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Some motivating applications
PGAS well-suited to applications that
use irregular data structures
• Sparse matrix methods
• Adaptive mesh refinement
• Graph problems, distributed hash tables

Processes may send different amounts
of information to other processes
The amount can be data dependent, dynamic

Courtesy of 
Jim Demmel

http://tinyurl.com/yxqarenl
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The impact of fine-grained communication

The first exascale systems will appear soon

• In the USA: Frontier (2021) https://tinyurl.com/y2ptx3th

Some apps employ fine-grained communication

• Messages are short, so the overhead term dominates 
communication time   a + F(b-1¥ , n)

• They are latency-limited, and latency is only improving slowly

Memory per core is dropping, an effect that can force more 
frequent fine-grained communication

We need to reduce communication costs

• Asynchronous communication and execution are critical
• But we also need to keep overhead costs to a minimum

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov
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Reducing communication overhead
What if we could let each process directly access one 
another’s memory via a global pointer?

• We don’t need to match sends to receives
• We don’t need to guarantee message ordering
• There are no unexpected messages

Communication is one-sided
• All metadata provided by the initiator, rather than split 

between sender and receiver

Looks like shared memory
Observation: modern network hardware provides the 
capability to directly access memory on another node:
Remote Direct Memory Access (RDMA) 

• Can be compiled to load/store if source and target share 
physical memory

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov
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RMA performance: GASNet-EX vs MPI-3
Three different MPI
implementations

Two distinct network
hardware types

On these four systems
the performance of
GASNet-EX meets or
exceeds MPI RMA:

• 8-byte Put latency 6% to 55% better
• 8-byte Get latency 5% to 45% better
• Better flood bandwidth efficiency, typically saturating at ½ or 

¼ the transfer size (next slide)

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov
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RMA performance: GASNet-EX vs MPI-3
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RMA microbenchmarks

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov

Round-trip Put Latency (lower is better) Flood Put Bandwidth (higher is better)

Experiments on NERSC Cori:
l Cray XC40 system

Two processor partitions: 
l Intel Haswell (2 x 16 cores per node)
l Intel KNL (1 x 68 cores per node)

Data collected on Cori Haswell (https://doi.org/10.25344/S4V88H)

https://doi.org/10.25344/S4V88H
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The PGAS model
Partitioned Global Address Space

• Support global visibility of storage, leveraging the network’s 
RDMA capability

• Distinguish private and shared memory
• Separate synchronization from data movement

Languages that support PGAS: UPC, Titanium, Chapel, 
X10, Co-Array Fortran (Fortran 2008)
Libraries that support PGAS: Habanero UPC++, 
OpenSHMEM, Co-Array C++, Global Arrays, DASH, 
MPI-RMA
This presentation is about UPC++, a C++ library 
developed at Lawrence Berkeley National Laboratory

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov
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Execution model: SPMD
Like MPI, UPC++ uses a SPMD model of execution, 
where a fixed number of processes run the same program
int main() {

upcxx::init();
cout << "Hello from " << upcxx::rank_me() << endl;
upcxx::barrier();
if (upcxx::rank_me() == 0) cout << "Done." << endl;
upcxx::finalize();

}

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov
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A Partitioned Global Address Space
Global Address Space

• Processes may read and write shared segments of memory
• Global address space = union of all the shared segments

Partitioned
• Global pointers to objects in shared memory have an affinity to 

a particular process
• Explicitly managed by the programmer to optimize for locality
• In conventional shared memory, pointers do not encode affinity

Rank 0 Rank 1 Rank 2 Rank 3

Private 
Segment

Shared 
Segment

Private 
Segment

Shared 
Segment

Private 
Segment

Shared 
Segment

Private 
Segment

Shared 
SegmentGlobal address space

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov
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Global vs. raw pointers
We can create data structures with embedded global 
pointers

Raw C++ pointers can be used on a process to refer to 
objects in the global address space that have affinity to 
that process

Process 0 Process 1 Process 2 Process 3

Global 
address space

Private
memory

x: 1
p: 

x: 5
p: 

x: 7
p:

l: 

g: 

l: 

g: 

l: 

g: 
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What is a global pointer?
A global pointer carries both an address and the affinity 
for the data
Parameterized by the type of object it points to, as with 
a C++ (raw) pointer: e.g. global_ptr<double>

The affinity identifies the process that created the object

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov
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How does UPC++ deliver the PGAS model?
A “Compiler-Free,” library approach

• UPC++ leverages C++ standards,
needs only a standard C++ compiler

Relies on GASNet-EX for low-overhead communication
• Efficiently utilizes the network, whatever that network may be, 

including any special-purpose offload support
• Active messages efficiently support Remote Procedure Calls 

(RPCs), which are expensive to implement in other models
• Enables portability (laptops to supercomputers)

Designed to allow interoperation with existing 
programming systems

• Same process model as MPI, enabling hybrid applications
• OpenMP and CUDA can be mixed with UPC++ in the same 

way as MPI+X
Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov
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What does UPC++ offer?
Asynchronous behavior based on futures/promises

• RMA: Low overhead, zero-copy, one-sided communication. 
Get/put to a remote location in another address space

• RPC: Remote Procedure Call: move computation to the data

Design principles encourage performant program design
• All communication is syntactically explicit

• All communication is asynchronous: futures and promises

• Scalable data structures that avoid unnecessary replication

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov
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Asynchronous communication

By default, all communication operations are split-phased 
• Initiate operation
• Wait for completion 

A future holds a value and a state: ready/not-ready

global_ptr<int> gptr1 = ...;
future<int> f1 = rget(gptr1); 
// unrelated work...
int t1 = f1.wait();

Wait returns the result 
when the rget completes

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov
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Execute a function on another process, sending 
arguments and returning an optional result 
1. Initiator injects the RPC to the target process 
2. Target process executes fn(arg1, arg2) at some later time 

determined at the target
3. Result becomes available to the initiator via the future
Many RPCs can be active simultaneously, hiding latency

Remote procedure call

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov
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Example: Hello world
#include <iostream>
#include <upcxx/upcxx.hpp>
using namespace std;

int main() {
upcxx::init();
cout << "Hello world from process "

<< upcxx::rank_me()
<< " out of " << upcxx::rank_n()
<< " processes" << endl;

upcxx::finalize();
} 

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov
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runtime

Close down 
UPC++ runtime

Hello world from process 0 out of 4 processes
Hello world from process 2 out of 4 processes
Hello world from process 3 out of 4 processes
Hello world from process 1 out of 4 processes
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Compiling and running a UPC++ program
UPC++ provides tools for ease-of-use
Compiler wrapper:
$ upcxx -g hello-world.cpp -o hello-world.exe

• Invokes a normal backend C++ compiler with the 
appropriate arguments (such as –I, -L, -l).

• We also provide other mechanisms for compiling
(upcxx-meta, CMake package).

Launch wrapper:
$ upcxx-run -np 4 ./hello-world.exe

• Arguments similar to other familiar tools

• We also support launch using platform-specific tools, such 
as srun, jsrun and aprun.

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov
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Remote Procedure Calls (RPC)
Let’s say that process 0 performs this RPC

int area(int a, int b) { return a * b; }

int rect_area = rpc(p, area, a, b).wait();

The target process p will execute the handler function 
area() at some later time determined at the target

The result will be returned to process 0

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov
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Hello world with RPC (synchronous)
We can rewrite hello world by having each process 
launch an RPC to process 0
int main() {
upcxx::init();
for (int i = 0; i < upcxx::rank_n(); ++i) {
if (upcxx::rank_me() == i) {

upcxx::rpc(0, [](int rank) {
cout << "Hello from process " << rank << endl;

}, upcxx::rank_me()).wait();
}

upcxx::barrier();
}
upcxx::finalize();

} 

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov
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Futures
RPC returns a future object, which represents a 
computation that may or may not be complete
Calling wait() on a future causes the current process 
to wait until the future is ready

upcxx::future<> fut =
upcxx::rpc(0, [](int rank) {

cout << "Hello from process "
<< rank << endl;

}, upcxx::rank_me());

fut.wait();

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov

Empty future type that 
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What is a future?
A future is a handle to an asynchronous operation, 
which holds:

• The status of the operation
• The results (zero or more values) of the completed 

operation

The future is not the result itself, but a proxy for it
The wait() method blocks until a future is ready and 
returns the result

upcxx::future<int> fut = /* ... */;
int result = fut.wait();

The then() method can be
used instead to attach a
callback to the future

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov
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Overlapping communication
Rather than waiting on each RPC to complete, we can 
launch every RPC and then wait for each to complete
vector<upcxx::future<int>> results;
for (int i = 0; i < upcxx::rank_n(); ++i) {
upcxx::future<int> fut = upcxx::rpc(i, []() {
return upcxx::rank_me();

}));
results.push_back(fut);

}

for (auto fut : results) {
cout << fut.wait() << endl;

}

We'll see better ways to wait on groups of asynchronous 
operations later

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov
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1D 3-point Jacobi in UPC++
Iterative algorithm that updates each grid cell as a 
function of its old value and those of its immediate 
neighbors

Out-of-place computation requires two grids
for (long i = 1; i < N - 1; ++i)

new_grid[i] = 0.25 * (old_grid[i - 1] +
2 * old_grid[i] +
old_grid[i + 1]);

Sample data distribution of each grid 
(12 domain elements, 3 ranks, N=12/3+2=6):

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov
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Jacobi boundary exchange (version 1)
RPCs can refer to static variables, so we use them to 
keep track of the grids
double *old_grid, *new_grid;

double get_cell(long i) {
return old_grid[i];

}

...

double val = rpc(right, get_cell, 1).wait();

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov
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Jacobi computation (version 1)
We can use RPC to communicate boundary cells
future<double> left_ghost = rpc(left, get_cell, N-2);
future<double> right_ghost = rpc(right, get_cell, 1);

for (long i = 2; i < N - 2; ++i)
new_grid[i] = 0.25 *
(old_grid[i-1] + 2*old_grid[i] + old_grid[i+1]);

new_grid[1] = 0.25 *
(left_ghost.wait() + 2*old_grid[1] + old_grid[2]);

new_grid[N-2] = 0.25 *
(old_grid[N-3] + 2*old_grid[N-2] + right_ghost.wait());

std::swap(old_grid, new_grid);

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov
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Race conditions
Since processes are unsynchronized, it is possible that 
a process can move on to later iterations while its 
neighbors are still on previous ones
• One-sided communication decouples data movement 

from synchronization for better performance

A straggler in iteration 𝑖 could obtain data from a 
neighbor that is computing iteration 𝑖 + 2, resulting in 
incorrect values

This behavior is unpredictable and may not be observed 
in testing

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov
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Naïve solution: barriers
Barriers at the end of each iteration provide sufficient 
synchronization
future<double> left_ghost = rpc(left, get_cell, N-2);
future<double> right_ghost = rpc(right, get_cell, 1);

for (long i = 2; i < N - 2; ++i)
/* ... */;

new_grid[1] = 0.25 *
(left_ghost.wait() + 2*old_grid[1] + old_grid[2]);

new_grid[N-2] = 0.25 *
(old_grid[N-3] + 2*old_grid[N-2] + right_ghost.wait());

barrier();
std::swap(old_grid, new_grid);
barrier();

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov
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One-sided put and get (RMA)
UPC++ provides APIs for one-sided puts and gets
Implemented using network RDMA if available – most 
efficient way to move large payloads
• Scalar put and get:

global_ptr<int> remote = /* ... */;
future<int> fut1 = rget(remote);
int result = fut1.wait();
future<> fut2 = rput(42, remote);
fut2.wait();

• Vector put and get:
int *local = /* ... */;
future<> fut3 = rget(remote, local, count);
fut3.wait();
future<> fut4 = rput(local, remote, count);
fut4.wait();

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov
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Jacobi with ghost cells
Each process maintains ghost cells for data from 
neighboring processes

Assuming we have global pointers to our neighbor grids, 
we can do a one-sided put or get to communicate the 
ghost data:
double *my_grid;
global_ptr<double> left_grid_gptr, right_grid_gptr;
my_grid[0] = rget(left_grid_gptr + N - 2).wait();
my_grid[N-1] = rget(right_grid_gptr + 1).wait();

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov
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Storage management
Memory must be allocated in the shared segment in 
order to be accessible through RMA
global_ptr<double> old_grid_gptr, new_grid_gptr;
...
old_grid_gptr = new_array<double>(N);
new_grid_gptr = new_array<double>(N);

These are not collective calls - each process allocates 
its own memory, and there is no synchronization

• Explicit synchronization may be required before 
retrieving another process's pointers with an RPC

UPC++ does not maintain a symmetric heap
• The pointers must be communicated to other 

processes before they can access the data
Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov
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Downcasting global pointers
If a process has direct load/store access to the memory 
referenced by a global pointer, it can downcast the global 
pointer into a raw pointer with local()
global_ptr<double> old_grid_gptr, new_grid_gptr;
double *old_grid, *new_grid;

void make_grids(size_t N) {
old_grid_gptr = new_array<double>(N);
new_grid_gptr = new_array<double>(N);
old_grid = old_grid_gptr.local();
new_grid = new_grid_gptr.local();

}

Later, we will see how downcasting can be used with 
processes that share physical memory

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov
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Jacobi RMA with gets
Each process obtains boundary data from its neighbors 
with rget()
future<> left_get = rget(left_old_grid + N - 2,

old_grid, 1);
future<> right_get = rget(right_old_grid + 1,

old_grid + N - 1, 1);

for (long i = 2; i < N - 2; ++i)
/* ... */;

left_get.wait();
new_grid[1] = 0.25 *
(old_grid[0] + 2*old_grid[1] + old_grid[2]);

right_get.wait();
new_grid[N-2] = 0.25 *
(old_grid[N-3] + 2*old_grid[N-2] + old_grid[N-1]);

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov
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Callbacks
The then() method attaches a callback to a future
• The callback will be invoked after the future is ready, with 

the future’s values as its arguments
future<> left_update =

rget(left_old_grid + N - 2, old_grid, 1)
.then([]() {
new_grid[1] = 0.25 *
(old_grid[0] + 2*old_grid[1] + old_grid[2]);

});

future<> right_update =
rget(right_old_grid + N - 2)
.then([](double value) {
new_grid[N-2] = 0.25 *
(old_grid[N-3] + 2*old_grid[N-2] + value);

});

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov
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Chaining callbacks
Callbacks can be chained through calls to then()
global_ptr<int> source = /* ... */;
global_ptr<double> target = /* ... */;
future<int> fut1 = rget(source);
future<double> fut2 = fut1.then([](int value) {
return std::log(value);

});
future<> fut3 =
fut2.then([target](double value) {
return rput(value, target);

});
fut3.wait();

This code retrieves an integer from a remote location, 
computes its log, and then sends it to a different remote 
location

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov
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Conjoining futures
Multiple futures can be conjoined with when_all() into a 
single future that encompasses all their results

Can be used to specify multiple dependencies for a callback
global_ptr<int>    source1 = /* ... */;
global_ptr<double> source2 = /* ... */;
global_ptr<double> target = /* ... */;
future<int>    fut1 = rget(source1);
future<double> fut2 = rget(source2);
future<int, double> both =

when_all(fut1, fut2);
future<> fut3 =

both.then([target](int a, double b) {
return rput(a * b, target);

});
fut3.wait();

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov
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Jacobi RMA with puts and conjoining
Each process sends boundary data to its neighbors with 
rput(), and the resulting futures are conjoined
future<> puts = when_all(

rput(old_grid[1], left_old_grid + N - 1),
rput(old_grid[N-2], right_old_grid));

for (long i = 2; i < N - 2; ++i)
/* ... */;

puts.wait();
barrier();

new_grid[1] = 0.25 *
(old_grid[0] + 2*old_grid[1] + old_grid[2]);

new_grid[N-2] = 0.25 *
(old_grid[N-3] + 2*old_grid[N-2] + old_grid[N-1]);

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov
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Distributed objects
A distributed object is an object that is partitioned over a set 
of processes
dist_object<T>(T value, team &team = world());

The processes share a universal name for the object, but 
each has its own local value

Similar in concept to a co-array, but with advantages
• Scalable metadata representation
• Does not require a symmetric heap
• No communication to set up or tear down
• Can be constructed over teams

Process 0 Process p

● ● ●

Process 1

dist_object<int>
all_nums(rand());

42
all_nums

3
all_nums

8
all_nums
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Bootstrapping the communication
Since allocation is not collective, we must arrange for 
each process to obtain pointers to its neighbors' grids

We can use a distributed object to do so
using ptr_pair = std::pair<global_ptr<double>,

global_ptr<double>>;
dist_object<ptr_pair> dobj({old_grid_gptr,

new_grid_gptr});
std::tie(right_old_grid, right_new_grid) =

dobj.fetch(right).wait();
// equivalent to the statement above:
//   ptr_pair result = dobj.fetch(right).wait();
//   right_old_grid = result.first;
//   right_new_grid = result.second;

barrier();

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov

Ensures distributed objects are not destructed 
until all ranks have completed their fetches



41

Implicit synchronization
The future returned by fetch() is not readied until the 
distributed object has been constructed on the target, 
allowing its value to be read
• This allows us to avoid explicit synchronization 

between the creation and the fetch()
using ptr_pair = std::pair<global_ptr<double>,

global_ptr<double>>;
dist_object<ptr_pair> dobj({old_grid_gptr,

new_grid_gptr});

std::tie(right_old_grid, right_new_grid) =
dobj.fetch(right).wait();

barrier();

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov

The result of fetch() is 
obtained after the 

dist_object is constructed 
on the target
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Distributed hash table (DHT)
Distributed analog of std::unordered_map
• Supports insertion and lookup

• We will assume the key and value types are string

• Represented as a collection of individual unordered maps 
across processes

• We use RPC to move hash-table operations to the owner

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov

Process 0 Process p

Hash table partition: a
std::unordered_map
per rank

● ● ●

key val
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DHT data representation
A distributed object represents the directory of 
unordered maps
class DistrMap {

using dobj_map_t =
dist_object<unordered_map<string, string>>;

// Construct empty map
dobj_map_t local_map{{}};

int get_target_rank(const string &key) {
return std::hash<string>{}(key) % rank_n();

} 
};

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov

Computes owner for the given key
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DHT insertion
Insertion initiates an RPC to the owner and returns a 
future that represents completion of the insert
future<> insert(const string &key,

const string &val) {
return rpc(get_target_rank(key),

[](dobj_map_t &lmap, const string &key,
const string &val) {

(*lmap)[key] = val;
}, local_map, key, val);

}

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov

Key and value passed 
as arguments to the 

remote function

UPC++ uses the 
distributed object's 
universal name to 
look it up on the 
remote process

Process 0 Process p

● ● ●

key val
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DHT find
Find also uses RPC and returns a future
future<string> find(const string &key) {

return rpc(get_target_rank(key),
[](dobj_map_t &lmap, const string &key) {

if (lmap->count(key) == 0)
return string("NOT FOUND");

else
return (*lmap)[key];

}, local_map, key);
}

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov

Process 0 Process p

● ● ●

key val
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Optimized DHT scales well
Excellent weak scaling up to 32K cores [IPDPS19]

• Randomly distributed keys

RPC and RMA lead to simplified and more efficient design
• Key insertion and storage allocation handled at target
• Without RPC, complex updates would require explicit 

synchronization and two-sided coordination

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov

Cori @ NERSC
(KNL) 
Cray XC40
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Review: high-level overview of an RPC's execution
1. Initiator injects the RPC to the target process 
2. Target process executes fn(arg1, arg2) at some later time 

determined at the target
3. Result becomes available to the initiator via the future
Progress is what ensures that the RPC is eventually 
executed at the target

RPC and progress

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov

upcxx::rpc(target, fn, arg1, arg2) 

● ● ●

Execute fn(arg1, arg2) on process target

fn

1

future

2

Result available via a future3

Process 
(initiator)

Process 
(target)
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Progress
UPC++ does not spawn hidden threads to advance its 
internal state or track asynchronous communication

This design decision keeps the runtime lightweight and 
simplifies synchronization
• RPCs are run in series on the main thread at the target 

process, avoiding the need for explicit synchronization

The runtime relies on the application to invoke a progress 
function to process incoming RPCs and invoke callbacks

Two levels of progress
• Internal: advances UPC++ internal state but no notification

• User: also notifies the application
• Readying futures, running callbacks, invoking inbound RPCs

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov
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Invoking user-level progress
The progress() function invokes user-level progress

• So do blocking calls such as wait() and barrier()

A program invokes user-level progress when it expects 
local callbacks and remotely invoked RPCs to execute

• Enables the user to decide how much time to devote 
to progress, and how much to devote to computation

User-level progress executes some number of 
outstanding received RPC functions

• “Some number” could be zero, so may need to 
periodically invoke when expecting callbacks

• Callbacks may not wait on communication, but may 
chain new callbacks on completion of communication

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov
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Remote atomics
Remote atomic operations are supported with an atomic domain

Atomic domains enhance performance by utilizing hardware 
offload capabilities of modern networks

The domain dictates the data type and operation set
atomic_domain<int64_t> dom({atomic_op::load, atomic_op::min,

atomic_op::fetch_add});

• Support int64_t, int32_t, uint64_t, uint32_t, float, double

Operations are performed on global pointers and are 
asynchronous
global_ptr <int64_t> ptr = new_<int64_t>(0); 
future<int64_t> f = dom.fetch_add(ptr,2,memory_order_relaxed);
int64_t res = f.wait();

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov
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sender target

RPC’s transparently serialize shipped data
• Conversion between in-memory and byte-stream 

representations
• serialize à transfer à deserialize à invoke

Conversion makes byte copies for C-compatible types
• char, int, double, struct{double;double;}, ...

Serialization works with most STL container types
• vector<int>, string, vector<list<pair<int,float>>>, 

...

• Hidden cost: containers deserialized at target 
(copied) before being passed to RPC function

Serialization

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov
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Views
UPC++ views permit optimized handling of collections in 
RPCs, without making unnecessary copies

• view<T>: non-owning sequence of elements

When deserialized by an RPC, the view elements can be 
accessed directly from the internal network buffer, rather 
than constructing a container at the target
vector<float> mine = /* ... */;
rpc_ff(dest_rank, [](view<float> theirs) {

for (float scalar : theirs)
/* consume each */

},
make_view(mine)

);

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov

Process elements directly 
from the network buffer

Cheap view construction
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Shared memory hierarchy and local_team
Memory systems on supercomputers are hierarchical

• Some process pairs are “closer” than others
• Ex: cabinet > switch > node > NUMA domain > socket > core

Traditional PGAS model is a “flat” two-level hierarchy
• “same process” vs “everything else”

UPC++ adds an intermediate hierarchy level
• local_team() – a team corresponding to a physical node
• These processes share a physical memory domain

• Shared segments are CPU load/store accessible across 
processes in the same local_team

Rank 0 Rank 1 Rank 2 Rank 3

Private 
Segment

Shared 
Segment

Private 
Segment

Shared 
Segment

Private 
Segment

Shared 
Segment

Private 
Segment

Shared 
SegmentGlobal address space

Process 0 Process 1 Process 2 Process 3

Node 0 
local_team

Node 1 
local_team
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Downcasting and shared-memory bypass
Earlier we covered downcasting global pointers
• Converting global_ptr<T> from this process to raw C++ T*

• Also works for global_ptr<T> from any process in local_team()
int l_id = local_team().rank_me();

int l_cnt = local_team().rank_n();

global_ptr<int> gp_data;

if (l_id == 0) gp_data = new_array<int>(l_cnt); 

gp_data = broadcast(gp_data, 0, local_team()).wait();

int *lp_data = gp_data.local();

lp_data[l_id] = l_id;

Rank and count in my local node

Allocate and share 
one array per node

Downcast to get raw C++ ptr to shared array
Direct store to shared array created by node leader

Node 0 
local_team

Node 1 
local_team

Global 
address 
space

Process 0 Process 1

lp_data lp_data
0  l_id 1  l_id

Process 2 Process 3

lp_data lp_data
0  l_id 1  l_id
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Optimizing for shared memory in many-core
local_team() allows optimizing co-located processes 
for physically shared memory in two major ways:

• Memory scalability
• Need only one copy per node for replicated data
• E.g. Cori KNL has 272 hardware threads/node

• Load/store bypass – avoid explicit communication 
overhead for RMA on local shared memory
• Downcast global_ptr to raw C++ pointer
• Avoid extra data copies and communication 

overheads

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov
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Completion: synchronizing communication
Earlier we synchronized communication using futures:

future<int> fut = rget(remote_gptr);
int result = fut.wait();

This is just the default form of synchronization
• Most communication ops take a defaulted completion argument
• More explicit: rget(gptr, operation_cx::as_future());

• Requests future-based notification of operation completion

Other completion arguments may be passed to modify behavior
• Can trigger different actions upon completion, e.g.:

• Signal a promise, inject an RPC, etc.
• Can even combine several completions for the same operation

Can also detect other “intermediate” completion steps
• For example, source completion of an RMA put or RPC

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov
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Completion: promises
A promise represents the producer side of an asynchronous 
operation

• A future is the consumer side of the operation

By default, communication operations create an implicit 
promise and return an associated future

Instead, we can create our own promise and register it with 
multiple communication operations
void do_gets(global_ptr<int> *gps, int *dst, int cnt) {

promise<> p;
for (int i = 0; i < cnt; ++i)
rget(gps[i], dst+i, 1, operation_cx::as_promise(p));

future<> fut = p.finalize();
fut.wait();

}

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov

Register an operation 
on a promiseClose registration 

and obtain an 
associated future
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Completion: "signaling put"
One particularly interesting case of completion:
rput(src_lptr, dest_gptr, count, 

remote_cx::as_rpc([=]() {
// callback runs at target after put arrives
compute(dest_gptr, count); 

});

• Performs an RMA put, informs the target upon arrival
• RPC callback to inform the target and/or process the data
• Implementation can transfer both the RMA and RPC with 

a single network-level operation in many cases
• Couples data transfer w/sync like message-passing 
• BUT can deliver payload using RDMA without rendezvous 

(because initiator specified destination address)

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov



59

Memory Kinds
Supercomputers are becoming increasingly 
heterogeneous in compute, memory, storage

UPC++ memory kinds enable sending data between 
different kinds of memory/storage media
API is meant to be flexible, but initially supports memory 
copies between remote or local CUDA GPU devices 
and remote or local host memory
global_ptr<int, memory_kind::cuda_device> src = ...;
global_ptr<int, memory_kind::cuda_device> dst = ...;

copy(src, dst, N).wait();

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov

Can point to memory on 
a local or remote GPU
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Non-contiguous RMA

We’ve seen contiguous RMA
• Single-element
• Dense 1-d array

Some apps need sparse RMA access
• Could do this with loops and fine-grained access
• More efficient to pack data and aggregate communication
• We can automate and streamline the pack/unpack

Three different APIs to balance metadata size vs. generality
• Irregular: iovec-style iterators over pointer+length
• Regular: iterators over pointers with a fixed length
• Strided: N-d dense array copies + transposes

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov

data copy

extent[0]=4

extent[1]=3 extent[2]=2

stride[1]

stride[2]

Element type T =    
Dim = 3

src_base
dst_base

stride[0]
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UPC++ additional resources
Website: upcxx.lbl.gov includes the following content:

• Open-source/free library implementation
• Portable from laptops to supercomputers

• Tutorial resources at upcxx.lbl.gov/training
• UPC++ Programmer’s Guide
• Videos and exercises from past tutorials

• Formal UPC++ specification
• All the semantic details about all the features

• Links to various UPC++ publications

• Links to optional extensions and partner projects

• Contact information for support

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov

https://upcxx.lbl.gov/
https://upcxx.lbl.gov/training
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Application case studies
UPC++ has been used successfully in several 
applications to improve programmer productivity and 
runtime performance
We discuss two specific applications:
• symPack, a solver for sparse

symmetric matrices
• MetaHipMer, a genome assembler

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov
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Sparse multifrontal direct linear solver
Sparse matrix factorizations have low computational intensity 
and irregular communication patterns
Extend-add operation is an important building block for 
multifrontal sparse solvers
Sparse factors are organized as a
hierarchy of condensed matrices called
frontal matrices
Four sub-matrices:

factors + contribution block
Code available as part of upcxx-extras
BitBucket git repo

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov

Details in IPDPS’19 paper:
Bachan, Baden, Hofmeyr, Jacquelin, Kamil, Bonachea, Hargrove, Ahmed.
"UPC++: A High-Performance Communication Framework for Asynchronous Computation",
https://doi.org/10.25344/S4V88H

https://doi.org/10.25344/S4V88H
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Implementation of the extend-add operation
Data is binned into per-destination contiguous buffers

Traditional MPI implementation uses MPI_Alltoallv

• Variants: MPI_Isend/MPI_Irecv +
MPI_Waitall/MPI_Waitany

UPC++ Implementation:

• RPC sends child contributions to the
parent using a UPC++ view

• RPC callback compares indices and
accumulates contributions on the
target

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov

Details in IPDPS’19 https://doi.org/10.25344/S4V88H

https://doi.org/10.25344/S4V88H
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UPC++ improves sparse solver performance
Experiments done on Cori Haswell

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov

Details in IPDPS’19 https://doi.org/10.25344/S4V88H
Assembly trees / frontal matrices 

extracted from STRUMPACK
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UPC++ improves sparse solver performance
Experiments done on Cori KNL

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov

Details in IPDPS’19 https://doi.org/10.25344/S4V88H
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extracted from STRUMPACK

Max speedup over 
mpi_alltoallv: 1.63x
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symPACK: a solver for sparse symmetric matrices

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov

1) Data is produced
2) Notifications using upcxx::rpc_ff

● Enqueues a upcxx::global_ptr to the data
● Manages dependency count

3) When all data is available, task is moved in the data available task list
4) Data is moved using upcxx::rget

● Once transfer is complete, update dependency count
5) When everything has been transferred, task is moved to the

ready tasks list
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N=512,000   
nnz(L)=1,697,433,600

N=1,391,349   
nnz(L)=2,818,053,492

Matrix is distributed by supernodes
• 1D distribution

• Balances flops, memory
• Lacks strong scalability

• New 2D distribution (to appear)
• Explicit load balancing, not regular 

block cyclic mapping
• Balances flops, memory
• Finer granularity task graph

Strong scalability on Cori Haswell:
• Up to 3x speedup for Serena 
• Up to 2.5x speedup for 

DG_Phosphorene_14000
UPC++ enables the finer granularity 
task graph to be fully exploited
• Better strong scalability

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov

symPACK: a solver for sparse symmetric matrices

Work and results by Mathias Jacquelin,
funded by SciDAC CompCat and FASTMath
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symPACK strong scaling experiment
NERSC Cori Haswell

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov
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symPACK strong scaling experiment
NERSC Cori Haswell

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov
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UPC++ provides productivity + performance 
for sparse solvers

Productivity

• RPC allowed very simple notify-get system

• Interoperates with MPI

• Non-blocking API

Reduced communication costs

• Low overhead reduces the cost of fine-grained communication

• Overlap communication via asynchrony and futures

• Increased efficiency in the extend-add operation

• Outperform state-of-the-art sparse symmetric solvers

http://upcxx.lbl.gov

http://sympack.org

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov

http://upcxx.lbl.gov/
http://sympack.org/
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ExaBiome / MetaHipMer distributed hashmap
Memory-limited graph stages
• k-mers, contig, scaffolding

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov

Optimized graph construction
• Larger messages for better network 

bandwidth
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ExaBiome / MetaHipMer distributed hashmap
Memory-limited graph stages
• k-mers, contig, scaffolding

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov

Optimized graph construction
• Larger messages for better network 

bandwidth

Large message, 
high bandwidth

Small message, 
low bandwidth
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ExaBiome / MetaHipMer distributed hashmap
Aggregated store

• Buffer calls to dist_hash::update(key,value)

• Send fewer but larger messages to target rank

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov
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API - AggrStore<FuncDistObject, T>
struct FunctionObject {
void operator()(T &elem) { /* do something */ }

};
using FuncDistObject = upcxx::dist_object<FunctionObject>;

// AggrStore holds a reference to func
AggrStore(FuncDistObj &func); 
~AggrStore() { clear(); }

// clear all internal memory
void clear();

// allocate all internal memory for buffering
void set_size(size_t max_bytes);

// add one element to the AggrStore
void update(intrank_t target_rank, T &elem);

// flush and quiesse
void flush_updates();

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov
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MetaHipMer utilized UPC++ features
C++ templates - efficient code reuse
dist_object - as a templated functor & data store

Asynchronous all-to-all exchange - not batch sync

• 5x improvement at scale over previous MPI 
implementation

Future-chained workflow

• Multi-level RPC messages

• Send by node, then by process

Promise & fulfill - for a fixed-size memory footprint
• Issue promise when full, fulfill when available

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov
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UPC++ additional resources
Website: upcxx.lbl.gov includes the following content:

• Open-source/free library implementation
• Portable from laptops to supercomputers

• Tutorial resources at upcxx.lbl.gov/training
• UPC++ Programmer’s Guide
• Videos and exercises from past tutorials

• Formal UPC++ specification
• All the semantic details about all the features

• Links to various UPC++ publications

• Links to optional extensions and partner projects

• Contact information for support

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov

https://upcxx.lbl.gov/
https://upcxx.lbl.gov/training

