



B. The DArray Library

The DArray library uses UPC++ functionality to imple-
ment tiled operations on irregularly distributed arrays, like
those in GTFock. This section begins by presenting how
the library is used and ends with some discussion regarding
the implementation. The creation of a DArray object is very
similar to the creation of UPC

2 local block w
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/* Local array */
point<2> p_local = PT( p_row, p_col );
point<2> g _local = PT( g_row, g_col );
rectdomain<2> rd = RD( p_local, g_local );
ndarray<T, 2> local_arr( rd );
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rectdomain<2> rd_global = RD( p_global, g _global );

DArray<T, 2> A( prows, pcols, rd_global, local_arr );

Now the DArray can be used for arbitrary gets and puts,
even if the desired tile is owned by multiple ranks:

/* Get data resid in global rectdomain (p,q),

then place it > a local ndarray. +/
ndarray<T, 2> tile;
tile = A( p, 9 );
/% Put local data into rectdomain rd. x/
ndarray<T, 2> tile( rd );
upcxx_foreach( pt, rd ) { tile[pt] = rand(); }

A.put ( tile );

UPC++ async functions also allow for custom user-defined
functions to be applied to arbitrary tiles. For example, here
is how we implement accumulate:
/+ User-defined accumulate function. x/
void my_accum(ndarray<T, 2,global> local_block,
ndarray<T, 2,global> remote_block) {
ndarray<T, 2,global> block (remote_block.domain());
block.copy (remote_block) ;
upcxx_foreach( pt, block.domain() ) {
local_block[pt] += block[pt];
bio}
/* Accumulate local data into rectdomain rd. */
ndarray<T, 2> tile( rd );
upcxx_foreach( pt, rd ) { tile[pt] = rand(); }
A.user_async( tile, my_accum );

Finally, DArrays support simple linear algebra opera-
tions such as matrix addition, multiplication, and transpose.
Currently, only two-dimensional operations are supported,
because they are relevant to the HF application. However,
we plan to incorporate functionality for arbitrary array
dimensions in the future.

Within the DArray library itself, UPC++ multidimen-
sional arrays are used to keep track of data ownership,
make copies to/from restricted rectdomains when neces-
sary, and manipulate local data blocks. For instance, the

DArray::transpose () method first performs a local
ndarray: :transpose () on each block, then makes a
restricted-set copy to the ranks that own the data in the
transposed view.

C. Load Balancing / Work Stealing

Our implementation of Hartree-Fock in UPC++ uses the
same strategy as GTFock for load balancing as described
in Section II-E and outlined in Algorithm 2. However, there
are many ways to implement the dynamic task counters, and
we will see in Section IV-B that these alternatives have very
different performance characteristics. This section outlines
the different alternatives we have explored for carrying out
the counter fetch-and-adds.

1) UPC++ Shared Arrays : This naive implementation
simply uses a UPC++ shared array of counters and does
fetch-and-adds to the elements directly. However, this is
incorrect because shared arrays do not support atomic writes
without locks. If multiple processes simultaneously add to
a shared counter, it is possible for one of the processes to
overwrite the counter with a stale value. We describe this
version here only to clarify that the operation is not trivial.

2) UPC++ asyncs : This approach uses UPC++ async
functions to increment the values of a shared array or some
element of a global DArray. Because async’s are enqueued
at the target process, they are executed atomically.

3) GASNet active messages : GASNet active messages
(AM’s) allow user-defined handlers to execute at a target
process with the message contents passed as arguments.
UPC++ async functions are built on top of GASNet AM’s,
but they carry more infrastructure to enable greater flexibility
(for instance, an async can launch GPU kernels or contain
OpenMP pragmas). On the other hand, GASNet AM han-
dlers are more lightweight than asyncs, which makes them
a good candidate for a simple operation like fetch-and-add.
UPC++ has an experimental feature for launching such an
AM with the upcxx: : fetch_add () function.

4) GASNet GNI atomics : The Cray Gemini and Net-
work Interface (GNI) and Distributed Shared Memory Ap-
plication (DMAPP) interface provide access to one-sided
communication features available to Cray Aries and Gemini
network interface controllers (NIC’s). For instance, 8-byte
aligned atomic memory operations, such as fetch-and-add,
have native hardware support on the NIC itself. They also
have an associated cache for fast accesses to such data,
which is particularly efficient for remote work stealing.
However, accessing counters resident in a local NIC cache
has relatively high overhead compared to accessing DRAM.
GASNet does not yet expose such network atomics, but for
this work we introduce a prototype implementation of fetch-
and-add on 64 bit integers, anticipated to be included in
GASNet-EX, the next-generation GASNet APL



Algorithm 3 Load balance and work stealing

Statically partition tasks and prefetch data (steps 1-3 of Alg. 2).
while a task remains in local queue
upcxx::progress_thread_start()
compute task

end while
update Fock matrix DArray via accumulate
for Every process p
while a task remains in p’s queue
get remote blocks
upcxx::progress_thread_start()
compute task

end while

update Fock matrix DArray via accumulate
end for
upcxx::progress_thread_stop()

D. Attentiveness and Progress Threads

As discussed in Section II-F, making good progress in
the PGAS runtime is very important. This is particularly
true while a process attempts to steal work from a victim
that is busy doing computation. In order to improve the
attentiveness while the application executes Algorithm 2, we
added a progress thread start/stop feature, which the appli-
cation may use to initiate runtime progress polling. In its
initial implementation, the progress_thread_start() function
spawned a pthread that calls gasnet_AMpoll() intermittently.
We experimented across several orders of magnitude for the
polling frequency and chose every 10 ps for the Hartree-
Fock application. The user should call the start function
just before the process will do computation and will not do
any communication. If communication occurs before calling
progress_thread_stop(), it requires a thread-safe version of
GASNet.

Section IV-C presents measurements that suggest that call-
ing pthread_join() at the end of each task incurs too much
overhead for the HF application because there are potentially
very many small tasks per process. We therefore introduce
the progress_thread_pause() function. This function makes
use of pthread_cond_wait() to sleep the progress thread and
block it on a condition variable, whereas pthread_join()
typically busy waits on a mutex (as in the GNU C Library
implementation), consuming valuable CPU resources. In this
new version, progress_thread_start() spawns the progress
thread upon the first call, then signals the thread to unblock
and continue polling in subsequent calls. Algorithm 3 shows
the correct placement of these progress thread controller
functions.

IV. MEASUREMENTS AND RESULTS

This section highlights the performance measurements of
our UPC++ HF application and compares it with GTFock,
which uses Global Arrays and ARMCI. All experiments
were run on the Edison supercomputer at the National

Energy Research Scientific Computing Center (NERSC).
Edison is a Cray XC30 petaflop system featuring the Aries
interconnect with a Dragonfly topology. Edison compute
nodes contain two Intel® Xeon® E5-2695 processors with
two-way Hyper-Threaded cores for a total of 48 “logical
cores” per compute node. Each node has 64 GB memory.
For software, our experiments were run with the de-
fault Edison module for the Intel programming environment
(5.2.56 and -03), Cray LibSci for BLAS, LAPACK, and
ScaLAPACK, and a custom build of the development version
of GASNet preceding the 1.26.0 release. Global Arrays is
the 5.4b version linked with LibSci (and peigs disabled).

A. Single Node Performance

We begin with a single-node performance exploration
of UPC++ and OpenMP across sensible combinations of
processes and threads. The data are shown in Figure 3, where
each measurement is the total time spent in an SCF iteration
(averaged across 5 runs). Black boxes are not possible to run
on Edison compute nodes because the job scheduler does not
allow oversubscribing. The best performance is usually seen
when using more threads relative to processes (except in
the pathological case of only 1 process on 1 CPU socket).
This is a particularly exciting result because we know that
memory consumption is best with fewer UPC++ processes.
Also, this property is favorable for performance on many-
core architectures [18]. Other codes, such as NWChem, only
exhibit good performance with 1 single-threaded process per
core [15], which is a troubling characteristic in light of the
prominent adoption of many-core architectures.

The best performance is seen along the diagonal, for
which all executions exploit Hyper-Threading. The absolute
best performance is with 2 processes (1 per socket) and 24
OpenMP threads per process. Therefore, all of our scaling
experiments below are run with this configuration.
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Figure 3: Single-node performance of the UPC++ HF appli-
cation with UPC++ processes vs. OpenMP threads.
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Figure 4: TAU profile data comparing the time in nxtval
for Global Arrays (upper left), UPC++ asyncs (upper
right), GASNet AM’s (lower left), and GASNet GNI atomics
(lower right). The experiment is C49Hg, with 768 processes.

B. Load Balancing / Work Stealing

Our initial implementation of the task counters for load
balancing/work stealing (described in Section III-C) used
UPC++ asyncs. However, TAU profile data, in the upper-
right histogram of Figure 4, shows this method incurs
too much overhead for such a lightweight operation. This
motivated a microbenchmark analysis for the various im-
plementation options described in Section III-C. The mi-
crobenchmark is simple: each process owns a counter, and
the benchmark ends when all counters reach 1 million.
We create two different versions: one in which only local
counters are incremented, and one in which random remote
counters are incremented. The results are shown in Figure 5.

The most important feature of Figure 5 is that the GNI
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hardware-supported atomic operations on Aries show ex-
tremely good performance for remote fetch-and-adds, but
relatively poor performance for /ocal fetch-and-adds. This
makes sense: GNI atomics must probe the NIC cache line for
the counter, even if it is local. UPC++ asyncs and GASNet
AM’s access main memory and therefore exhibit less latency
overhead. We note here that GTFock uses the C_INT type
(4 byte integers) for task counters. However, in the ARMCI
backend, this does not use the DMAPP implementation of
hardware-supported atomics on Aries. It is a simple fix to
use type C_LONG, which immediately shows much better
remote fetch-and-add performance.

Due to the nature of Algorithm 2, the HF application
does ~90% local fetch-adds and ~10% remote fetch-adds
in high performing executions. Therefore, when comparing
the in-application performance of GNI atomics to GASNet
AM’s in Figure 4, we do not see a drastic improvement.
However, there is a slight benefit to using the atomics
overall. Therefore, in our scaling studies in section D below,
we use the GNI implementation.

C. Progress and Attentiveness

We noticed in TAU profiles (not included due to space
constraints) that pthread_join() consumes too much execu-
tion time when calling the stop function in every iteration
of the task loop. This overhead is enough to degrade
performance, particularly when the task granularity is small
and there are a large number of tasks. The effect is par-
ticularly noticeable when running with a large number of
processes, since the relative time of the overhead eventually
overshadows the time spent doing the two-electron integrals.
To alleviate this effect, we added the pause feature described
in Section III-D. This optimization is included in our strong
scaling measurements with a polling rate of 10 microsec-
onds. We also use a PAR build of GASNet because we
require its thread-safety and do not observe any effect on
the performance of the HF application.
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Figure 5: Flood microbenchmark with 1 million fetch/add calls per process - local (left) and remote (right) versions.
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Figure 6: Strong scaling of UPC++ HF compared to GTFock
and GA on Edison for two molecules: C4Hg, and a DNA
5-mer. The “ideal” curves are projected with respect to the
UPC++ execution at 1 node and 32 nodes, respectively.

D. Strong Scaling

With the preceding optimizations made to the UPC++ HF
application, we now compare performance to the original
GTFock implementation using Global Arrays and ARMCI
on the Edison cluster. We look at two molecules: an alkane
polymer (C4Hsy) and a DNA 5-mer, both using the cc-
pVDZ Dunning basis set. The alkane requires 970 basis
functions and the DNA 5-mer requires 3,453. Both are run
with the configuration that gives the best performance: 1
process bound to each socket and 24 OpenMP threads per
process. The minimum of multiple runs (2-5) is reported to
reduce noise due to system variation. In summary, UPC++
HF achieves 10-20% performance improvement, with the
best gains occurring in the region just before strong scaling
inevitably dwindles.

V. RELATED WORK

Related work explores relatively simple Hartree-Fock
implementations in other PGAS languages like Fortress,
Chapel, and X10 [19], [20]. The work from [19] presents
interesting implementations in all 3 languages, but unfortu-
nately deferred performance results to future work. The work
from [20] reports performance measurements, but only for
static partitioning, saying that the dynamic load balancing
implementation does not scale, and using the X10 async
for spawning tasks consistently runs out of memory.

Alternative communication infrastructures for Global Ar-
rays have been explored in projects such as ARMCI-
MPI [21]. Also, in [22] Gropp et al. present an edifying
version of Global Arrays written directly with MPI-3, along
with several versions of nxtval, including a threaded
implementation.

Our UPC++ HF application has inherited the
diagonalization-free purification technique for calculating
the density matrix [23] from GTFock. The purification
code is written in MPI, and the fact that our application
uses it highlights the inter-operability of UPC++ and
MPI. However, to keep things simple, our performance
measurements have not included time spent in purification
(except in Figure 3). The numerical effectiveness of this
approach compared to classic diagonalization methods is
left as future work. This is important because it affects the
convergence behavior of the SCF algorithm, which will
ultimately determine how well our UPC++ HF application
will compare in performance to NWChem.

Related load balancing research includes resource sharing
barriers in NWChem [24], inspector-executor load balancing
in NWChem [7], exploiting DAG dependencies in the tensor
contractions [12], and performance-model based partitioning
of the fragment molecular orbital method [11]. Related work
in optimizing runtime progress includes Casper, which was
used to improve progress performance in NWChem [16].
It uses a process-based design that dedicates a few CPU
cores to assist in communication progress of other processes,
and it shows a performance benefit over traditional thread-
based schemes with continuous polling. Future work might
consider a comparison with our user-specified thread start/-
pause/stop approach.

VI. CONCLUSION

Our results demonstrate that a highly tuned Hartree-Fock
implementation can deliver substantial performance gains
on top of prior algorithmic improvements. The performance
analysis and optimization techniques presented in this paper
are also applicable to a broad range of use cases that would
benefit from dynamic work stealing and a global view of
distributed data storage. Looking forward, we believe that
both novel algorithm design and sophisticated implementa-
tion optimization are crucial to scaling real applications on
upcoming parallel systems with heterogeneous many-core
processors, deep memory levels, and hierarchical networks.

To facilitate tiled operations on irregularly distributed
arrays, we designed and developed the DArray library*,
which is capable of applying tiled gets, puts, and user-
defined functions across irregularly distributed arrays con-
taining elements of any type. DArray will be an important
and reusable building block for many other similar kinds
of computational problems. In future work, we plan to
further enhance it by: 1) adding conditional gets on DArray
blocks, where only non-zero blocks are transferred after
screening; 2) optimizing other initialization-only operations
(e.g., DGEMM); and 3) including other features such as di-
agonalization and LU decomposition. Finally, our promising
OpenMP performance measurements motivate a follow-up
performance analysis in preparation for the deployment of
the Cori system at NERSC, which will equip over 9,300



Intel Knights Landing processors with the Cray Aries high-
speed Dragonfly topology interconnect.
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