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Hierarchical Machines s

BERKELEY PAR LAB

< Parallel machines have hierarchical structure

Dual Socket AMD
MagnyCours

Quad Socket Intel
Nehalem EX

< Expect this hierarchical trend to continue with
manycore



Application Hierarchy

< Applications can reduce communication costs by
adapting to machine hierarchy

Slow, avoid

0,1,23,4,5
Fast, /
allow

0,1,2

3,4,5
< Applications may also have o,ﬂ‘z; 3,%
iInherent, algorithmic hierarchy
» Recursive algorithms 0|1 3 (|4

= Composition of multiple algorithms
» Hierarchical division of data




Locality is King

<+ Programming model must expose locality in
order to obtain good performance on large-scale
machines

< Possible approaches

» Add locality hints to multithreaded languages or
frameworks (e.g. TBB, OpenMP)

» Spawn tasks at specific locality domains (X10,
Chapel)

= Use static number of threads matched to specific
processing cores (SPMD)



Thesis Statement

Hierarchical constructs can productively and
efficiently express hierarchical algorithms and
exploit the hierarchical structure of parallel
machines.

= Demonstration in Titanium language, a single
program, multiple data (SPMD) dialect of Java



Single Program, Multiple Data =7 &
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< Single program, multiple data (SPMD): fixed set

of threads execute the same program image
public static void (String[] args) {
System.out.printin(""Hello from thread "
+ Ti.thisProc());
Ti.barrier();
it (Tr.thisProc() == 0)
System.out.printin(''Done.");

Program Start

Print Print B Print Print

Barrier

Program End 5



SPMD vs. Data Parallelism

% SPMD has local view execution model

» Fixed set of threads, each of which is explicitly
assigned work
int start = numPerProc * Ti.thisProc();

iInt end = start + numPerProc - 1;
foreach (1 iIn [start:end])

CLil = AL1] + BLi];
< Data parallelism is global view

= Single logical thread of control

= Compiler responsible for distributing work across
computational units
Tforall (1 1n C.domain())

Cli] = A[1] + BlL1];



Global Operations

< Data parallelism allows even simpler expression
of global operations
forall (1 in C.domain())

CLrl = AL1] + BL1];

C = A + B;

< Similar global operations can be built in SPMD
using collective operations



Collective Operations

s
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< Threads synchronize using global collective
operations
Program Start

Barrier

Exchange

< Collective operations also used for global
communication

< Collectives allow easier program analysis



Collective Examples

< Barrier: all threads must reach it before any can

proceed * * * *

< Broadcast: explicit one to all communication

N

<+ Exchange: explicit all to all communication

<+ Reduce: explicit all to one communication

v by
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Algorithm Example: Merge Sort

< Task parallel
int[] (int[] data) {
int len = data.length;
iIT (Ien < threshold)
return sequentialSort(data);
dl = fork mergeSort(data[0:len/2-1]);
d2 = mergeSort(data[len/2:1len-1]);
join di;
return merge(dl, d2);

+
< Cannot fork threads in SPMD
= Must rewrite to execute over fixed set of threads



Algorithm Example: Merge Sort

<+ SPMD
int[] (int[] data, int[] i1ds) {
int len = data.length;
int threads = i1ds.length;
iIT (threads == 1) return sequentialSort(data);
1T (myld 1n 1ds[O:threads/2-1])
dl = mergeSort(dataJO:len/2-1]},
1ds[0:threads/2-1]);
else
d2 = mergeSort(datajlen/2:1en-1],
ids[threads/2:threads-1]);
barrier(ids);
1T (myld == 1ds[0]) return merge(dl, d2);
+



Algorithm Example: Merge Sort

<+ SPMD
int[] (int[] data,nt[] id—— Team
int len = data.length;
int threads = i1ds.length;
iIT (threads == 1) return sequentialSort(data);
1T (myld 1n 1ds[O:threads/2-1])
dl = mergeSort(dataJO:len/2-1]},
1ds[0:threads/2-1]);
else
d2 = mergeSort(datajlen/2:1en-1],
ids[threads/2:threads-1]);
barrier(ids);
1T (myld == 1ds[0]) return merge(dl, d2);
+
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Algorithm Example: Merge Sort

<+ SPMD

int[] (int[] data,nt[] id—— Team
int len = data.length;
int threads = i1ds.length;
iIT (threads == 1) return sequentialSort(data);
1T (myld 1n 1ds[O:threads/2-1])

dl = mergeSort(dataJO:len/2-1]},
1ds[0:threads/2-1]);

else
d2 = mergeSort(datajlen/2:1en-1],
ids™ "’ " 7 threads-1});
@r rer( i®< C;Ieei?ve
it (myld == 1ds[0]) . ... Je(dl, d2);

}
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Thread Teams

< Thread teams are basic units of cooperation
= Groups of threads that cooperatively execute code
= Collective operations over teams

< Other languages have teams
= MPI communicators, UPC teams

< However, those teams are flat

= Do not match hierarchical structure of algorithms,
machines

= Misuse of teams can result in deadlock
Team t1 = new Team(0:7);

Team t2 = new Team(0:3);
1T (myld == 0) barrier(tl);
else barrier(t2);

15



Structured Teams

< Structured, hierarchical teams are the solution
= Expressive: match structure of algorithms, machines
» Safe: eliminate many sources of deadlock
= Analyzable: enable simple program analysis

= Efficient: allow users to take advantage of machine
structure, resulting in performance gains

16



Related Work

< Languages that incorporate machine hierarchy
» Sequoia: hierarchical task structure
= HTA, Chapel: hierarchically defined data structures

= HPT, Fortress: hierarchical locales
(memory/execution spaces)

<+ Mixed and nested task/data parallelism a form of
control hierarchy

= MPI+OpenMP, NESL
< None of the above is SPMD

17



Why SPMD?

<+ SPMD simplifies parallel programming by
Imposing structure on programs

Forces programmer to think about parallelism, locality
of data

Fixed set of threads — exact degree of parallelism
exposed

Threads execute same code — reduces need to keep
track of which thread executes what

Simple implementation
Provides good performance

< Simple program analysis
< Large-scale machines almost exclusively
programmed using SPMD

18



Contributions

<+ New language constructs to express hierarchical
computation

= Algorithmic and machine-dependent hierarchy
* Improve productivity and performance
< Dynamic alignment of collectives

* Improve safety and debugging of explicitly parallel
programs

< Program analysis
» Hierarchical pointer analysis
= Concurrency analysis for textually aligned SPMD

19



< Language Extensions

< Alignment of Collectives
< Pointer Analysis

< Application Case Studies
< Conclusions
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Team Data Structure

< Threads comprise teams in tree-like structure
= Allow arbitrary hierarchies (e.g. unbalanced trees)

< First-class object to allow easy creation and
manipulation

» Library functions provided to create regular structures

0,123,4,5,6,7,8,9,10, 11

[V

0,1,2,3 4,5,6,7 8,9,10,11

VAN AN

1,3, 2 0 9,8 10, 11

21



Machine Structure

<+ Provide mechanism for querying machine
structure and thread mapping at runtime

Team T = Ti.defaultTeam();

0,1,23,4,5,6,7

.

0,1,2,3 4,5,6,7
0,1 2,3 4,5 6,7
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Language Constructs

< Thread teams may execute distinct tasks
partition(T) {
{ model fluid(Q); }
{ model muscles(); }
{ model _electrical(); }

by
< Threads may execute the same code on
different sets of data as part of different teams
teamsplit(T) {
row_reduce();
by
< Lexical scope prevents some types of deadlock

= Execution team determined by enclosing construct

23



Partition Semantics

< Different subteams of T execute each of the
branches
partition(T) {

@odel_fluid(> }

{>imodel muscles() > }
1 @odel _electrical()>

0,1,23,4,5,6,7,8,9,10, 11

8,9,10, 11
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Teamsplit Semantics

< Each subteam of rowTeam executes the

reduction on Its own

teamsplit(rowTeam) {
Reduce.add(mtmp, myResultsO, rpivot);

}

T1 H4—0 | 1 | > 3

)
AN
O]
o)
~

T2

T3 —s 9 |10 | 11




Multiple Hierarchy Levels

< Constructs can be nested
teamsplit(T) {
teamsplit(T.myChildTeam()) {
levell work();

+
level2 work();

}

< Program can use multiple teams
teamsplit(columnTeam) {
myOut.vbroadcast(cpivot);
+
teamsplit(rowTeam) {
Reduce.add(mtmp, myResultsO, rpivot);

}

26



< Language Extensions

<+ Alignment of Collectives
< Pointer Analysis

< Application Case Studies
< Conclusions
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Collective Alignment

<+ Many parallel languages make no attempt to
ensure that collectives line up
= Example code that will compile but deadlock:
1T (Te.thisProc() % 2 == 0)
Ti.barrier(); // even 1D threads
else
; // odd ID threads
iInt 1 = broadcast Ti.thisProc() from O;

28



Textual Collective Alignment

< In textual alignment, all threads must execute
the same textual sequence of collectives

< In addition, all threads must agree on control
flow decisions that may result in a collective

» Following is illegal:
1T (Tr.thisProc(O) % 2 == 0)
myBarrier(); // even ID threads
else
myBarrier(); // odd ID threads

static void O {
Ti.barrier();

}

29



. Benefits of Textual Alignment

< Textual alignment prevents deadlock due to
misaligned collectives

< Easy to reason about, analyze
= Concurrency analysis paper in LCPC’05

< Most applications only use textually aligned
collectives

30



Alignment Checking Schemes [ &
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% Different schemes can be used to enforce
textual alignment

Restrictions Early
on program error
structure | detection

Programmer
burden

Accuracy/ | Performance Team
Precision reduction support

Type : : : :
system High High High High No No

: Static Low Medium High Low No Yes

inference

Dynamic Low High Medium High Yes Yes
checks

No

. None None No None No Yes
checking



Dynamic Enforcement

<+ A dynamic enforcement scheme can reduce
programmer burden but still provide safety and
accurate results for analysis and optimization

< Basic idea:
= Track control flow on all threads

» Check that preceding control flow matches when:
» Performing a team collective
« Changing team contexts

< Compiler instruments source code to perform
tracking and checking

32



Tracking Example

l 5 1T (Tri.thisProc() == 0)
6 Ti.barrier();

7 else

8 Ti.barrier();

Thread Hash Execution History
0 0x0dc7637a | ...
1 Ox0dc7637a | ...

* Entries prior to line 5

33



Tracking Example

5 if (Ti.thisProc() == 0)
6 Ti.barrier(); Control flow

q ! elsc_e ) decision noted,
8 Ti.barrier(); hash updated

Thread Hash Execution History

0 Ox7e8a6fal |...", (5, then)

1 0x2027593c | ...7, (5, else)

* Entries prior to line 5

34



Checking Example

5 1T (Tri.thisProc() == 0)

Ti.barrier();

Ti.barrier();

Hash broadcast
from thread O

Th(;ea Hash Hash from O Execution History
0 | Ox7e8a6fal ..., (5, then)
1 |[0x2027593c ..., (5, else)

* Entries prior to line 5

35



Checking Example

5 1T (Ti.thisProc() == 0)

Ti.barrier();

Ti.barrier();

Hash from O
compared with
local hash

Th(;ea Hash Hash from O Execution History
0 | Ox7e8abfal | Ox7e8abfal | ..., (5, then)
1 |[0x2027593c | Ox7e8a6fa0 |...", (5, else)

* Entries prior to line 5
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Checking Example

5 1T (Tr.thisProc() == 0)
Ti.barrier();

Hash from O
7 els? _ compared with
Ti.barrier(); local hash
Th(;ea Hash Hash from O Execution History

0 |O0x7e8 ERROR ia6fa0 |...7, (5, then)
I

1 §0x2027593c | Ox7e8a6fal | ...", (5, else)

* Entries prior to line 5
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Checking Example

5 1T (Tri.thisProc() == 0)

Ti.barrier(Q); .
O Meaningful error

generated

|
Hash Hash fron MISALIGNMENT

0 Ox7e8 ERROR ja6fal |...”
I

1 0x2027593c | Ox7e8a6fal | ...”

* Entries prior to line 5
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Evaluation

<+ Performance tested on cluster of dual-processor
2.2GHz Opterons with InfiniBand interconnect
<+ Three NAS Parallel Benchmarks tested
= Conjugate gradient (CG)
= Fourier transform (FT)
= Multigrid (MG)
<+ Enforcement variants

Static or Dynamic | Debugging Information

static (baseline) Static N/A
strict Dynamic No
strict/debug Dynamic Yes
weak Dynamic No

weak/debug Dynamic Yes

39



Overhead of Dynamic Alignment A

IS Minimal

Cluster Applications Time
Processors
B2 m4mE8ml6om32

=
N

[ERY

o
00

o
~

Time Relative to Static
o o
No (@)
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Summary

< Dynamic checking removes annotation burden
from programmers, works with teams

< Minimal performance impact on applications

< Dynamic checking can be applied to languages
without strong type systems (e.g. UPC)

41



< Language Extensions

< Alignment of Collectives
< Pointer Analysis

< Application Case Studies
< Conclusions
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Partitioned Global Address Space

< Partitioned global address space (PGAS)
abstraction provides illusion of shared memory
on non-shared memory machines

% Pointers can reference local or remote data

= Location of data can be reflected in type system

= Runtime handles any required communication
double[1d] focal srcl = new double[O:N-1];

double]1d] srcg = broadcast srcl from O;

0 1 2

srcl srcl srcl

o &

srcg srcg Src
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Hierarchical Memory

% PGAS model can be extended to hierarchical
arrangement of memory spaces (SAS’'07)

< Pointers have varying span specifying how far

away the referenced object can be

= Reflect communication costs

@1/94—

O

O (W

span 1
(core local)
span 2
(processor local)
span 3
(node local)
span 4

(global)
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. POINter Span and Machine Team

Computer Sciences

< Span of pointer related to level of least common
ancestor of the source thread and the potential
targets in the machine hierarchy

= span = # of levels - target level

Span 4

Span 3

Span 2

Span 1 1<:j{/1ﬁf

0,1,2,3,4,5,6,7

0,1

Level O

Level 1

Level 2

Level 3



Pointers and Arbitrary Teams

< Pointer span can be
generalized to handle
arbitrary teams t10123,4,5

= “Span” of pointer is now the /\.

combination of a specific team
hierarchy and a level in that 0,1,2 3,4,5
hierarchy

0,1 |2 3,4 | |5

0 1+—— 3|4}t 1)
(t, 0)

(t, 3) (t, 2)
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e Pointers and Multiple Teams

Computer Sciences

< Relationship between

teams can be represented T = global
as a lattice
< Span of a pointer is an (tz,1) = (t7.1)
element of the lattice (t.,1) /\
< Pointer analysis can (t,, 2) (t., 2)
determine span of pointers
thread local

1 =none

47



... Hierarchical Pointer Analysis

Computer Sciences

< Pointer analysis possible over hierarchical
teams

= Allocation sites - abstract locations (alocs)
» Variables = points-to sets of alocs

< Abstract locations have span (e.g. thread local,
global)

<+ SPMD model simplifies analysis

= Allows effects of an operation on all threads to be
simultaneously computed

= Results are the same for all threads

48



Pointer Analysis: Allocation

< Allocation creates new thread local abstract
location

» Result of allocation must reside in local memory

static void O {

L1: Object b,c&@ = new Object
teamsplhit(t2) {

b = broadcast a from O;

}
}

Alocs @

Points-to Sets
a (1, thread loca

49



Pointer Analysis:

Communication

< Communication produces version of source
abstract locations with greater span

= Collective takes into account team over which it is
executed
static void O {

L1: Object b, a = new Object();
teamsplit(t2) {

<b = broadcast a from
¥
¥

Alocs 1
Points-to Sets
a (1, thread local)
(1, (t;, 1))

50



Evaluation

< Pointer analysis implemented for 3-level
machine hierarchy

< Evaluated on five application benchmarks

amr

gas
cg
ft

mg

Line
Cou

7581
8841
1595
1192
1952

nt

Adaptive mesh refinement suite

Hyperbolic solver for a gas dynamics problem
NAS conjugate gradient benchmark

NAS Fourier transform benchmark

NAS multigrid benchmark
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< Determine cost of introducing hierarchy into
pointer analysis

< Tests run on 2.93GHz Core 17 with 8GB RAM
< Three analysis variants compared

PAl Single-level pointer analysis
PA2 Two-level pointer analysis (thread-local and global)

PA3 Three-level pointer analysis

52



Low Overhead for Hierarchy

Pointer Analysis Running Time
B PA1 mPA2 = PA3

amr gas cg ft mg
Benchmark
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Race Detection

< Pointer analysis used with concurrency analysis
to detect potential races at compile-time

< Three analyses compared

Concurrency analysis plus constraint-based data

coneur sharing analysis and type-based alias analysis

concur+PAl Concurrency analysis plus single-level pointer analysis

concur+PA3 Concurrency analysis plus three-level pointer analysis

54



More Precise Results R
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Static Race Detection

M concur M concur+PA1 m concur+PA3

11493

[EEY

o

o
|

Possible Races
[
o

amr gas cg ft mg
Benchmark
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< Language Extensions

< Alignment of Collectives
< Pointer Analysis

<+ Application Case Studies
< Conclusions
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< Distributed sorting application using new
hierarchical constructs

< Three pieces: sequential, shared memory, and
distributed
» Sequential: quick sort from Java 1.4 library

» Shared memory: segquential sort on each thread,
merge results from each thread

= Distributed memory: sample sort to distribute
elements among nodes, shared memory sort on each
node

57



Shared Memory Sort

< Divide elements equally among threads
Thread O Thread 2 Thread 3

< Each thread calls sequential sort to process its
elements

58



Shared Memory Merge

<+ Merge in paralle
RN

\Thread O/ \Thread 2/

Thread O

= Number of threads approximately halved in each
iteration



Shared Memory Hierarchy

< Team hierarchy is binary tree
< Trivial construction

static void (Team t) {
1T (t.size() > 1) {
t.splitTeam(2);
divideTeam(t.child(0));

0,1,2,3,4,5

N

0,1,2 3,4,5

divideTeam(t.child(1));
+

0,1

}

< Threads walk down to bottom

0

of hierarchy, sort, then walk
back up, merging along the way
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SMP Sort and Merge Logic

< Control logic for sorting and merging

static single void (Team t) {
it (Tr.numProcs() == 1) {
allRes[myProc] = sequentialSort(myData);
} else {
teamsplhit(t) {
sortAndMerge(t.myChildTeam());
}
Ti.barrier();
1T (Ti.thisProc() == 0) {
int otherProc = myProc + t.child(0).size();
int[1d] myRes = allRes[myProc];
int[1d] otherRes = allRes[otherProc];

int[1d] newRes = target(t.depth(), myRes, otherRes);

allRes[myProc] = merge(myRes, otherRes, newRes);

}
}
}
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SMP Sort Summary

< Hierarchical team constructs allow simple
shared memory parallel sort implementation
< Implementation details

» ~90 lines of code (not including test code, sequential
sort)

= 2 hours to implement (including test code) and test
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Distributed Sort

< EXisting unoptimized sample sort written 12
years ago by Kar Ming Tang

< Algorithm

49| 3 (88| 4| (94|79| 0 |59 |98| 3 |45|89| [78]77 30|31
Thread O Thread 2 Thread 3

= Sampling to compute splitters

49 34 94\79\0 o8| 3 |45[89| |78 77

= Redistribution

3(4|0]|3| |49|45/30|31| |79|59|78|77| |88|94|98]89

= | ocal sort

0[3|3|4]| |30|31]45|49| |59|77|78|79| |88|89|94 98




CLUMPS Sort v0.1

< For clusters of SMPs, use sampling and
distribution between nodes, SMP sort on nodes

» Fewer messages than pure sample sort, so should
scale better

< Quick and dirty first version
» Recycle old sampling and distribution code

» Use one thread per node to perform sampling and
distribution
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CLUMPS Sort v0.1 Code

< Code for v0.1
Team team = Ti.defaultTeam();
team.initialize(false);
Team smplTeam = team.makeTransposeTeam();
smplTeam.initialize(false);
partition(smplTeam) {
{ sampleSort(); }
}
teamsplit(team) {
keys = SMPSort.parallelSort(keys);

}
< 10 lines of code, 5 minutes to solution!
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CLUMPS Sort v0.1 Results

< And It works!

Initial Distributed Sort (Cray XT4)
(10,000,000 elements/core, 10,000 samples/core)

18 M pure (distribution time) mixed (distribution time)
16 M pure (sort time) B mixed (sort time)
14
_ 12
n
~10
(D)
£ 8 .
= 6
4
2 _
O _

1 2 4 8
Nodes (4 cores/node)
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Optimized CLUMPS Sort

Optimized Distributed Sort (Cray XT4)
(10,000,000 elements/core, 10,000 samples/core)

M pure (distribution time) mixed (distribution time)
18 M pure (sort time) B mixed (sort time)
16
14
n 12
N’
O 10
=
= 8
6
4
2
O [ [ [ [ I I I I I |
1 2 4 8 16 32 64 128 256 512

Nodes (4 cores/node) 67



Conjugate Gradient

<+ NAS conjugate gradient (CG) application written
and optimized by Kaushik Datta

< Includes parallel sparse matrix-vector multiplies
» Randomly generated matrix has no special structure

= Divided in both row and column dimensions
= Reductions over row threads

= Broadcasts over column threads

< Without teams, Kaushik had to

hand-roll collectives
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Row and Team

< Both row and column tea

0,1,2,3,45,6,7

AN

Hierarchies

ms needed

0,1,2,3,4,5,6,7

A

0,1,2,3 4,5,6,7

0,4 1,5 2,6 3,7

< Team code for reductions and broadcasts

teamsplit(rowTeam) {
Reduce.add(mtmp, myRe

+

1T (reduceCopy)
myOut.copy(allResults

teamsplit(columnTeam) {

}

myOut.vbroadcast(cpivot);

sultsO, rpivot);

[ reduceSource]);
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CG Running Time s
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NAS CG Class B/D Time (Cray XEO6)

——-original/B -+original/D

512

—column/B -e-column/D

256 -=row/B —<row/D
128 AN \
" \\ \\\O
8
\\

1 I I I I I |

1 2 4 8 16 32 64 128 256 512 1024
Cores 70

W
N

(BN
(O))

Time (s)




< Language Extensions

< Alignment of Collectives
< Pointer Analysis

< Application Case Studies
< Conclusions

71



Conclusions

< Hierarchical language extensions simplify job of
programmer

= Can organize application around machine
characteristics

= Easier to specify algorithmic hierarchy
= Seamless code composition
= Better productivity, performance with team collectives

< Language extensions are safe to use and easy
to analyze

» Safety provided by lexical scoping and dynamic
alignment checking

= Simple pointer analysis that takes into account
machine and algorithmic hierarchy
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