
UPC++: A PGAS/RPC Library 
for Asynchronous Exascale

Communication in C++
Amir Kamil
upcxx.lbl.gov

pagoda@lbl.gov
https://upcxx.lbl.gov/training

Computational Research Division
Lawrence Berkeley National Laboratory

Berkeley, California, USA



2

Acknowledgements
This presentation includes the efforts of the following past and 
present members of the Pagoda group and collaborators: 

• Hadia Ahmed, John Bachan, Scott B. Baden, Dan Bonachea, 
Rob Egan, Max Grossman, Paul H. Hargrove, Steven Hofmeyr, 
Mathias Jacquelin, Amir Kamil, Erich Strohmaier, Daniel Waters, 
Katherine Yelick

This research was supported by the Exascale Computing Project 
(17-SC-20-SC), a collaborative effort of two U.S. Department of 
Energy organizations (Office of Science and the National Nuclear 
Security Administration) responsible for the planning and preparation 
of a capable exascale ecosystem, including software, applications, 
hardware, advanced system engineering and early testbed
platforms, in support of the nation’s exascale computing imperative.
This research used resources of the National Energy Research 
Scientific Computing Center (NERSC), a U.S. Department of Energy 
Office of Science User Facility operated under Contract No. DE-
AC02-05CH11231.

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov



3

Some motivating applications
PGAS well-suited to applications that
use irregular data structures
• Sparse matrix methods
• Adaptive mesh refinement
• Graph problems, distributed hash tables

Processes may send different amounts
of information to other processes
The amount can be data dependent, dynamic

Courtesy of 
Jim Demmel

http://tinyurl.com/yxqarenl

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov



4

The impact of fine-grained communication

The first exascale systems will appear soon

• In the USA: Frontier (2021) https://tinyurl.com/y2ptx3th

Some apps employ fine-grained communication

• Messages are short, so the overhead term dominates 
communication time   a + F(b-1¥ , n)

• They are latency-limited, and latency is only improving slowly

Memory per core is dropping, an effect that can force more 
frequent fine-grained communication

We need to reduce communication costs

• Asynchronous communication and execution are critical
• But we also need to keep overhead costs to a minimum

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov

https://tinyurl.com/y2ptx3th


5

Reducing communication overhead
What if we could let each process directly access one 
another’s memory via a global pointer?

• We don’t need to match sends to receives
• We don’t need to guarantee message ordering
• There are no unexpected messages

Communication is one-sided
• All metadata provided by the initiator, rather than split 

between sender and receiver

Looks like shared memory
Observation: modern network hardware provides the 
capability to directly access memory on another node:
Remote Direct Memory Access (RDMA) 

• Can be compiled to load/store if source and target share 
physical memory

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov



6

RMA performance: GASNet-EX vs MPI-3
Three different MPI
implementations

Two distinct network
hardware types

On these four systems
the performance of
GASNet-EX meets or
exceeds MPI RMA:

• 8-byte Put latency 6% to 55% better
• 8-byte Get latency 5% to 45% better
• Better flood bandwidth efficiency, typically saturating at ½ or 

¼ the transfer size (next slide)

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

Cori-I Cori-II Summit Gomez

R
M

A 
O

pe
ra

tio
n 

La
te

nc
y 

(µ
s)

MPI RMA Get
GASNet-EX Get
MPI RMA Put
GASNet-EX Put

8-Byte RMA Operation Latency (one-at-a-time)

D
O

W
N

 IS
 G

O
O

D

GASNet-EX results from v2018.9.0 and v2019.6.0.    MPI results from Intel MPI Benchmarks v2018.1.
For more details see Languages and Compilers for Parallel Computing (LCPC'18).  https://doi.org/10.25344/S4QP4W
More recent results on Summit here replace the paper’s results from the older Summitdev. 



7

RMA performance: GASNet-EX vs MPI-3

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov

 0

 5

 10

 15

 20

 25

256  B 1kiB 4kiB 16kiB 64kiB 256kiB 1MiB 4MiB

Ba
nd

w
id

th
 (G

iB
/s

)

Transfer Size

Summit: IBM POWER9, Dual-Rail EDR InfiniBand, IBM Spectrum MPI

GASNet-EX Put
MPI RMA Put
GASNet-EX Get
MPI RMA Get
MPI ISend/IRecv

 0

 2

 4

 6

 8

 10

 12

256  B 1kiB 4kiB 16kiB 64kiB 256kiB 1MiB 4MiB

Ba
nd

w
id

th
 (G

iB
/s

)

Transfer Size

Gomez: Haswell-EX, InfiniBand, MVAPICH2

GASNet-EX Put
MPI RMA Put
GASNet-EX Get
MPI RMA Get
MPI ISend/IRecv

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

256  B 1kiB 4kiB 16kiB 64kiB 256kiB 1MiB 4MiB

Ba
nd

w
id

th
 (G

iB
/s

)

Transfer Size

Cori-II: Xeon Phi, Aries, Cray MPI

GASNet-EX Put
MPI RMA Put
GASNet-EX Get
MPI RMA Get
MPI ISend/IRecv

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

256  B 1kiB 4kiB 16kiB 64kiB 256kiB 1MiB 4MiB

Ba
nd

w
id

th
 (G

iB
/s

)

Transfer Size

Cori-I: Haswell, Aries, Cray MPI

GASNet-EX Put
MPI RMA Put
GASNet-EX Get
MPI RMA Get
MPI ISend/IRecv

Uni-directional Flood Bandwidth (many-at-a-time)

U
P 

IS
 G

O
O

D



8

RMA microbenchmarks

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov

Round-trip Put Latency (lower is better) Flood Put Bandwidth (higher is better)

Experiments on NERSC Cori:
l Cray XC40 system

Two processor partitions: 
l Intel Haswell (2 x 16 cores per node)
l Intel KNL (1 x 68 cores per node)

Data collected on Cori Haswell (https://doi.org/10.25344/S4V88H)

https://doi.org/10.25344/S4V88H


9

The PGAS model
Partitioned Global Address Space

• Support global visibility of storage, leveraging the network’s 
RDMA capability

• Distinguish private and shared memory
• Separate synchronization from data movement

Languages that support PGAS: UPC, Titanium, Chapel, 
X10, Co-Array Fortran (Fortran 2008)
Libraries that support PGAS: Habanero UPC++, 
OpenSHMEM, Co-Array C++, Global Arrays, DASH, 
MPI-RMA
This presentation is about UPC++, a C++ library 
developed at Lawrence Berkeley National Laboratory

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov



10

Execution model: SPMD
Like MPI, UPC++ uses a SPMD model of execution, 
where a fixed number of processes run the same program
int main() {

upcxx::init();
cout << "Hello from " << upcxx::rank_me() << endl;
upcxx::barrier();
if (upcxx::rank_me() == 0) cout << "Done." << endl;
upcxx::finalize();

}

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov

Program Start

Barrier

Print Print Print Print Print Print Print Print

Program End

Print



11

A Partitioned Global Address Space
Global Address Space

• Processes may read and write shared segments of memory
• Global address space = union of all the shared segments

Partitioned
• Global pointers to objects in shared memory have an affinity to 

a particular process
• Explicitly managed by the programmer to optimize for locality
• In conventional shared memory, pointers do not encode affinity

Rank 0 Rank 1 Rank 2 Rank 3

Private 
Segment

Shared 
Segment

Private 
Segment

Shared 
Segment

Private 
Segment

Shared 
Segment

Private 
Segment

Shared 
SegmentGlobal address space

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov

Process 0 Process 1 Process 2 Process 3

Private memory



12

Global vs. raw pointers
We can create data structures with embedded global 
pointers

Raw C++ pointers can be used on a process to refer to 
objects in the global address space that have affinity to 
that process

Process 0 Process 1 Process 2 Process 3

Global 
address space

Private
memory

x: 1
p: 

x: 5
p: 

x: 7
p:

l: 

g: 

l: 

g: 

l: 

g: 

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov



13

What is a global pointer?
A global pointer carries both an address and the affinity 
for the data
Parameterized by the type of object it points to, as with 
a C++ (raw) pointer: e.g. global_ptr<double>

The affinity identifies the process that created the object

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov

Process 0 Process 1 Process 2 Process 3

Global 
address space

Private
memory

x: 1
p: 

x: 5
p: 

x: 7
p:

l: 

g: 

l: 

g: 

l: 

g: 



14

How does UPC++ deliver the PGAS model?
A “Compiler-Free,” library approach

• UPC++ leverages C++ standards,
needs only a standard C++ compiler

Relies on GASNet-EX for low-overhead communication
• Efficiently utilizes the network, whatever that network may be, 

including any special-purpose offload support
• Active messages efficiently support Remote Procedure Calls 

(RPCs), which are expensive to implement in other models
• Enables portability (laptops to supercomputers)

Designed to allow interoperation with existing 
programming systems

• Same process model as MPI, enabling hybrid applications
• OpenMP and CUDA can be mixed with UPC++ in the same 

way as MPI+X
Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov



15

What does UPC++ offer?
Asynchronous behavior based on futures/promises

• RMA: Low overhead, zero-copy, one-sided communication. 
Get/put to a remote location in another address space

• RPC: Remote Procedure Call: move computation to the data

Design principles encourage performant program design
• All communication is syntactically explicit

• All communication is asynchronous: futures and promises

• Scalable data structures that avoid unnecessary replication

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov



16

Asynchronous communication

By default, all communication operations are split-phased 
• Initiate operation
• Wait for completion 

A future holds a value and a state: ready/not-ready

global_ptr<int> gptr1 = ...;
future<int> f1 = rget(gptr1); 
// unrelated work...
int t1 = f1.wait();

Wait returns the result 
when the rget completes

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov

nic

cpu

nic

cpu

123

123

SH
AR

ED
PR

IV
AT

E



17

Execute a function on another process, sending 
arguments and returning an optional result 
1. Initiator injects the RPC to the target process 
2. Target process executes fn(arg1, arg2) at some later time 

determined at the target
3. Result becomes available to the initiator via the future
Many RPCs can be active simultaneously, hiding latency

Remote procedure call

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov

upcxx::rpc(target, fn, arg1, arg2) 

● ● ●

Execute fn(arg1, arg2) on process target

fn

1

future

2

Result available via a future3

Process 
(initiator)

Process 
(target)



18

Example: Hello world
#include <iostream>
#include <upcxx/upcxx.hpp>
using namespace std;

int main() {
upcxx::init();
cout << "Hello world from process "

<< upcxx::rank_me()
<< " out of " << upcxx::rank_n()
<< " processes" << endl;

upcxx::finalize();
} 

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov

Set up UPC++ 
runtime

Close down 
UPC++ runtime

Hello world from process 0 out of 4 processes
Hello world from process 2 out of 4 processes
Hello world from process 3 out of 4 processes
Hello world from process 1 out of 4 processes



19

Compiling and running a UPC++ program
UPC++ provides tools for ease-of-use
Compiler wrapper:
$ upcxx -g hello-world.cpp -o hello-world.exe

• Invokes a normal backend C++ compiler with the 
appropriate arguments (such as –I, -L, -l).

• We also provide other mechanisms for compiling
(upcxx-meta, CMake package).

Launch wrapper:
$ upcxx-run -np 4 ./hello-world.exe

• Arguments similar to other familiar tools

• We also support launch using platform-specific tools, such 
as srun, jsrun and aprun.

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov



20

Remote Procedure Calls (RPC)
Let’s say that process 0 performs this RPC

int area(int a, int b) { return a * b; }

int rect_area = rpc(p, area, a, b).wait();

The target process p will execute the handler function 
area() at some later time determined at the target

The result will be returned to process 0

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov

Process p

upcxx::rpc(p,
area,
a, b) 

● ● ●

Execute area(a,b)
on process p

area

1 2

Result returned 
to process 0

3

{"area", a, b} 

Process 0

rect_area



21

Hello world with RPC (synchronous)
We can rewrite hello world by having each process 
launch an RPC to process 0
int main() {
upcxx::init();
for (int i = 0; i < upcxx::rank_n(); ++i) {
if (upcxx::rank_me() == i) {

upcxx::rpc(0, [](int rank) {
cout << "Hello from process " << rank << endl;

}, upcxx::rank_me()).wait();
}

upcxx::barrier();
}
upcxx::finalize();

} 

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov

C++ lambda function

Wait for RPC to complete 
before continuing

Rank number is the 
argument to the lambda

Barrier prevents any process from 
proceeding until all have reached it



22

Futures
RPC returns a future object, which represents a 
computation that may or may not be complete
Calling wait() on a future causes the current process 
to wait until the future is ready

upcxx::future<> fut =
upcxx::rpc(0, [](int rank) {

cout << "Hello from process "
<< rank << endl;

}, upcxx::rank_me());

fut.wait();

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov

Empty future type that 
does not hold a value, 

but still tracks readiness



23

What is a future?
A future is a handle to an asynchronous operation, 
which holds:

• The status of the operation
• The results (zero or more values) of the completed 

operation

The future is not the result itself, but a proxy for it
The wait() method blocks until a future is ready and 
returns the result

upcxx::future<int> fut = /* ... */;
int result = fut.wait();

The then() method can be
used instead to attach a
callback to the future

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov

future

op

"async_op"

ready true

data 3



24

Overlapping communication
Rather than waiting on each RPC to complete, we can 
launch every RPC and then wait for each to complete
vector<upcxx::future<int>> results;
for (int i = 0; i < upcxx::rank_n(); ++i) {
upcxx::future<int> fut = upcxx::rpc(i, []() {
return upcxx::rank_me();

}));
results.push_back(fut);

}

for (auto fut : results) {
cout << fut.wait() << endl;

}

We'll see better ways to wait on groups of asynchronous 
operations later

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov



25

1D 3-point Jacobi in UPC++
Iterative algorithm that updates each grid cell as a 
function of its old value and those of its immediate 
neighbors

Out-of-place computation requires two grids
for (long i = 1; i < N - 1; ++i)

new_grid[i] = 0.25 * (old_grid[i - 1] +
2 * old_grid[i] +
old_grid[i + 1]);

Sample data distribution of each grid 
(12 domain elements, 3 ranks, N=12/3+2=6):

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov

1 2 3 412 5
Process 0

5 6 7 84 9
Process 1

9 10 11 128 1
Process 2

Ghost cells
Periodic 
boundary

Local grid size



26

Jacobi boundary exchange (version 1)
RPCs can refer to static variables, so we use them to 
keep track of the grids
double *old_grid, *new_grid;

double get_cell(long i) {
return old_grid[i];

}

...

double val = rpc(right, get_cell, 1).wait();

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov

1 2 3 412 5
Process 0

5 6 7 84 9
Process 1

9 10 11 128 1
Process 2

Ghost cells
Periodic 
boundary

* We will generally elide the upcxx:: qualifier from here on out.



27

Jacobi computation (version 1)
We can use RPC to communicate boundary cells
future<double> left_ghost = rpc(left, get_cell, N-2);
future<double> right_ghost = rpc(right, get_cell, 1);

for (long i = 2; i < N - 2; ++i)
new_grid[i] = 0.25 *
(old_grid[i-1] + 2*old_grid[i] + old_grid[i+1]);

new_grid[1] = 0.25 *
(left_ghost.wait() + 2*old_grid[1] + old_grid[2]);

new_grid[N-2] = 0.25 *
(old_grid[N-3] + 2*old_grid[N-2] + right_ghost.wait());

std::swap(old_grid, new_grid);

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov

5 6 7 84 9
Process 1



28

Race conditions
Since processes are unsynchronized, it is possible that 
a process can move on to later iterations while its 
neighbors are still on previous ones
• One-sided communication decouples data movement 

from synchronization for better performance

A straggler in iteration 𝑖 could obtain data from a 
neighbor that is computing iteration 𝑖 + 2, resulting in 
incorrect values

This behavior is unpredictable and may not be observed 
in testing

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov

Iteration 𝑖 + 2 Iteration 𝑖Iteration 𝑖
k k+1process k-1



29

Naïve solution: barriers
Barriers at the end of each iteration provide sufficient 
synchronization
future<double> left_ghost = rpc(left, get_cell, N-2);
future<double> right_ghost = rpc(right, get_cell, 1);

for (long i = 2; i < N - 2; ++i)
/* ... */;

new_grid[1] = 0.25 *
(left_ghost.wait() + 2*old_grid[1] + old_grid[2]);

new_grid[N-2] = 0.25 *
(old_grid[N-3] + 2*old_grid[N-2] + right_ghost.wait());

barrier();
std::swap(old_grid, new_grid);
barrier();

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov

Barriers around the swap 
ensure that incoming RPCs in 
both this iteration and the next 

one use the correct grids



30

One-sided put and get (RMA)
UPC++ provides APIs for one-sided puts and gets
Implemented using network RDMA if available – most 
efficient way to move large payloads
• Scalar put and get:

global_ptr<int> remote = /* ... */;
future<int> fut1 = rget(remote);
int result = fut1.wait();
future<> fut2 = rput(42, remote);
fut2.wait();

• Vector put and get:
int *local = /* ... */;
future<> fut3 = rget(remote, local, count);
fut3.wait();
future<> fut4 = rput(local, remote, count);
fut4.wait();

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov



31

Jacobi with ghost cells
Each process maintains ghost cells for data from 
neighboring processes

Assuming we have global pointers to our neighbor grids, 
we can do a one-sided put or get to communicate the 
ghost data:
double *my_grid;
global_ptr<double> left_grid_gptr, right_grid_gptr;
my_grid[0] = rget(left_grid_gptr + N - 2).wait();
my_grid[N-1] = rget(right_grid_gptr + 1).wait();

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov

get from rightget from left

1 2 3 412 5
Rank 0

5 6 7 84 9
Rank 1

9 10 11 128 1
Rank 2

my_grid right_grid_gptrleft_grid_gptr



32

Storage management
Memory must be allocated in the shared segment in 
order to be accessible through RMA
global_ptr<double> old_grid_gptr, new_grid_gptr;
...
old_grid_gptr = new_array<double>(N);
new_grid_gptr = new_array<double>(N);

These are not collective calls - each process allocates 
its own memory, and there is no synchronization

• Explicit synchronization may be required before 
retrieving another process's pointers with an RPC

UPC++ does not maintain a symmetric heap
• The pointers must be communicated to other 

processes before they can access the data
Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov



33

Downcasting global pointers
If a process has direct load/store access to the memory 
referenced by a global pointer, it can downcast the global 
pointer into a raw pointer with local()
global_ptr<double> old_grid_gptr, new_grid_gptr;
double *old_grid, *new_grid;

void make_grids(size_t N) {
old_grid_gptr = new_array<double>(N);
new_grid_gptr = new_array<double>(N);
old_grid = old_grid_gptr.local();
new_grid = new_grid_gptr.local();

}

Later, we will see how downcasting can be used with 
processes that share physical memory

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov

Can be accessed 
by an RPC



34

Jacobi RMA with gets
Each process obtains boundary data from its neighbors 
with rget()
future<> left_get = rget(left_old_grid + N - 2,

old_grid, 1);
future<> right_get = rget(right_old_grid + 1,

old_grid + N - 1, 1);

for (long i = 2; i < N - 2; ++i)
/* ... */;

left_get.wait();
new_grid[1] = 0.25 *
(old_grid[0] + 2*old_grid[1] + old_grid[2]);

right_get.wait();
new_grid[N-2] = 0.25 *
(old_grid[N-3] + 2*old_grid[N-2] + old_grid[N-1]);

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov



35

Callbacks
The then() method attaches a callback to a future
• The callback will be invoked after the future is ready, with 

the future’s values as its arguments
future<> left_update =

rget(left_old_grid + N - 2, old_grid, 1)
.then([]() {
new_grid[1] = 0.25 *
(old_grid[0] + 2*old_grid[1] + old_grid[2]);

});

future<> right_update =
rget(right_old_grid + N - 2)
.then([](double value) {
new_grid[N-2] = 0.25 *
(old_grid[N-3] + 2*old_grid[N-2] + value);

});

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov

Vector get does not produce a value

Scalar get produces a value



36

Chaining callbacks
Callbacks can be chained through calls to then()
global_ptr<int> source = /* ... */;
global_ptr<double> target = /* ... */;
future<int> fut1 = rget(source);
future<double> fut2 = fut1.then([](int value) {
return std::log(value);

});
future<> fut3 =
fut2.then([target](double value) {
return rput(value, target);

});
fut3.wait();

This code retrieves an integer from a remote location, 
computes its log, and then sends it to a different remote 
location

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov

rget

then({log(value)})

then({rput(value,target)})



37

Conjoining futures
Multiple futures can be conjoined with when_all() into a 
single future that encompasses all their results

Can be used to specify multiple dependencies for a callback
global_ptr<int>    source1 = /* ... */;
global_ptr<double> source2 = /* ... */;
global_ptr<double> target = /* ... */;
future<int>    fut1 = rget(source1);
future<double> fut2 = rget(source2);
future<int, double> both =

when_all(fut1, fut2);
future<> fut3 =

both.then([target](int a, double b) {
return rput(a * b, target);

});
fut3.wait();

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov

rget

then({rput(a*b,target)})

rget

when_all



38

Jacobi RMA with puts and conjoining
Each process sends boundary data to its neighbors with 
rput(), and the resulting futures are conjoined
future<> puts = when_all(

rput(old_grid[1], left_old_grid + N - 1),
rput(old_grid[N-2], right_old_grid));

for (long i = 2; i < N - 2; ++i)
/* ... */;

puts.wait();
barrier();

new_grid[1] = 0.25 *
(old_grid[0] + 2*old_grid[1] + old_grid[2]);

new_grid[N-2] = 0.25 *
(old_grid[N-3] + 2*old_grid[N-2] + old_grid[N-1]);

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov

Ensure outgoing puts have completed

Ensure incoming puts have completed



39

Distributed objects
A distributed object is an object that is partitioned over a set 
of processes
dist_object<T>(T value, team &team = world());

The processes share a universal name for the object, but 
each has its own local value

Similar in concept to a co-array, but with advantages
• Scalable metadata representation
• Does not require a symmetric heap
• No communication to set up or tear down
• Can be constructed over teams

Process 0 Process p

● ● ●

Process 1

dist_object<int>
all_nums(rand());

42
all_nums

3
all_nums

8
all_nums



40

Bootstrapping the communication
Since allocation is not collective, we must arrange for 
each process to obtain pointers to its neighbors' grids

We can use a distributed object to do so
using ptr_pair = std::pair<global_ptr<double>,

global_ptr<double>>;
dist_object<ptr_pair> dobj({old_grid_gptr,

new_grid_gptr});
std::tie(right_old_grid, right_new_grid) =

dobj.fetch(right).wait();
// equivalent to the statement above:
//   ptr_pair result = dobj.fetch(right).wait();
//   right_old_grid = result.first;
//   right_new_grid = result.second;

barrier();

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov

Ensures distributed objects are not destructed 
until all ranks have completed their fetches



41

Implicit synchronization
The future returned by fetch() is not readied until the 
distributed object has been constructed on the target, 
allowing its value to be read
• This allows us to avoid explicit synchronization 

between the creation and the fetch()
using ptr_pair = std::pair<global_ptr<double>,

global_ptr<double>>;
dist_object<ptr_pair> dobj({old_grid_gptr,

new_grid_gptr});

std::tie(right_old_grid, right_new_grid) =
dobj.fetch(right).wait();

barrier();

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov

The result of fetch() is 
obtained after the 

dist_object is constructed 
on the target



42

Distributed hash table (DHT)
Distributed analog of std::unordered_map
• Supports insertion and lookup

• We will assume the key and value types are string

• Represented as a collection of individual unordered maps 
across processes

• We use RPC to move hash-table operations to the owner

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov

Process 0 Process p

Hash table partition: a
std::unordered_map
per rank

● ● ●

key val



43

DHT data representation
A distributed object represents the directory of 
unordered maps
class DistrMap {

using dobj_map_t =
dist_object<unordered_map<string, string>>;

// Construct empty map
dobj_map_t local_map{{}};

int get_target_rank(const string &key) {
return std::hash<string>{}(key) % rank_n();

} 
};

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov

Computes owner for the given key



44

DHT insertion
Insertion initiates an RPC to the owner and returns a 
future that represents completion of the insert
future<> insert(const string &key,

const string &val) {
return rpc(get_target_rank(key),

[](dobj_map_t &lmap, const string &key,
const string &val) {

(*lmap)[key] = val;
}, local_map, key, val);

}

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov

Key and value passed 
as arguments to the 

remote function

UPC++ uses the 
distributed object's 
universal name to 
look it up on the 
remote process

Process 0 Process p

● ● ●

key val



45

DHT find
Find also uses RPC and returns a future
future<string> find(const string &key) {

return rpc(get_target_rank(key),
[](dobj_map_t &lmap, const string &key) {

if (lmap->count(key) == 0)
return string("NOT FOUND");

else
return (*lmap)[key];

}, local_map, key);
}

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov

Process 0 Process p

● ● ●

key val



46

Optimized DHT scales well
Excellent weak scaling up to 32K cores [IPDPS19]

• Randomly distributed keys

RPC and RMA lead to simplified and more efficient design
• Key insertion and storage allocation handled at target
• Without RPC, complex updates would require explicit 

synchronization and two-sided coordination

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov

Cori @ NERSC
(KNL) 
Cray XC40



47

Review: high-level overview of an RPC's execution
1. Initiator injects the RPC to the target process 
2. Target process executes fn(arg1, arg2) at some later time 

determined at the target
3. Result becomes available to the initiator via the future
Progress is what ensures that the RPC is eventually 
executed at the target

RPC and progress

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov

upcxx::rpc(target, fn, arg1, arg2) 

● ● ●

Execute fn(arg1, arg2) on process target

fn

1

future

2

Result available via a future3

Process 
(initiator)

Process 
(target)



48

Progress
UPC++ does not spawn hidden threads to advance its 
internal state or track asynchronous communication

This design decision keeps the runtime lightweight and 
simplifies synchronization
• RPCs are run in series on the main thread at the target 

process, avoiding the need for explicit synchronization

The runtime relies on the application to invoke a progress 
function to process incoming RPCs and invoke callbacks

Two levels of progress
• Internal: advances UPC++ internal state but no notification

• User: also notifies the application
• Readying futures, running callbacks, invoking inbound RPCs

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov



49

Invoking user-level progress
The progress() function invokes user-level progress

• So do blocking calls such as wait() and barrier()

A program invokes user-level progress when it expects 
local callbacks and remotely invoked RPCs to execute

• Enables the user to decide how much time to devote 
to progress, and how much to devote to computation

User-level progress executes some number of 
outstanding received RPC functions

• “Some number” could be zero, so may need to 
periodically invoke when expecting callbacks

• Callbacks may not wait on communication, but may 
chain new callbacks on completion of communication

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov



50

Remote atomics
Remote atomic operations are supported with an atomic domain

Atomic domains enhance performance by utilizing hardware 
offload capabilities of modern networks

The domain dictates the data type and operation set
atomic_domain<int64_t> dom({atomic_op::load, atomic_op::min,

atomic_op::fetch_add});

• Support int64_t, int32_t, uint64_t, uint32_t, float, double

Operations are performed on global pointers and are 
asynchronous
global_ptr <int64_t> ptr = new_<int64_t>(0); 
future<int64_t> f = dom.fetch_add(ptr,2,memory_order_relaxed);
int64_t res = f.wait();

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov



51

sender target

RPC’s transparently serialize shipped data
• Conversion between in-memory and byte-stream 

representations
• serialize à transfer à deserialize à invoke

Conversion makes byte copies for C-compatible types
• char, int, double, struct{double;double;}, ...

Serialization works with most STL container types
• vector<int>, string, vector<list<pair<int,float>>>, 

...

• Hidden cost: containers deserialized at target 
(copied) before being passed to RPC function

Serialization

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov



52

Views
UPC++ views permit optimized handling of collections in 
RPCs, without making unnecessary copies

• view<T>: non-owning sequence of elements

When deserialized by an RPC, the view elements can be 
accessed directly from the internal network buffer, rather 
than constructing a container at the target
vector<float> mine = /* ... */;
rpc_ff(dest_rank, [](view<float> theirs) {

for (float scalar : theirs)
/* consume each */

},
make_view(mine)

);

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov

Process elements directly 
from the network buffer

Cheap view construction



53

Shared memory hierarchy and local_team
Memory systems on supercomputers are hierarchical

• Some process pairs are “closer” than others
• Ex: cabinet > switch > node > NUMA domain > socket > core

Traditional PGAS model is a “flat” two-level hierarchy
• “same process” vs “everything else”

UPC++ adds an intermediate hierarchy level
• local_team() – a team corresponding to a physical node
• These processes share a physical memory domain

• Shared segments are CPU load/store accessible across 
processes in the same local_team

Rank 0 Rank 1 Rank 2 Rank 3

Private 
Segment

Shared 
Segment

Private 
Segment

Shared 
Segment

Private 
Segment

Shared 
Segment

Private 
Segment

Shared 
SegmentGlobal address space

Process 0 Process 1 Process 2 Process 3

Node 0 
local_team

Node 1 
local_team



54

Downcasting and shared-memory bypass
Earlier we covered downcasting global pointers
• Converting global_ptr<T> from this process to raw C++ T*

• Also works for global_ptr<T> from any process in local_team()
int l_id = local_team().rank_me();

int l_cnt = local_team().rank_n();

global_ptr<int> gp_data;

if (l_id == 0) gp_data = new_array<int>(l_cnt); 

gp_data = broadcast(gp_data, 0, local_team()).wait();

int *lp_data = gp_data.local();

lp_data[l_id] = l_id;

Rank and count in my local node

Allocate and share 
one array per node

Downcast to get raw C++ ptr to shared array
Direct store to shared array created by node leader

Node 0 
local_team

Node 1 
local_team

Global 
address 
space

Process 0 Process 1

lp_data lp_data
0  l_id 1  l_id

Process 2 Process 3

lp_data lp_data
0  l_id 1  l_id

54



55

Optimizing for shared memory in many-core
local_team() allows optimizing co-located processes 
for physically shared memory in two major ways:

• Memory scalability
• Need only one copy per node for replicated data
• E.g. Cori KNL has 272 hardware threads/node

• Load/store bypass – avoid explicit communication 
overhead for RMA on local shared memory
• Downcast global_ptr to raw C++ pointer
• Avoid extra data copies and communication 

overheads

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov



56

Completion: synchronizing communication
Earlier we synchronized communication using futures:

future<int> fut = rget(remote_gptr);
int result = fut.wait();

This is just the default form of synchronization
• Most communication ops take a defaulted completion argument
• More explicit: rget(gptr, operation_cx::as_future());

• Requests future-based notification of operation completion

Other completion arguments may be passed to modify behavior
• Can trigger different actions upon completion, e.g.:

• Signal a promise, inject an RPC, etc.
• Can even combine several completions for the same operation

Can also detect other “intermediate” completion steps
• For example, source completion of an RMA put or RPC

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov



57

Completion: promises
A promise represents the producer side of an asynchronous 
operation

• A future is the consumer side of the operation

By default, communication operations create an implicit 
promise and return an associated future

Instead, we can create our own promise and register it with 
multiple communication operations
void do_gets(global_ptr<int> *gps, int *dst, int cnt) {

promise<> p;
for (int i = 0; i < cnt; ++i)
rget(gps[i], dst+i, 1, operation_cx::as_promise(p));

future<> fut = p.finalize();
fut.wait();

}

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov

Register an operation 
on a promiseClose registration 

and obtain an 
associated future



58

Completion: "signaling put"
One particularly interesting case of completion:
rput(src_lptr, dest_gptr, count, 

remote_cx::as_rpc([=]() {
// callback runs at target after put arrives
compute(dest_gptr, count); 

});

• Performs an RMA put, informs the target upon arrival
• RPC callback to inform the target and/or process the data
• Implementation can transfer both the RMA and RPC with 

a single network-level operation in many cases
• Couples data transfer w/sync like message-passing 
• BUT can deliver payload using RDMA without rendezvous 

(because initiator specified destination address)

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov



59

Memory Kinds
Supercomputers are becoming increasingly 
heterogeneous in compute, memory, storage

UPC++ memory kinds enable sending data between 
different kinds of memory/storage media
API is meant to be flexible, but initially supports memory 
copies between remote or local CUDA GPU devices 
and remote or local host memory
global_ptr<int, memory_kind::cuda_device> src = ...;
global_ptr<int, memory_kind::cuda_device> dst = ...;

copy(src, dst, N).wait();

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov

Can point to memory on 
a local or remote GPU



60

Non-contiguous RMA

We’ve seen contiguous RMA
• Single-element
• Dense 1-d array

Some apps need sparse RMA access
• Could do this with loops and fine-grained access
• More efficient to pack data and aggregate communication
• We can automate and streamline the pack/unpack

Three different APIs to balance metadata size vs. generality
• Irregular: iovec-style iterators over pointer+length
• Regular: iterators over pointers with a fixed length
• Strided: N-d dense array copies + transposes

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov

data copy

extent[0]=4

extent[1]=3 extent[2]=2

stride[1]

stride[2]

Element type T =    
Dim = 3

src_base
dst_base

stride[0]



61

UPC++ additional resources
Website: upcxx.lbl.gov includes the following content:

• Open-source/free library implementation
• Portable from laptops to supercomputers

• Tutorial resources at upcxx.lbl.gov/training
• UPC++ Programmer’s Guide
• Videos and exercises from past tutorials

• Formal UPC++ specification
• All the semantic details about all the features

• Links to various UPC++ publications

• Links to optional extensions and partner projects

• Contact information for support

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov

https://upcxx.lbl.gov/
https://upcxx.lbl.gov/training


62

Application case studies
UPC++ has been used successfully in several 
applications to improve programmer productivity and 
runtime performance
We discuss two specific applications:
• symPack, a solver for sparse

symmetric matrices
• MetaHipMer, a genome assembler

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov



63

Sparse multifrontal direct linear solver
Sparse matrix factorizations have low computational intensity 
and irregular communication patterns
Extend-add operation is an important building block for 
multifrontal sparse solvers
Sparse factors are organized as a
hierarchy of condensed matrices called
frontal matrices
Four sub-matrices:

factors + contribution block
Code available as part of upcxx-extras
BitBucket git repo

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov

Details in IPDPS’19 paper:
Bachan, Baden, Hofmeyr, Jacquelin, Kamil, Bonachea, Hargrove, Ahmed.
"UPC++: A High-Performance Communication Framework for Asynchronous Computation",
https://doi.org/10.25344/S4V88H

https://doi.org/10.25344/S4V88H


64

Implementation of the extend-add operation
Data is binned into per-destination contiguous buffers

Traditional MPI implementation uses MPI_Alltoallv

• Variants: MPI_Isend/MPI_Irecv +
MPI_Waitall/MPI_Waitany

UPC++ Implementation:

• RPC sends child contributions to the
parent using a UPC++ view

• RPC callback compares indices and
accumulates contributions on the
target

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov

Details in IPDPS’19 https://doi.org/10.25344/S4V88H

https://doi.org/10.25344/S4V88H


65

UPC++ improves sparse solver performance
Experiments done on Cori Haswell

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov

Details in IPDPS’19 https://doi.org/10.25344/S4V88H
Assembly trees / frontal matrices 

extracted from STRUMPACK

D
ow

n 
is

 g
oo

d Max speedup over 
mpi_alltoallv: 1.79x

https://doi.org/10.25344/S4V88H


66

UPC++ improves sparse solver performance
Experiments done on Cori KNL

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov

Details in IPDPS’19 https://doi.org/10.25344/S4V88H

D
ow

n 
is

 g
oo

d

Assembly trees / frontal matrices 
extracted from STRUMPACK

Max speedup over 
mpi_alltoallv: 1.63x

https://doi.org/10.25344/S4V88H


67

symPACK: a solver for sparse symmetric matrices

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov

1) Data is produced
2) Notifications using upcxx::rpc_ff

● Enqueues a upcxx::global_ptr to the data
● Manages dependency count

3) When all data is available, task is moved in the data available task list
4) Data is moved using upcxx::rget

● Once transfer is complete, update dependency count
5) When everything has been transferred, task is moved to the

ready tasks list



68

N=512,000   
nnz(L)=1,697,433,600

N=1,391,349   
nnz(L)=2,818,053,492

Matrix is distributed by supernodes
• 1D distribution

• Balances flops, memory
• Lacks strong scalability

• New 2D distribution (to appear)
• Explicit load balancing, not regular 

block cyclic mapping
• Balances flops, memory
• Finer granularity task graph

Strong scalability on Cori Haswell:
• Up to 3x speedup for Serena 
• Up to 2.5x speedup for 

DG_Phosphorene_14000
UPC++ enables the finer granularity 
task graph to be fully exploited
• Better strong scalability

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov

symPACK: a solver for sparse symmetric matrices

Work and results by Mathias Jacquelin,
funded by SciDAC CompCat and FASTMath

D
ow

n 
is

 g
oo

d
D

ow
n 

is
 g

oo
d

3x 
speedup

2.5x 
speedup



69

symPACK strong scaling experiment
NERSC Cori Haswell

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov

Processes
N=1,564,794    nnz(L)=1,574,541,576

32 64 12
8

25
6

51
2

10
24

2

4

6

8

10

Ti
m

e 
(s

)
Run times for Flan_1565

pastix_5_2_3
symPACK_1D
symPACK_2D

Max speedup: 1.85x

D
ow

n 
is

 g
oo

d



70

symPACK strong scaling experiment
NERSC Cori Haswell

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov

Processes
N=943,695    nnz(L)=1,261,342,196

32 64 12
8

25
6

51
2

10
24

4

6

8

10

12

14

16

18
Ti

m
e 

(s
)

Run times for audikw_1
pastix_5_2_3
symPACK_1D
symPACK_2D

D
ow

n 
is

 g
oo

d Max speedup: 2.13x



71

UPC++ provides productivity + performance 
for sparse solvers

Productivity

• RPC allowed very simple notify-get system

• Interoperates with MPI

• Non-blocking API

Reduced communication costs

• Low overhead reduces the cost of fine-grained communication

• Overlap communication via asynchrony and futures

• Increased efficiency in the extend-add operation

• Outperform state-of-the-art sparse symmetric solvers

http://upcxx.lbl.gov

http://sympack.org

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov

http://upcxx.lbl.gov/
http://sympack.org/


72

ExaBiome / MetaHipMer distributed hashmap
Memory-limited graph stages
• k-mers, contig, scaffolding

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov

Optimized graph construction
• Larger messages for better network 

bandwidth



73

ExaBiome / MetaHipMer distributed hashmap
Memory-limited graph stages
• k-mers, contig, scaffolding

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov

Optimized graph construction
• Larger messages for better network 

bandwidth

Large message, 
high bandwidth

Small message, 
low bandwidth



74

ExaBiome / MetaHipMer distributed hashmap
Aggregated store

• Buffer calls to dist_hash::update(key,value)

• Send fewer but larger messages to target rank

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov



75

API - AggrStore<FuncDistObject, T>
struct FunctionObject {
void operator()(T &elem) { /* do something */ }

};
using FuncDistObject = upcxx::dist_object<FunctionObject>;

// AggrStore holds a reference to func
AggrStore(FuncDistObj &func); 
~AggrStore() { clear(); }

// clear all internal memory
void clear();

// allocate all internal memory for buffering
void set_size(size_t max_bytes);

// add one element to the AggrStore
void update(intrank_t target_rank, T &elem);

// flush and quiesse
void flush_updates();

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov



76

MetaHipMer utilized UPC++ features
C++ templates - efficient code reuse
dist_object - as a templated functor & data store

Asynchronous all-to-all exchange - not batch sync

• 5x improvement at scale over previous MPI 
implementation

Future-chained workflow

• Multi-level RPC messages

• Send by node, then by process

Promise & fulfill - for a fixed-size memory footprint
• Issue promise when full, fulfill when available

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov



77

UPC++ additional resources
Website: upcxx.lbl.gov includes the following content:

• Open-source/free library implementation
• Portable from laptops to supercomputers

• Tutorial resources at upcxx.lbl.gov/training
• UPC++ Programmer’s Guide
• Videos and exercises from past tutorials

• Formal UPC++ specification
• All the semantic details about all the features

• Links to various UPC++ publications

• Links to optional extensions and partner projects

• Contact information for support

Amir Kamil / UPC++ / ECP 2020 Tutorial / upcxx.lbl.gov

https://upcxx.lbl.gov/
https://upcxx.lbl.gov/training

