Single Program, Multiple
Data Programming for
Hierarchical Computations

Amir Kamil
Dissertation Talk
Advisor: Katherine Yelick
May 8, 2012

Hierarchical Machines s

BERKELEY PAR LAB

< Parallel machines have hierarchical structure

Dual Socket AMD
MagnyCours

Quad Socket Intel
Nehalem EX

< Expect this hierarchical trend to continue with
manycore

Application Hierarchy

< Applications can reduce communication costs by
adapting to machine hierarchy

Slow, avoid

0,1,23,4,5
Fast, /
allow

0,1,2

3,4,5
< Applications may also have o,ﬂ‘z; 3,%
iInherent, algorithmic hierarchy
» Recursive algorithms 0|1 3 (|4

= Composition of multiple algorithms
» Hierarchical division of data

Locality is King

<+ Programming model must expose locality in
order to obtain good performance on large-scale
machines

< Possible approaches

» Add locality hints to multithreaded languages or
frameworks (e.g. TBB, OpenMP)

» Spawn tasks at specific locality domains (X10,
Chapel)

= Use static number of threads matched to specific
processing cores (SPMD)

Thesis Statement

Hierarchical constructs can productively and
efficiently express hierarchical algorithms and
exploit the hierarchical structure of parallel
machines.

= Demonstration in Titanium language, a single
program, multiple data (SPMD) dialect of Java

Single Program, Multiple Data =7 &

BERKELEY PAR LAB

< Single program, multiple data (SPMD): fixed set

of threads execute the same program image
public static void (String[] args) {
System.out.printin(""Hello from thread "
+ Ti.thisProc());
Ti.barrier();
it (Tr.thisProc() == 0)
System.out.printin(''Done.");

Program Start

Print Print B Print Print

Barrier

Program End 5

SPMD vs. Data Parallelism

% SPMD has local view execution model

» Fixed set of threads, each of which is explicitly
assigned work
int start = numPerProc * Ti.thisProc();

iInt end = start + numPerProc - 1;
foreach (1 iIn [start:end])

CLil = AL1] + BLi];
< Data parallelism is global view

= Single logical thread of control

= Compiler responsible for distributing work across
computational units
Tforall (1 1n C.domain())

Cli] = A[1] + BlL1];

Global Operations

< Data parallelism allows even simpler expression
of global operations
forall (1 in C.domain())

CLrl = AL1] + BL1];

C = A + B;

< Similar global operations can be built in SPMD
using collective operations

Collective Operations

s

BERKELEY PAR LAB

< Threads synchronize using global collective
operations
Program Start

Barrier

Exchange

< Collective operations also used for global
communication

< Collectives allow easier program analysis

Collective Examples

< Barrier: all threads must reach it before any can

proceed * * * *

< Broadcast: explicit one to all communication

N

<+ Exchange: explicit all to all communication

<+ Reduce: explicit all to one communication

v by

10

Algorithm Example: Merge Sort

< Task parallel
int[] (int[] data) {
int len = data.length;
iIT (Ien < threshold)
return sequentialSort(data);
dl = fork mergeSort(data[0:len/2-1]);
d2 = mergeSort(data[len/2:1len-1]);
join di;
return merge(dl, d2);

+
< Cannot fork threads in SPMD
= Must rewrite to execute over fixed set of threads

Algorithm Example: Merge Sort

<+ SPMD
int[] (int[] data, int[] i1ds) {
int len = data.length;
int threads = i1ds.length;
iIT (threads == 1) return sequentialSort(data);
1T (myld 1n 1ds[O:threads/2-1])
dl = mergeSort(dataJO:len/2-1]},
1ds[0:threads/2-1]);
else
d2 = mergeSort(datajlen/2:1en-1],
ids[threads/2:threads-1]);
barrier(ids);
1T (myld == 1ds[0]) return merge(dl, d2);
+

Algorithm Example: Merge Sort

<+ SPMD
int[] (int[] data,nt[] id—— Team
int len = data.length;
int threads = i1ds.length;
iIT (threads == 1) return sequentialSort(data);
1T (myld 1n 1ds[O:threads/2-1])
dl = mergeSort(dataJO:len/2-1]},
1ds[0:threads/2-1]);
else
d2 = mergeSort(datajlen/2:1en-1],
ids[threads/2:threads-1]);
barrier(ids);
1T (myld == 1ds[0]) return merge(dl, d2);
+

13

Algorithm Example: Merge Sort

<+ SPMD

int[] (int[] data,nt[] id—— Team
int len = data.length;
int threads = i1ds.length;
iIT (threads == 1) return sequentialSort(data);
1T (myld 1n 1ds[O:threads/2-1])

dl = mergeSort(dataJO:len/2-1]},
1ds[0:threads/2-1]);

else
d2 = mergeSort(datajlen/2:1en-1],
ids™ "’ " 7 threads-1});
@r rer(i®< C;Ieei?ve
it (myld == 1ds[0]) Je(dl, d2);

}

14

Thread Teams

< Thread teams are basic units of cooperation
= Groups of threads that cooperatively execute code
= Collective operations over teams

< Other languages have teams
= MPI communicators, UPC teams

< However, those teams are flat

= Do not match hierarchical structure of algorithms,
machines

= Misuse of teams can result in deadlock
Team t1 = new Team(0:7);

Team t2 = new Team(0:3);
1T (myld == 0) barrier(tl);
else barrier(t2);

15

Structured Teams

< Structured, hierarchical teams are the solution
= Expressive: match structure of algorithms, machines
» Safe: eliminate many sources of deadlock
= Analyzable: enable simple program analysis

= Efficient: allow users to take advantage of machine
structure, resulting in performance gains

16

Related Work

< Languages that incorporate machine hierarchy
» Sequoia: hierarchical task structure
= HTA, Chapel: hierarchically defined data structures

= HPT, Fortress: hierarchical locales
(memory/execution spaces)

<+ Mixed and nested task/data parallelism a form of
control hierarchy

= MPI+OpenMP, NESL
< None of the above is SPMD

17

Why SPMD?

<+ SPMD simplifies parallel programming by
Imposing structure on programs

Forces programmer to think about parallelism, locality
of data

Fixed set of threads — exact degree of parallelism
exposed

Threads execute same code — reduces need to keep
track of which thread executes what

Simple implementation
Provides good performance

< Simple program analysis
< Large-scale machines almost exclusively
programmed using SPMD

18

Contributions

<+ New language constructs to express hierarchical
computation

= Algorithmic and machine-dependent hierarchy
* Improve productivity and performance
< Dynamic alignment of collectives

* Improve safety and debugging of explicitly parallel
programs

< Program analysis
» Hierarchical pointer analysis
= Concurrency analysis for textually aligned SPMD

19

< Language Extensions

< Alignment of Collectives
< Pointer Analysis

< Application Case Studies
< Conclusions

20

Team Data Structure

< Threads comprise teams in tree-like structure
= Allow arbitrary hierarchies (e.g. unbalanced trees)

< First-class object to allow easy creation and
manipulation

» Library functions provided to create regular structures

0,123,4,5,6,7,8,9,10, 11

[V

0,1,2,3 4,5,6,7 8,9,10,11

VAN AN

1,3, 2 0 9,8 10, 11

21

Machine Structure

<+ Provide mechanism for querying machine
structure and thread mapping at runtime

Team T = Ti.defaultTeam();

0,1,23,4,5,6,7

.

0,1,2,3 4,5,6,7
0,1 2,3 4,5 6,7

22

Language Constructs

< Thread teams may execute distinct tasks
partition(T) {
{ model fluid(Q); }
{ model muscles(); }
{ model _electrical(); }

by
< Threads may execute the same code on
different sets of data as part of different teams
teamsplit(T) {
row_reduce();
by
< Lexical scope prevents some types of deadlock

= Execution team determined by enclosing construct

23

Partition Semantics

< Different subteams of T execute each of the
branches
partition(T) {

@odel_fluid(> }

{>imodel muscles() > }
1 @odel _electrical()>

0,1,23,4,5,6,7,8,9,10, 11

8,9,10, 11

24

Teamsplit Semantics

< Each subteam of rowTeam executes the

reduction on Its own

teamsplit(rowTeam) {
Reduce.add(mtmp, myResultsO, rpivot);

}

T1 H4—0 | 1 | > 3

)
AN
O]
o)
~

T2

T3 —s 9 |10 | 11

Multiple Hierarchy Levels

< Constructs can be nested
teamsplit(T) {
teamsplit(T.myChildTeam()) {
levell work();

+
level2 work();

}

< Program can use multiple teams
teamsplit(columnTeam) {
myOut.vbroadcast(cpivot);
+
teamsplit(rowTeam) {
Reduce.add(mtmp, myResultsO, rpivot);

}

26

< Language Extensions

<+ Alignment of Collectives
< Pointer Analysis

< Application Case Studies
< Conclusions

27

Collective Alignment

<+ Many parallel languages make no attempt to
ensure that collectives line up
= Example code that will compile but deadlock:
1T (Te.thisProc() % 2 == 0)
Ti.barrier(); // even 1D threads
else
; // odd ID threads
iInt 1 = broadcast Ti.thisProc() from O;

28

Textual Collective Alignment

< In textual alignment, all threads must execute
the same textual sequence of collectives

< In addition, all threads must agree on control
flow decisions that may result in a collective

» Following is illegal:
1T (Tr.thisProc(O) % 2 == 0)
myBarrier(); // even ID threads
else
myBarrier(); // odd ID threads

static void O {
Ti.barrier();

}

29

. Benefits of Textual Alignment

< Textual alignment prevents deadlock due to
misaligned collectives

< Easy to reason about, analyze
= Concurrency analysis paper in LCPC’05

< Most applications only use textually aligned
collectives

30

Alignment Checking Schemes [&

BERKELEY PAR LAB

% Different schemes can be used to enforce
textual alignment

Restrictions Early
on program error
structure | detection

Programmer
burden

Accuracy/ | Performance Team
Precision reduction support

Type : : : :
system High High High High No No

: Static Low Medium High Low No Yes

inference

Dynamic Low High Medium High Yes Yes
checks

No

. None None No None No Yes
checking

Dynamic Enforcement

<+ A dynamic enforcement scheme can reduce
programmer burden but still provide safety and
accurate results for analysis and optimization

< Basic idea:
= Track control flow on all threads

» Check that preceding control flow matches when:
» Performing a team collective
« Changing team contexts

< Compiler instruments source code to perform
tracking and checking

32

Tracking Example

l 5 1T (Tri.thisProc() == 0)
6 Ti.barrier();

7 else

8 Ti.barrier();

Thread Hash Execution History
0 0x0dc7637a | ...
1 Ox0dc7637a | ...

* Entries prior to line 5

33

Tracking Example

5 if (Ti.thisProc() == 0)
6 Ti.barrier(); Control flow

q ! elsc_e) decision noted,
8 Ti.barrier(); hash updated

Thread Hash Execution History

0 Ox7e8a6fal |...", (5, then)

1 0x2027593c | ...7, (5, else)

* Entries prior to line 5

34

Checking Example

5 1T (Tri.thisProc() == 0)

Ti.barrier();

Ti.barrier();

Hash broadcast
from thread O

Th(;ea Hash Hash from O Execution History
0 | Ox7e8a6fal ..., (5, then)
1 |[0x2027593c ..., (5, else)

* Entries prior to line 5

35

Checking Example

5 1T (Ti.thisProc() == 0)

Ti.barrier();

Ti.barrier();

Hash from O
compared with
local hash

Th(;ea Hash Hash from O Execution History
0 | Ox7e8abfal | Ox7e8abfal | ..., (5, then)
1 |[0x2027593c | Ox7e8a6fa0 |...", (5, else)

* Entries prior to line 5

36

Checking Example

5 1T (Tr.thisProc() == 0)
Ti.barrier();

Hash from O
7 els? _ compared with
Ti.barrier(); local hash
Th(;ea Hash Hash from O Execution History

0 |O0x7e8 ERROR ia6fa0 |...7, (5, then)
I

1 §0x2027593c | Ox7e8a6fal | ...", (5, else)

* Entries prior to line 5

37

Checking Example

5 1T (Tri.thisProc() == 0)

Ti.barrier(Q); .
O Meaningful error

generated

|
Hash Hash fron MISALIGNMENT

0 Ox7e8 ERROR ja6fal |...”
I

1 0x2027593c | Ox7e8a6fal | ...”

* Entries prior to line 5

38

Evaluation

<+ Performance tested on cluster of dual-processor
2.2GHz Opterons with InfiniBand interconnect
<+ Three NAS Parallel Benchmarks tested
= Conjugate gradient (CG)
= Fourier transform (FT)
= Multigrid (MG)
<+ Enforcement variants

Static or Dynamic | Debugging Information

static (baseline) Static N/A
strict Dynamic No
strict/debug Dynamic Yes
weak Dynamic No

weak/debug Dynamic Yes

39

Overhead of Dynamic Alignment A

IS Minimal

Cluster Applications Time
Processors
B2 m4mE8ml6om32

=
N

[ERY

o
00

o
~

Time Relative to Static
o o
No (@)

40

Summary

< Dynamic checking removes annotation burden
from programmers, works with teams

< Minimal performance impact on applications

< Dynamic checking can be applied to languages
without strong type systems (e.g. UPC)

41

< Language Extensions

< Alignment of Collectives
< Pointer Analysis

< Application Case Studies
< Conclusions

42

Partitioned Global Address Space

< Partitioned global address space (PGAS)
abstraction provides illusion of shared memory
on non-shared memory machines

% Pointers can reference local or remote data

= Location of data can be reflected in type system

= Runtime handles any required communication
double[1d] focal srcl = new double[O:N-1];

double]1d] srcg = broadcast srcl from O;

0 1 2

srcl srcl srcl

o &

srcg srcg Src

43

Hierarchical Memory

% PGAS model can be extended to hierarchical
arrangement of memory spaces (SAS’'07)

< Pointers have varying span specifying how far

away the referenced object can be

= Reflect communication costs

@1/94—

O

O (W

span 1
(core local)
span 2
(processor local)
span 3
(node local)
span 4

(global)

44

. POINter Span and Machine Team

Computer Sciences

< Span of pointer related to level of least common
ancestor of the source thread and the potential
targets in the machine hierarchy

= span = # of levels - target level

Span 4

Span 3

Span 2

Span 1 1<:j{/1ﬁf

0,1,2,3,4,5,6,7

0,1

Level O

Level 1

Level 2

Level 3

Pointers and Arbitrary Teams

< Pointer span can be
generalized to handle
arbitrary teams t10123,4,5

= “Span” of pointer is now the /\.

combination of a specific team
hierarchy and a level in that 0,1,2 3,4,5
hierarchy

0,1 |2 3,4 | |5

0 1+—— 3|4}t 1)
(t, 0)

(t, 3) (t, 2)

46

e Pointers and Multiple Teams

Computer Sciences

< Relationship between

teams can be represented T = global
as a lattice
< Span of a pointer is an (tz,1) = (t7.1)
element of the lattice (t.,1) /\
< Pointer analysis can (t,, 2) (t., 2)
determine span of pointers
thread local

1 =none

47

... Hierarchical Pointer Analysis

Computer Sciences

< Pointer analysis possible over hierarchical
teams

= Allocation sites - abstract locations (alocs)
» Variables = points-to sets of alocs

< Abstract locations have span (e.g. thread local,
global)

<+ SPMD model simplifies analysis

= Allows effects of an operation on all threads to be
simultaneously computed

= Results are the same for all threads

48

Pointer Analysis: Allocation

< Allocation creates new thread local abstract
location

» Result of allocation must reside in local memory

static void O {

L1: Object b,c&@ = new Object
teamsplhit(t2) {

b = broadcast a from O;

}
}

Alocs @

Points-to Sets
a (1, thread loca

49

Pointer Analysis:

Communication

< Communication produces version of source
abstract locations with greater span

= Collective takes into account team over which it is
executed
static void O {

L1: Object b, a = new Object();
teamsplit(t2) {

<b = broadcast a from
¥
¥

Alocs 1
Points-to Sets
a (1, thread local)
(1, (t;, 1))

50

Evaluation

< Pointer analysis implemented for 3-level
machine hierarchy

< Evaluated on five application benchmarks

amr

gas
cg
ft

mg

Line
Cou

7581
8841
1595
1192
1952

nt

Adaptive mesh refinement suite

Hyperbolic solver for a gas dynamics problem
NAS conjugate gradient benchmark

NAS Fourier transform benchmark

NAS multigrid benchmark

51

< Determine cost of introducing hierarchy into
pointer analysis

< Tests run on 2.93GHz Core 17 with 8GB RAM
< Three analysis variants compared

PAl Single-level pointer analysis
PA2 Two-level pointer analysis (thread-local and global)

PA3 Three-level pointer analysis

52

Low Overhead for Hierarchy

Pointer Analysis Running Time
B PA1 mPA2 = PA3

amr gas cg ft mg
Benchmark

53

Race Detection

< Pointer analysis used with concurrency analysis
to detect potential races at compile-time

< Three analyses compared

Concurrency analysis plus constraint-based data

coneur sharing analysis and type-based alias analysis

concur+PAl Concurrency analysis plus single-level pointer analysis

concur+PA3 Concurrency analysis plus three-level pointer analysis

54

More Precise Results R

BERKELEY PAR LAB

Static Race Detection

M concur M concur+PA1 m concur+PA3

11493

[EEY

o

o
|

Possible Races
[
o

amr gas cg ft mg
Benchmark

55

< Language Extensions

< Alignment of Collectives
< Pointer Analysis

<+ Application Case Studies
< Conclusions

56

< Distributed sorting application using new
hierarchical constructs

< Three pieces: sequential, shared memory, and
distributed
» Sequential: quick sort from Java 1.4 library

» Shared memory: segquential sort on each thread,
merge results from each thread

= Distributed memory: sample sort to distribute
elements among nodes, shared memory sort on each
node

57

Shared Memory Sort

< Divide elements equally among threads
Thread O Thread 2 Thread 3

< Each thread calls sequential sort to process its
elements

58

Shared Memory Merge

<+ Merge in paralle
RN

\Thread O/ \Thread 2/

Thread O

= Number of threads approximately halved in each
iteration

Shared Memory Hierarchy

< Team hierarchy is binary tree
< Trivial construction

static void (Team t) {
1T (t.size() > 1) {
t.splitTeam(2);
divideTeam(t.child(0));

0,1,2,3,4,5

N

0,1,2 3,4,5

divideTeam(t.child(1));
+

0,1

}

< Threads walk down to bottom

0

of hierarchy, sort, then walk
back up, merging along the way

60

SMP Sort and Merge Logic

< Control logic for sorting and merging

static single void (Team t) {
it (Tr.numProcs() == 1) {
allRes[myProc] = sequentialSort(myData);
} else {
teamsplhit(t) {
sortAndMerge(t.myChildTeam());
}
Ti.barrier();
1T (Ti.thisProc() == 0) {
int otherProc = myProc + t.child(0).size();
int[1d] myRes = allRes[myProc];
int[1d] otherRes = allRes[otherProc];

int[1d] newRes = target(t.depth(), myRes, otherRes);

allRes[myProc] = merge(myRes, otherRes, newRes);

}
}
}

61

SMP Sort Summary

< Hierarchical team constructs allow simple
shared memory parallel sort implementation
< Implementation details

» ~90 lines of code (not including test code, sequential
sort)

= 2 hours to implement (including test code) and test

62

Distributed Sort

< EXisting unoptimized sample sort written 12
years ago by Kar Ming Tang

< Algorithm

49| 3 (88| 4| (94|79| 0 |59 |98| 3 |45|89| [78]77 30|31
Thread O Thread 2 Thread 3

= Sampling to compute splitters

49 34 94\79\0 o8| 3 |45[89| |78 77

= Redistribution

3(4|0]|3| |49|45/30|31| |79|59|78|77| |88|94|98]89

= | ocal sort

0[3|3|4]| |30|31]45|49| |59|77|78|79| |88|89|94 98

CLUMPS Sort v0.1

< For clusters of SMPs, use sampling and
distribution between nodes, SMP sort on nodes

» Fewer messages than pure sample sort, so should
scale better

< Quick and dirty first version
» Recycle old sampling and distribution code

» Use one thread per node to perform sampling and
distribution

64

CLUMPS Sort v0.1 Code

< Code for v0.1
Team team = Ti.defaultTeam();
team.initialize(false);
Team smplTeam = team.makeTransposeTeam();
smplTeam.initialize(false);
partition(smplTeam) {
{ sampleSort(); }
}
teamsplit(team) {
keys = SMPSort.parallelSort(keys);

}
< 10 lines of code, 5 minutes to solution!

65

CLUMPS Sort v0.1 Results

< And It works!

Initial Distributed Sort (Cray XT4)
(10,000,000 elements/core, 10,000 samples/core)

18 M pure (distribution time) mixed (distribution time)
16 M pure (sort time) B mixed (sort time)
14
_ 12
n
~10
(D)
£ 8 .
= 6
4
2 _
O _

1 2 4 8
Nodes (4 cores/node)

66

Optimized CLUMPS Sort

Optimized Distributed Sort (Cray XT4)
(10,000,000 elements/core, 10,000 samples/core)

M pure (distribution time) mixed (distribution time)
18 M pure (sort time) B mixed (sort time)
16
14
n 12
N’
O 10
=
= 8
6
4
2
O [[[[I I I I I |
1 2 4 8 16 32 64 128 256 512

Nodes (4 cores/node) 67

Conjugate Gradient

<+ NAS conjugate gradient (CG) application written
and optimized by Kaushik Datta

< Includes parallel sparse matrix-vector multiplies
» Randomly generated matrix has no special structure

= Divided in both row and column dimensions
= Reductions over row threads

= Broadcasts over column threads

< Without teams, Kaushik had to

hand-roll collectives

68

Row and Team

< Both row and column tea

0,1,2,3,45,6,7

AN

Hierarchies

ms needed

0,1,2,3,4,5,6,7

A

0,1,2,3 4,5,6,7

0,4 1,5 2,6 3,7

< Team code for reductions and broadcasts

teamsplit(rowTeam) {
Reduce.add(mtmp, myRe

+

1T (reduceCopy)
myOut.copy(allResults

teamsplit(columnTeam) {

}

myOut.vbroadcast(cpivot);

sultsO, rpivot);

[reduceSource]);

69

CG Running Time s

BERKELEY PAR LAB

NAS CG Class B/D Time (Cray XEO6)

——-original/B -+original/D

512

—column/B -e-column/D

256 -=row/B —<row/D
128 AN \
" \\ \\\O
8
\\

1 I I I I I |

1 2 4 8 16 32 64 128 256 512 1024
Cores 70

W
N

(BN
(O))

Time (s)

< Language Extensions

< Alignment of Collectives
< Pointer Analysis

< Application Case Studies
< Conclusions

71

Conclusions

< Hierarchical language extensions simplify job of
programmer

= Can organize application around machine
characteristics

= Easier to specify algorithmic hierarchy
= Seamless code composition
= Better productivity, performance with team collectives

< Language extensions are safe to use and easy
to analyze

» Safety provided by lexical scoping and dynamic
alignment checking

= Simple pointer analysis that takes into account
machine and algorithmic hierarchy

72

This slide intentionally left blank.

73

	Single Program, Multiple�Data Programming for Hierarchical Computations
	Hierarchical Machines
	Application Hierarchy
	Locality is King
	Thesis Statement
	Single Program, Multiple Data
	SPMD vs. Data Parallelism
	Global Operations
	Collective Operations
	Collective Examples
	Algorithm Example: Merge Sort
	Algorithm Example: Merge Sort
	Algorithm Example: Merge Sort
	Algorithm Example: Merge Sort
	Thread Teams
	Structured Teams
	Related Work
	Why SPMD?
	Contributions
	Outline
	Team Data Structure
	Machine Structure
	Language Constructs
	Partition Semantics
	Teamsplit Semantics
	Multiple Hierarchy Levels
	Outline
	Collective Alignment
	Textual Collective Alignment
	Benefits of Textual Alignment
	Alignment Checking Schemes
	Dynamic Enforcement
	Tracking Example
	Tracking Example
	Checking Example
	Checking Example
	Checking Example
	Checking Example
	Evaluation
	Overhead of Dynamic Alignment�is Minimal
	Summary
	Outline
	Partitioned Global Address Space
	Hierarchical Memory
	Pointer Span and Machine Team
	Pointers and Arbitrary Teams
	Pointers and Multiple Teams
	Hierarchical Pointer Analysis
	Pointer Analysis: Allocation
	Pointer Analysis: Communication
	Evaluation
	Running Time
	Low Overhead for Hierarchy
	Race Detection
	More Precise Results
	Outline
	Sorting
	Shared Memory Sort
	Shared Memory Merge
	Shared Memory Hierarchy
	SMP Sort and Merge Logic
	SMP Sort Summary
	Distributed Sort
	CLUMPS Sort v0.1
	CLUMPS Sort v0.1 Code
	CLUMPS Sort v0.1 Results
	Optimized CLUMPS Sort
	Conjugate Gradient
	Row and Team Hierarchies
	CG Running Time
	Outline
	Conclusions
	This slide intentionally left blank.
	Communication is Expensive
	Collective Operations
	Single-Valued Expressions
	Problem: Collective Alignment
	The single type system
	Example
	Strict vs. Weak Alignment
	Strict vs. Weak Example
	Strict vs. Weak Example
	Cluster Timings
	SMP Collectives Results
	Cluster Collectives Results
	Example Teams
	Pointer Analysis: Dereferencing Assignment
	SMP Sort and Merge Example
	SMP Sort and Merge Example
	SMP Sort and Merge Example
	SMP Sort and Merge Example
	Distributed Sort
	Code Composition
	Optimized Sort Results (XE6)
	CG Results (XT4)

