E~ upC FORTRAR
Introduction to High-Performance

Parallel Distributed Computing using
Chapel, UPC++, and Coarray Fortran

ECP/NERSC/OLCF 2023 Tutorial
30-minute Intro session

go.lbl.gov/cuf23 %

OAK RIDGE

National Laboratory

LEADERSHIP
COMPUTING
FACILITY

A
”/'}l "l Hewlett Packard | =
Eeroa =)

https://go.lbl.gov/cuf23

Introduction to High-Performance Parallel Distributed
Computing using Chapel, UPC++ and Coarray Fortran

Dr. Michelle Mills Strout Dr. Damian Rouson Dr. Amir Kamil

Other Contributors:

Dan Bonachea, Jeremiah Corrado, Paul H. Hargrove,
Katherine Rasmussen, Sameer Shende, Daniel Waters

Z> +
ey souroee (G 2PpC
™ National Laboratory =

Acknowledgements

This work was supported in part by the Exascale Computing Project (17-SC-20-SC), a
collaborative effort of two U.S. Department of Energy organizations (Office of Science
and the National Nuclear Security Administration) responsible for the planning and
preparation of a capable exascale ecosystem, including software, applications,
hardware, advanced system engineering and early testbed platforms, in support of the
nation’s exascale computing imperative.

This work used resources of the National Energy Research Scientific Computing
Center (NERSC), a U.S. Department of Energy Office of Science User Facility operated
under Contract No. DE-AC02-05CH11231, as well as This research used resources of
the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory,
which is supported by the Office of Science of the U.S. Department of Energy under
Contract No. DE-AC05-000R22725.

m #,0AK RIDGE @“’EL up Q+ [ZXTIXY FORTRAN

jonal Laboratory

Schedule for Chapel, UPC++ and Fortran Tutorial

Wed July 26, noon - 3:15pm (all times US Eastern)

e noon - 1:30: Tutorial Overview

o including a 20-minute intro to each programming model

e 171:30- 1:45: Coffee Break

e 1:45 - 3:15: Parallel programming in Chapel Slack is preferred:
go.lbl.gov/cuf23-slack

Audience questions

Thu July 27, noon - 3:15pm

alternatively use Zoom chat

e noon - 1:30: Parallel programming with UPC++
e 171:30- 1:45: Coffee Break
e 1:45 - 3:15: Parallel programming with Fortran Coarrays

Z> +
ey souroee (G 2PpC
™ National Laboratory =

https://go.lbl.gov/cuf23-slack

Motivation

e You have ...
o Alot of data to process and analyze
o Abig simulation to run
o Or both of the above

e Resources are available

o Your laptop has multiple cores that can process in parallel
o Your lab/institution has a cluster
o Or your lab/institution has a supercomputer

e \Writing a parallel program enables you to analyze data and/or perform
simulations significantly faster.

% 0AK RIDGE @"E“ up Q+

National Laboratory

& When poll is active, respond at pollev.com/michellestrout402
% Text MICHELLESTROUT402 to 22333 once to join

Which programming language(s) do you use the most? (you can
respond to this question 3 times)

C/C++

Fortran

Chapel

Python

Java

R

Perl

Haskell, Scala, ...
Other

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

PGAS Programming Models

e PGAS: Partitioned Global Address space

e Chapel, UPC++, and Fortran with coarrays are PGAS programming models

e A programming model provides an interface and code patterns to a
programmer along with a concept of how code will execute at runtime.

PGAS Programming Models Conceptual global address space
e (Can access variables in global Process Process Process Process
w/virtual w/virtual w/virtual w/virtual
address space Trom each node address address address address
e Implemented with puts and gets space space space space

(RMA: remote memory access)
e Can partition/organize data and
computation to reduce RMA

7"‘**‘&

ETT) 4 OAK RIDGE (\Q_;“’E“ up (XL FORTRAN

National Laboratory

This tutorial: Chapel, UPC++, Fortran with coarrays

e Shared example shown in all three: 2D heat diffusion

e Then other examples per programming model
o Chapel: k-mer counting, image analysis, processing files in parallel
o UPC++: 1-d Jacobi solver, distributed hash table
o Fortran: 2-d heat equation, hello world variants

e Hands On

o Providing a cloud instance, Perlmutter, and Frontier instructions for obtaining a tarball
containing all example programs: go.lbl.gov/cuf23
o You are encouraged to compile, run, and experiment with the examples throughout

e Q&A Protocol

o Model experts are available to answer questions in Slack: go.lbl.gov/cuf23-slack
m You should have received an email invite, or can follow the link above

% 0AK RIDGE @“E“ up Q+

National Laboratory _//

https://go.lbl.gov/cuf23
https://go.lbl.gov/cuf23-slack

Production Applications using these Programming Models

CHAMPS: 3D Unstructured CFD ICAR:
(~100K lines of Chapel) ' e 1 Intermediate
Eric Laurendeau, Simon Bourgault-C6té, Wil o ufly | Complexity
) /. Atmospheric
Matthieu Parenteau, et al. B\ T Research model
Ecole Polytechnique Montréal Mt | [written in

Coarray Fortran

https://github.com/NCAR/icar

MetaHipMer, a genome assembler written in UPC++

TACATATATGGCCAT
TACATATATGGCCATTTAAT

GGGATACCAT ATAGAT
ACGTACAGCGCCGAA

https://github.com/NCAR/icar

Hands On: Compiling and Running Hello Worlds

e Instructions on how to compile and run a hello world for all three
programming models.

e Hands-on examples and instructions: go.lbl.gov/cuf23

o Options include:
m NERSC Perlmutter, OLCF Frontier, AWS Cloud, Docker, ...
o Pause here for attendees to setup their programming environment

ETT) 4 OAK RIDGE @“E“ up Q+

National Laboratory

10

https://go.lbl.gov/cuf23

. . . -
Do you have any parallel programming experience? If so,

what tools have you used?

f Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Shared Problem: 2D Heat Diffusion W,

e Specifically a 2D heat diffusion problem
o 2D diffusion equation is above. Mathematical details: wikipedia.org/wiki/Heat equation
o Discretization solving for the unknown at time step n+1 and spatial coordinate i,j

e Steps in sample codes

o Set some initial conditions for u°
o Estimate u over time and space as shown below
o Show how to parallelize these computations

VAt _
u:z+1 — u 4 (uz+1 _- 2u + ul i) Simplified form

J Ax? J J assume Ax=Ay, and let a=vAt/Ax>

VAt n n
n _ n n ! . . .
L)) (Wi — 2u; +u) =yt 4 g Uity,j T Uiy,

L] L]
A U U

D & B
[T %O\ RIDGE E~ upC
ational Laboratory N

https://wikipedia.org/wiki/Heat_equation

Three questions about how you program

e Have you used a cluster or supercomputer before? If so, what were their
characteristics (humber of nodes, threads per node, etc)?

e \Where do you go when you have programming questions? A colleague, stack
overflow, google search, documentation, ...

e For your code, what computations/libraries are most important for your work?

NOTE: The pollEV survey starts on
the next slide, but it won’t show the
above questions. This slide is to
show you what those questions will
be.

13

m % ,0AK RIDGE ;@‘“E“ up Q+ [ZXTIXY FORTRAN

National Laboratory

A When survey is active, respond at pollev.com/michellestrout402 ..

Three questions about how you program

0 done

L 50 underwav
Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

m
What do you want to learn about Chapel, UPC++, or Coarray

Fortran today?

Top

f Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Schedule for Chapel, UPC++ and Fortran Tutorial
Wed July 26, noon - 3:15pm (all times US Eastern)

e noon - 1:30: Tutorial Overview, 20-minute intro to each programming model
o Chapel Intro

o Fortran with co-arrays Intro
o UPC++ Intro

e 171:30- 1:45: Coffee Break
1:45 - 3:15: Parallel programming in Chapel

go.lbl.gov/cuf23

Thu July 27, noon - 3:15pm

e noon - 1:30: Parallel programming with UPC++
e 1:30 - 1:45: Coffee Break
1:45 - 3:15: Parallel programming with Fortran Coarrays

D (Foy 16
v @A:EL Zt CO-ARRAY Fomm
1= T 3,0AK RIDGE @ 7

https://go.lbl.gov/cuf23

Hewlett Packard
Enterprise

INTRODUCTION TO CHAPEL PARALLEL
PROGRAMMING LANGUAGE

Michelle Strout and Jeremiah Corrado

CUF23: Sponsored by OLCF, NERSC, and ECP
July 26-27,2023

INTRODUCTION TO CHAPEL

e What Chapel is and how programmers are using Chapel in their applications
e Chapel execution model with a parallel and distributed "Hello World"

e 2D Heat Diffusion example: variants and how to compile and run them

e Learning objectives for today's 90-minute Chapel tutorial

2

CHAPEL PROGRAMMING LANGUAGE

Chapel is a general-purpose programming language that provides
ease of parallel programming,
high performance, and
portability.

And is being used in applications in various ways:
refactoring existing codes,
developing new codes,
serving high performance to Python codes (Chapel server with Python client), and
providing distributed and shared memory parallelism for existing codes.

3

APPLICATIONS OF CHAPEL: LINKS TO USERS’ TALKS (SLIDES + VIDEO)

CHAMPS: 3D Unstructured CFD

CHIUW 2021 CHIUW 2022

Lattice-Symmetries: a Quantum Many-Body Toolbox

CHIUW 2022

== e R

Chapel-based Hydrologic;INr»JIodel Calibration

CHIUW 2023

—

Python3 Client mMa Chapel Server

Socket
Dispatcher

Array

neration

Gey

t ! Distributed

Distributed

Object Store
Platform

Arkouda: Interactive Data Science at Massive Scale

CHIUW 2020 CHIUW 2023

Low-pass filter with LOWESS (intrinsically parallely

100

80 .

60 |ys

at Lake Mead

RH (%)

2010 2011 2012 2013 2014 2015
date

Desk dot chpl: Utilities for Environmental Eng.

CHIUW 2022

FEATURES ENSEMBLES
Ex?Lonhanﬁz'an|0~ALE

CrayAl HyperParameter Optimization (HPO)
CHIUW 2021

P
LN

[-z-3] [a a] [1-2-%
ChOp: Chapel-based Optimization

CHIUW 2021 CHIUW 2023

¥

RapidQ: Mapping Coral Biodiversity

CHIUW 2023

CHGL: Chapel Hypergraph Library

" CHIUW 2020

(images provided by their respective teams and used with permission)

ChplUltra: Simulating Ultralight Dark Matter

CHIUW 2020 CHIUW 2022

[s

ChapQG: Layered Quasigeostrophic CFD

?

Your Application Here?

https://wikipedia.org/wiki/Heat_equation

HIGHLIGHTS OF CHAPEL USAGE

CHAMPS: Computational Fluid Dynamics framework for airplane simulation
o Professor Eric Laurendeau’s team at Polytechnique Montreal
« Performance: achieves competitive results w.r.t. established, world-class frameworks from Stanford, MIT, etc.

« Programmability: "We ask students at the master's degree to do stuff that would take 2 years and they do it in
3 months."

Arkouda: data analytics framework (https://github.com/Bears-R-Us/arkouda)
« Mike Merrill, Bill Reus, et al., US DOD
« Python front end client, Chapel server that processes dozens of terabytes in seconds
o April 2023: 1200 GiB/s for argsort on an HPE EX system

apkovda
massive scale
data science

Recent Journal Paper on using Chapel for calibrating hydrologic models

« Marjan Asgari et al, "Development of a knowledge-sharing parallel computing approach for calibrating distributed
watershed hydrologic models", Environmental Modeling and Software.

e They report super-linear speedup

— .

ARKOUDA ARGSORT PERFORMANCE

HPE Apollo (May 2021) ¥—X
e HDR-100 Infiniband network (100 Gb/s)

« 576 compute nodes Arkouda Argsort Performance

o 72 TiB of 8-byte values 9000 - - T T
e ~480 GiB/s (~150 seconds) 8000 - §|'.'28§E8H? /';Apiﬁ 5053, % GBode ——
/7000 |~ HDR-100 IB May 2021, 128 GiB/node —— ~~ ="~~~ "~~~

HPE Cray EX (April 2023) @@ PRCICOION e

« Slingshot-11 network (200 Gb/s) m 9000 - e

+ 896 compute nodes R

o 28 TiB of 8-byte values 2000 b-----o~T-- oo

e ~1200 GiB/s (~24 seconds) 1100 S e e

]

HPE Cray EX (May 2023) =g ’ 1024 2048 4096 8192

o Slingshot-11 network (200 Gb/s)
e 8192 compute nodes

o 256 TiB of 8-byte values

« ~8500 GiB/s (~31 seconds)

A notable performance achievement in ~100 lines of Chapel

— »

INTRODUCTION TO CHAPEL

e Chapel execution model with a parallel and distributed "Hello World"

e 2D Heat Diffusion example: variants and how to compile and run them

e Learning objectives for today's 90-minute Chapel tutorial

7

CHAPEL EXECUTION MODEL AND TERMINOLOGY: LOCALES

e Locales can run tasks and store variables

e Each locale executes on a “compute node” on a parallel system

« User specifies number of locales on executable’s command-line
Four nodes/CPUs

prompt> ./myChapelProgram --numLocales=4 # or ‘"nl 4

Locales array:

locale 2

User’s code starts running as a single task on locale O

TASK-PARALLEL “HELLO WORLD”

hello-dist-node-names.chpl

const numTasks = here.numPUs () ;
coforall tid in 1..numTasks do
writef ("Hello from task %n of %n on $%$s\n",
tid, numTasks, here.name) ;

TASK-PARALLEL “HELLO WORLD”

‘here’ refers to the locale on
which we’re currently running

hello-dist-node-names.chpl

how many processing units

const numTasks = here.numPUs () ; :
2 (think “cores”) does my locale have?

coforall tid in 1. .numTasks do
writef ("Hello from task %n f %n on %s\n",

tid, numTasks, here.name) ; what’s my locale’s name?

10

TASK-PARALLEL “HELLO WORLD”

hello-dist-node-names.chpl

const numTasks =

coforall tid in 1..numTasks do
writef ("Hello from task %n of %$n on %s\n"
tid, numTasks, here.name) ;

here.numPUs () ;

a 'coforall’ loop executes each
iteration as an independent task

> chpl hello-dist-node-names.chpl
> ./hello-dist-node-names
Hello from task 1 of 4 on nl032

Hello from task 4 of 4 on nl032
Hello from task 3 of 4 on nl032
Hello from task 2 of 4 on nl032

|11

TASK-PARALLEL “HELLO WORLD”

hello-dist-node-names.chpl

const numTasks = here.numPUs () ;
coforall tid in 1..numTasks do
writef ("Hello from task %n of %$n on $%$s\n",
tid, numTasks, here.name) ;

> chpl hello-dist-node-names.chpl

> ./hello-dist-node-names

Hello from task 1 of 4 on nl032
Hello from task 4 of 4 on nl032
Hello from task 3 of 4 on nl032
Hello from task 2 of 4 on nl032

So far, this is a shared-memory program

Nothing refers to remote locales,
explicitly or implicitly

TASK-PARALLEL “HELLO WORLD” (DISTRIBUTED VERSION)

hello-dist-node-names.chpl

coforall loc in Locales {

on loc {
const numTasks = here.maxTaskPar; the array of locales we're running on
coforall tid in 1. .numTasks do (introduced a few slides back)

writef ("Hello from task %n of %$n on $%$s\n",
tid, numTasks, here.name) ;

Locale O Locale 1 Locale 2 Locale 3

Locales array:

TASK-PARALLEL “HELLO WORLD” (DISTRIBUTED VERSION)

hello-dist-node-names.chpl create a task per locale
on which the program is running

coforall loc in Locales {

on loc { i
have each task run ‘on’ its locale
const numTasks = here.numPUs () ;

coforall tid in 1..numTasks do

writef ("Hello from task %n of %$n on $%$s\n",
tid, numTasks, here.name);

} > chpl hello-dist-node-names.chpl

} > ./hello-dist-node-names -nl=4
Hello from task 1 of 4 on nl032
Hello from task 4 of 4 on nl032
Hello from task 1 of 4 on nl034
Hello from task of on nl1032
Hello from task of on nl1033
Hello from task of on nl1034
Hello from task of on nl1035

then print a message per core,
as before

4
4
4
4

INTRODUCTION TO CHAPEL

e 2D Heat Diffusion example: variants and how to compile and run them

e Learning objectives for today's 90-minute Chapel tutorial

— .

See https://go.lbl.gov/cuf23-repo for more info

2D HEAT DIFFUSION EXAMPLE and for example code.

e See 'heat_2D.*.chpl' in the Chapel examples
e 'heat_2D.chpl' - shared memory parallel version that runs in locale O
« 'heat_2D_dist.chpl' - parallel and distributed version that is the same as 'heat_2D.chpl' but with distributed arrays
 'heat_2D_dist_buffers.chpl' - parallel and distributed version that copies to neighbors landing pad and then into local halos

PARALLEL HEAT DIFFUSION INHEAT_2D.CHPL

] (‘):_ 1 11 Hindigel .
¢ |q, |o X ".ﬁE
O vahosshs e
uTl uTl+1
Stored 1in un Stored 1in u

Fixed
boundary
values

e 2D heat diffusion PDE

ou o*u

— =V tV—

ot 0x?

02u Simplified form for below

ayZ

assume Ax=Ay, and let

a=vAt/Ax2

e Solving for next temperatures at each time step
using finite difference method

n+1
L,Jj

u

— g n n n n n n
=Uu;;+ a(uHLj Ui —Autug, ui,j_l) ‘

L]

e All updates in a timestep can be done in parallel

forall (i, j) in indicesInner do
uli, Jj] = un[i, J] + alpha *

(un[i, J-1]
un[i, Jt1]

+ un[i-1, 31 + unf[i+1, §]1 +

- 4 *unli, J1);

e Output is the mean and standard deviation of all
the values and time to solution

|17

DISTRIBUTED AND PARALLEL HEAT DIFFUSION IN HEAT_2D DIST.CHPL

e Declaring 'u' and 'un' arrays
const indices = {0..<nx, 0..<ny}
var u: [indices] real;
9: T 11 Hetrduge,l
S s ,?: e Declaring 'u' and 'un' arrays as distributed (e.g.,
O spunnditishasgppragoonsfunnsp il yaslans®
2x2 distribution is shown)
const 1ndices = {0..<nx, 0..<ny},
INDICES = Block.createDomain (indices) ;
var u: [INDICES] real;
u” un+1
Stored in un Stored in u e Reads that cross the distribution boundary will

result in a remote get

PARALLELISM SUPPORTED BY CHAPEL

e Synchronous parallellism

o 'coforall', distributed memory parallelism across processes/locales
with 'on' syntax

coforall

o 'coforall, shared-memory parallelism over threads
« 'cobegin’, executes all statements in block in parallel
o Asynchronous parallelism
 'begin’, creates an asynchronous task
« 'sync' and 'atomic' vars for task coordination
e spawning subprocesses
» Higher-level parallelism abstractions begin
o 'forall', data parallelism and iterator abstraction
o 'foreach’, SIMD parallelism
e 'scan', operations such as cumulative sums

begin

 'reduce’, operations such as summation

—

LEARNING OBJECTIVES FOR TODAY'S CHAPEL TUTORIAL

e Compile and run Chapel programs

e Familiarity with the Chapel execution model including how to run codes in parallel on a single
node, across nodes, and both

e Learn Chapel concepts by compiling and running provided code examples
* Serial code using map/dictionary, (k-mer counting from bioinformatics)
e Parallelism and locality in Chapel
e Distributed parallelism and 1D arrays, (processing files in parallel)
o Distributed parallelism and 2D arrays, (heat diffusion problem will see in UPC++ and CAF)
o Distributed parallel image processing, (coral reef diversity example)
e GPU parallelism (stream example)

e Where to get help and how you can participate in the Chapel community

— .

BERKELEY LAB

Office of Science
Bringing Science Solutions to the World

Coarray Fortran Tutorial

Damian Rouson
Computer Languages & System Software

Hosted by ECP, NERSC, and OLCF, 26-27 July 2023

R

w Introduction to Coarray Fortran (“CAF”)
— Why Fortran Matters
— SPMD parallel execution
— PGAS data structures & RMA

« Heat Conduction Solver
— Compiling and running it

— Understanding it

2

___ID00-01-01 00:00:00
= T

Why Fortran
Matters

Ry
2

A

R

Intermediate Complexity Atmospheric
Research (ICAR) Model
Courtesy of Ethan Gutmann, NCAR

Weather & | -
Climate | Nuclear Energy

——
T—
-
- »
.rk\ . i "

U.S. Nuclear Regulatory Commission r’
File Photo

e %

.
FUN3D Mesh Adaptation for Mars Ascent
Vehicle, Courtesy of Eric Nielsen & Ashley
Korzun, NASA Langley

o —

E Aerospace K<

mBN

|
e

CAF
Philosophy

“The underlying philosophy of our design is to
make the smallest number of changes to the
language required to obtain a robust and
efficient parallel language without requiring the
programmer to learn very many new rules.”

Reid, J., & Numrich, R. W. (2007). Co-arrays in the next
Fortran standard. Scientific Programming, 15(1), 9-26.

Seminal paper:

Numrich, R. W., & Reid, J. (1998, August). Co-Array
Fortran for parallel programming. In ACM SIGPLAN
Fortran Forum (Vol. 17, No. 2, pp. 1-31). New York, NY,
USA: ACM.

Bringing Science Solutions to the World

cd fortran
make run-hi

Single Program Multiple Data (SPMD) parallel execution
— Synchronized launch of multiple “images” (process/threads/ranks)

— Asynchronous execution except where program explicitly synchronizes
— Error termination or synchronized normal termination

rouson — vim hi.f80 — 67x5

[]
1 frogram main

2 implicit none
3 print *,"Hello from image ", this_image(), "of", num_images()
4 end program

| ece
cuf23-tutorial: |

[a

Bringing Science Solutions to the World

ouson — -zsh — 64x19

SPMD Execution Sequence BERKELEY LAB

Bringing Science Solutions to the World

Image 1
T reuson = wim BiI80 = B7xE
1 Program main
2 implicit naone
| 3 print *,"Hello from image ", this_image(), "of", num_images()
| 4 end program j Image 2

TN] reusan = wim hi.f80 — E7x5

1 Program main

2 implicit none

3 print *,"Hello from image ", this_image(), "of", num_images()
4 end program

Time

l print *,"Hello from image ", this_image(), "of", num_images()
print x,"Hello from image ", this_image(), "of", num_images() ¢
¢ end program
end program Image
i it S SR R SRR control
statement

1. After the creation of a fixed number of images, each image’s first “segment” (sequence
of statements) executes.

2. Image control statements totally order segments executed by a single image and 7
partially order segments executed by separate images.

Partitioned Global Address Space
(PGAS)

Coarrays:

— Distributed data structures — greeting

Bringing Science Solutions to the World

cd fortran
make run-hello

— Facilitate Remote Memory Access (RMA) — line 15

[N] cuf23-tutorial — vim hello.f90 — 74x21

program main

I'l One-sided communication of distributed greetings

1
2
3 implicit none

4 integer, parameter
5 integer image

6 character(len=max_greeting_length)
7

8

associate(me => this_image(), ni=>num_images())

:: greeting[*]

:: max_greeting_length=64, writer = 1

scalar coarray

9

10 write(greeting,*) "Hello from image",me,"of",ni ! local (no "[1")
11 sync all ! image control

12

13 if (me == writer) then

14 do image = 1, ni

15 print *,greeting[image] ! one-sided communication: "get"

16 end do

17 end if

18

19 end associate
20 end program

Compiling & Running hello. £90
BERKELEY LAB

rrrrrr

Bringing Science Solutions to the World

cuf23-tutorial: ||

Compiling and Running the Heat i
Equation Solver BERKELEY LAB

Bringing Science Solutions to the World

. ® [] [cuf23-tutorial — -zsh — 78x23]

cuf23-tutorial: I

10

Heat Equation BERKELEY LAB

Bringing Science Solutions to the World

cd fortran
make run-heat-equation

OT)
D T
By aV

(TY" L =T\ L At-a - VH{T)"

T = T+ dt * alpha * .laplacian. T

Heat Equation BERKELEY LAB

Bringing Science Solutions to the World

cd fortran
make run-heat-equation

OT)
D T
By aV

(TY" L =T\ L At-a - VH{T)"

§¥E: §¥E+ dt |*|alpha [* .1ap1acian.§¥€

pure user-defined operators

Class Dlag ram BERKELEY LAB

Bringing Science Solutions to the World

© subdomain_2D_t

s_ :reall]

define()

laplacian(rhs: subdomain_2D_t) : subdomain_2D_t

multiply(lhs : subdomain_2D_t, rhs : subdomain_2D_t) : subdomain_2D_t
add(lhs : subdomain_2D_t, rhs : subdomain_2D_t) : subdomain_2D_t
copy(lhs : subdomain_2D_t, rhs : subdomain_2D_t)

dx()

dy()

values()

exchange_halo()

allocate_halo_coarray()

Halo Exchange

116
117

134
135
137

232
233
234
235
236

Asubdomain halo ...
y — —

Bringing Science Solutions to the World

-

- -

- -

real(rkind), allocatable :: halo_x(:,:)I[:]
integer, parameter :: west=1, east=2

me = this image()

num_subdomains = num_images()

my_nx = nx/num_subdomains + merge(1l, 0, me <=

subroutine exchange_halo(self)
class(subdomain_2D_t), intent(in) :: self
if (me>1) halo_x(east,:)[me-1] self%ss (1,:
if (me<num_subdomains) halo_x(west,:) [me+1]
end subroutine

mod(nx, num_subdomains))

)

self%s_(my_nx, :)

13

-~~~

Loop-Level Parallelism Gl crieLey Lap

188
189

190
191

Bringing Science Solutions to the World

0 @ 40 2 Jo L ip-172-31-33-230.us-west-2.compute.inter
Applications Places TAU: ParaProf: Statistics for: node 0 - fhome/tutorial/SRC/demo/matcha Wed 04:13 & 4-=.l
TAU: ParaProf: Statistics for: node 0 - /home/tutorial/SRC/demo/matcha - o x
File Options Windows Help
DRNRERRRREREANE RN F R RANENRE R RN EEE NN NNNNONANENNENENENEEM
I ST Name Exclu... | Inclu...7| Calls (Chil... |
B .TAU application 0 1516 1 1=
¢ Otaupreload_main 0.801 1.516 161,499
¢ M[CONTEXT] taupreload_main 0 0811 247 0
¢ O[SUMMARY] _ subdomain_2d_m_MOD_laplacian [{/home/tutorial/SRC/demo/matcha/example/heat-equation.fo0 }] 0.6 0.6 20 0
O[SAMPLE] _ subdomain_2d_m_MOD_laplacian [{/home/tutorial/SRC/demo/matcha/example/heat-equation.fo0} {188}] 0.54 0.54 18 0
B[SAMPLE] _ subdomain_2d_m_MOD_laplacian [{/home/tutorial/SRC/demo/matcha/example/heat-equation.f0} {183}] 0.03 0.03 1 0
B[SAMPLE] _ subdomain_2d_m_MOD_laplacian [{/home/tutorial/SRC/demo/matcha/example/heat-equation.fo0} {187 }] 0.03 0.03 1 0
E[SAMPLE] __subdomain_2d_m_MOD_copy [{/home/tutorial/SRC/demo/matcha/example/heat-equation.fo0} {217 }] 0.06 0.06 2 0
B[SAMFPLE] _ subdomain_2d_m_MOD_add [{/home/tutorial/SRC/demo/matcha/example/heat-equation.fo0} {212}] 0.06 0.06 2 [v]
B[SAMPLE] _ subdomain_2d_m_MOD_multiply [{/home/tutorial/SRC/demo/matcha/example/heat-equation.fo0} {207 }] 0.03 0.03 1 0
M[SAMPLE] raw_write [{unix.c} {0}] 0.03 0.03 1 0
BW[SAMPLE] _ tls_get_addr [{/usr/lib64/ld-2.26.50} {0}] 0.03 0.03 1 0
~@MPI_Win_lock() 0.363 0.363 20,481 0
= MPI_Barrier() 0.21 0.21 12 o~
B MPI_Finalize() 0.094 0.094 1k 0
EMPI_Win_unlock() 0.018 0.01820,481 0
EMPI_Put() 0.017 0.017 20,480 0
EMPI_Init_thread() 0.01 0.01 1 0
E MPI Collective Sync 0.002 0.002 2 0
EMPI_Comm_dup() 0 0.001 1 1
EMPI_Win_create() 0 0 1 o

do concurrent(j=2:ny-1) line continuation
laplacian_rhs%s_(i, j) = &‘*””””
(halo_left(j) - 2#rhs%ss_(i, j) + rhsss_(i+1,j))/dx_*k2 + &
(rhs%s_(i, j—-1) — 2*rhs%s_(i, j) + rhs%s_(i ,j+1))/dy_x*x*2

end do 14

Comments BERKELEY LAB

Bringing Science Solutions to the World

L Coarray Fortran began as a syntactically small extension to Fortran 95:
— Square-bracketed “cosubscripts” distribute & communicate data
L Integration with other features:

— Array programming: colon subscripts

—OORP: distributed objects
Q Minima”y invaSive: Desktop — vim pgas.f90 — 56x15

Jrogram main

implicit none

—Drop brackets when not type foo
integer :: bar=2
. . end type
CommunlCatlng integer, parameter :: local_size=5
type(foo) :: object(local_size) [*]=foo()
.] . . . associate(me=>this_image(),n=>num_images())
w Communication is eXp“CIt: if (n<3) error stop "Insufficient number of images."
sync all
if (me=n) object(1:2) = object(3:4) [me+l
—Use brackets when et S Plees i) el

if (me==1) object(5)[2] = object(5)[3]
end associate

communicating end program

Office of Science
Bringing Science Solutions to the World

Acknowledgements

This presentation includes efforts on the part of contributors to the Caffeine, GASNet-EX. Inference-
Engine, Matcha, Nexport, and OpenCoarrays software libraries and members of the Computer
Languages and Systems Software (CLaSS) Group and our collaborators:

Dan Bonachea, Jeremiah Bailey, Tobias Burnus, Alessandro Fanfarillo, Daniel Ceils Garza, Ethan
Gutmann, Jeff Hammond, Peter Hill, Paul Hargrove, Dominick Martinez, Tan Nguyen, Katherine
Rasmussen, Soren Rasmussen, Brad Richardson, Sameer Shende, David Torres, Andre Vehreschild,
Jordan Welsman, Nathan Weeks, Yunhao Zhang

This research was supported in part by the Exascale Computing Project (17-SC-20-SC), a
collaborative effort of two U.S. Department of Energy organizations (Office of Science and the
National Nuclear Security Administration) responsible for the planning and preparation of a capable
exascale ecosystem, including software, applications, hardware, advanced system engineering and
early testbed platforms, in support of the nation’s exascale computing imperative.

This research used resources of the National Energy Research Scientific Computing Center
(NERSC), a U.S. Department of Energy Office of Science User Facility operated under Contract No.
DE-AC02-05CH11231, as well as This research used resources of the Oak Ridge Leadership
Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of
Science of the U.S. Department of Energy under Contract No. DE-AC05:000R22725.

.7/} BERKELEY LAB (0 ENERGY

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

UPC++: An Asynchronous RMA/RPC Library
for Distributed C++ Applications

Amir Kamil

https://go.lbl.gov/ICUF23
pagoda@lbl.gov

OAK RIDGE
Nat1onal Laborator
Applied Mathematics and Computational Research Division L
| Lawrence Berkeley National Laboratory G
Berkeley, California, USA = \(\ ll—)

Acknowledgements

This presentation includes the efforts of the following past and present members of the
Pagoda group and collaborators:

Hadia Ahmed, John Bachan, Scott B. Baden, Dan Bonachea, Johnny Corbino,
Rob Egan, Max Grossman, Paul H. Hargrove, Steven Hofmeyr, Mathias Jacquelin,
Amir Kamil, Colin MacLean, Damian Rouson, Erich Strohmaier, Daniel Waters,
Katherine Yelick

This research was supported in part by the Exascale Computing Project (17-SC-20-SC), a
collaborative effort of two U.S. Department of Energy organizations (Office of Science and the
National Nuclear Security Administration) responsible for the planning and preparation of a capable
exascale ecosystem, including software, applications, hardware, advanced system engineering and
early testbed platforms, in support of the nation’s exascale computing imperative.

This research used resources of the National Energy Research Scientific Computing Center
(NERSC), a U.S. Department of Energy Office of Science User Facility operated under Contract No.
DE-AC02-05CH11231, as well as This research used resources of the Oak Ridge Leadership
Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of
Science of the U.S. Department of Energy under Contract No. DE-AC05-000R22725.

- =
U ‘ + "\| .
Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov BERKELEY LAB

What does UPC++ offer?

Asynchronous behavior
RMA.:
Get/put to a remote location in another address space

Low overhead, zero-copy, one-sided communication.
RPC: Remote Procedure Call:

Moves computation to the data

Design principles for performance
All communication is syntactically explicit
All communication is asynchronous: futures and promises

Scalable data structures that avoid unnecessary replication

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

Some motivating applications

Many applications involve asynchronous
updates to irregular data structures

« Adaptive meshes

« Sparse matrices

« Hash tables and histograms
« Graph analytics

Seismo,Berkeley

« Dynamic work queues
Processar list:

Irregular and unpredictable data movement: . . [l

« Space: Pattern across processors M o

« Time: When data moves — I e

+ Volume: Size of data ——n e
ExaBiome SymPACK

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

Some motivating system trends

The first exascale systems appeared in 2022

« Cores per node is growing

» Accelerators (e.g. GPUs) are becoming more important
e Latency is not improving

Need to reduce communication costs in software

Overlap communication to hide latency

Reduce memory using smaller, more frequent messages

Minimize software overhead

Use simple messaging protocols (RDMA)

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

Reducing communication overhead

Let each process directly access another’'s memory via a global pointer

Communication is one-sided — there is no “receive” operation
No need to match sends to receives

No unexpected messages

« No need to guarantee message ordering

two-sided message host

message id data payload

one-sided RMA put

address data payload \/\

« All metadata provided by the initiator, rather than split
between sender and receiver

memory
User buffer

« Supported in hardware through RDMA (Remote Direct Memory Access)
Looks like shared memory: shared data structures with asynchronous access

+ A
U ‘ + "\| .
Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

BERKELEY LAB

One-sided GASNet-EX vs one- and two-sided MPI

Uni-directional Flood Bandwidth (many-at-a-time)

w

Perimutter Phase-I results collected July 2022, all others collected April 2023.

GASNet-EX tests were run using then-current GASNet library and its tests.

MPI tests were run using then-current center default MPI version and Intel MPI Benchmarks.

All tests use two nodes and one process per node.

For details see LCPC’18 doi.org/10.25344/S4QP4W and PAW-ATM’ 22 doi.org/10.25344/S40C7D

See also: gasnet.lbl.gov/performance ++ S A
7 Frontier Perlmutter Summit Cori u |
Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

Phase-| Phase-| BERKELEY LAB

\V]

Four dIStInCt network hardwa re typeS Frontier: AMD Trento, Slingshot-11, HPE Cray MPICH 12 Perlmutter Phase-l: AMD Milan, Slingshot-10, HPE Cray MPICH
. 25 T T T T T T T T — T S N N — ——
The performance of one-sided 2 et ||| 7]
A20 B 7 = — /)
GASNet-EX matches or exceeds that 27| [g - |
of MPI RMA and message-passing: S5 |Z 112
£ o £ 6 -
S =) S
» 8-byte Put latency 19 - 52% better |50} 1113,
; | |8 e
u
i 8-byte Get Iatency 16 - 49% better |© st) -~ GASNeLEX Get |1 ° -~ GASNet-EX Get |-
o 7 MPI SendiRecy 7 Pl iSendicy
° 1 11 - 0&'"""{’7’ 1 1 1 1 T T 0 1 1 T T
Better ﬂOOd bandWIdth efﬂCIenCy 256 B 1kiB 4kiB 16kiB 64kiB 256kiB 1MiB 4MiB 256 B 1kiB 4kiB 16kiB 64kiB 256kiB 1MiB 4MiB
often reaching same or better Transfer Size Transfer Size
peak at % or % the transfer Size 25Summit: IBM Power9, dual-rail EDR InfiniBand, IBM Spectrum MPI 10 Cori Phase-I: Intel Haswell, Cray Aries, Cray MPICH
T T T T T T ﬁ7‘$ T)IG___. B I_“_ _ T B | e
9 -
8-Byte RMA Operation Latency (one-at-a-time) |20 [1 ||= 57’ I
a1] 1] B
8 2l | 1 1|S 6t
EE GASNet-EX Put £ £ 5}
oL == MPIRMAPut ||||Z 1 |2 4L
= mmmm GASNet-EX Get | || (510 g 3 4
el E==m MP| RMA Get S —%— GASNet-EX Put S 3 —=— GASNet-EX Put
- = o @ MPIRMAPut || ||@ MPIRMAPut | |
g 9 : S5 NPT RMAGe S5 NPT RMAGet
25 8 o == MPI ISend/IRecv (1) : MPI ISend/IRecv | |
| Fe 1 1 I 1 1 1 T
S 4 & 256 B 1kiB 4kiB 16kiB 64kiB 256kiB 1MiB 4MiB 256 B 1kiB 4kiB 16kiB 64kiB 256kiB 1MiB 4MiB
= § Transfer Size Transfer Size
2 3
(@) o
<
=
o

—_

o

A Partitioned Global Address Space programming model

Global Address Space
« Processes may read and write shared segments of memory
« Global address space = union of all the shared segments

Partitioned
« Global pointers to objects in shared memory have an affinity to a particular process
« Explicitly managed by the programmer to optimize for locality
« In conventional shared memory, pointers do not encode affinity

Global address space Shared I Shared I Shared I Shared

Segment I Segment I Segment I Segment

Private [Private [Private [Private
Segment I Segment I Segment I Segment

Process 0 Process 1 Process 2 Process 3

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov up L BERKELEY LAB

Private memory

The PGAS model

Partitioned Global Address Space
Support global memory, leveraging the network’s RDMA capability
Distinguish private and shared memory
Separate synchronization from data movement

Languages that provide PGAS: Chapel, Co-Array Fortran (Fortran 2008),
UPC, Titanium, X10

Libraries that provide PGAS: OpenSHMEM, Co-Array C++, Global Arrays,
DASH, MPI-RMA

This presentation is about UPC++, a C++ library developed at Lawrence
Berkeley National Laboratory

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

Execution model: SPMD

Like MPI and Coarray Fortran, UPC++ uses a SPMD model of execution,
where a fixed number of processes run the same program

int main() {
upcxx::init();
cout << "Hello from " << upcxx::rank me() << endl;
upcxx: :barrier();
if (upcxx::rank me() == 0) cout << "Done." << endl;
upcxx::finalize();

Program Start

Print I Print I Print I Print I Print I Print

Barrier

Program End

10

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov BERKELEY LAB

Global pointers

Global pointers are used to create logically shared but physically
distributed data structures

Parameterized by the type of object it points to, as with a C++ (raw)
pointer: e.g. global ptr<double>, global ptr<Node>

Global
address space

Private
memory

Process 0 Process 1 Process 2 Process 3
global_ ptr<Node>

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

Global vs raw pointers and affinity
The affinity identifies the process that created the object
Global pointer carries both an address and the affinity for the data

Raw C++ pointers (e.g. Node*) can be used on a process to refer to
objects in the global address space that have affinity to that process

Global
address space

Private
memory

Process 0 Process 1 Process 2 Process 3
global_ ptr<Node>

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

13

How does UPC++ deliver the PGAS model?

UPC++ uses a “compiler-free,” library approach _g

UPC++ leverages C++ standards,
needs only a standard C++ compiler

Relies on GASNet-EX for low-overhead communication
Efficiently utilizes network hardware, including RDMA
Provides Active Messages on which UPC++ RPCs are built
Enables portability (laptops to supercomputers)

Designed for interoperability
Same process model as MPI, enabling hybrid applications

On-node compute models (e.g. OpenMP, CUDA, HIP, Kokkos) can
be mixed with UPC++ as in MPI+X

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

UPC++ on top of GASNet

Two processor partitions:
 Intel Haswell (2 x 16 cores per node)
« Intel KNL (1 x 68 cores per node)

Experiments on NERSC Cori:
« Cray XC40 system

2.5

107 4+ MmpIRMA |
:] —— UPC+4+
2.0 . 84
(@)]
] Q
— g ‘!‘{l .
w 1 i
& 157 = E 6-_
>\ ' &
£ 1.0 o : 4 B
ha | _ » 2 1 =
0.5 | = _ =
| —— MPI RMA o S
1 == UPQ++ o o
0'024 2'5 2'3 2'10 212 2I4 2I6 2I8 2I10 2I12 2i4 2I16 2I18 2:?0 2I22
Size (bytes) Size (bytes)

Round-trip Put Latency (lower is better) Flood Put Bandwidth (higher is better)
Data collected on Cori Haswell (https://doi.org/10.25344/S4V88H)

14

+B
up ("

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

15

Asynchronous communication (RMA)

By default, all communication operations are split-phased
Initiate operation

Wait for completion
A future holds a value and a state: ready/not-ready

global ptr<int> gptrl = ...;
future<int> f1 = rget(gptrl);
// unrelated workRk...

int t1 = fl.wait();

Wait returns the result when
the rget completes

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

Remote procedure call (RPC)

Execute a function on another process, sending arguments and returning an
optional result
1.Initiator injects the RPC to the target process
2.Target process executes fn(argl, arg2) at some later time determined at the target
3.Result becomes available to the initiator via the future

Many RPCs can be active simultaneously, hiding latency

@ upcxx: :rpc(target, 2 Execute fn(argl, arg2)
fn, argl, arg2) on process target

(3 Result available
via a future

Process future Process
(initiator) (target)

++ - §
16 up(C 2
Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov BERKELEY LAB

17

n+1

- n,
i,j

— n n n n n
=ul; +a(ulyy; tuly; —4uly Hulg tuly)

u

Hands-on: 2D heat diffusion

Everything needed for the hands-on activities is at:
https://go.lbl.gov/ICUF23

Online materials include:
« Module info for NERSC Perlmutter, OLCF Frontier, and other machines
« Download links to install UPC++

Once you have set up your environment, copied the tutorial materials, and
changed to the cuf23/upcxx directory:

Command to run
in the terminal
S| make run-heat2d

upcxx heat2d.cpp -Wall -o heat2d

Copy this and add arguments to change the

problem size, e.g.:

upcxx-run -N 1 -n 4 ./heat2d 8192 8192

upcxx-run -N 1 -n 4 ./heat2d

[2] My Neighbors: (1, 3) My Domain: (2048,3072)
[3] My Neighbors: (2, -1) My Domain: (3072,4096)
[0] My Neighbors: (-1, 1) My Domain: (0,1024)

[1] My Neighbors: (0, 2) My Domain: (1024,2048)

[0] mean temperature=1.06256 | Solve time: 0.734826 seconds

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov up (BERKELEY LAB

Hewlett Packard

Enterprise
PROGRAMING IN CHAPEL

Michelle Strout and Jeremiah Corrado

CUF23: Sponsored by OLCF, NERSC, and ECP
July 26-27,2023

LEARNING OBJECTIVES FOR TODAY'S CHAPEL TUTORIAL

e Compile and run Chapel programs

e Familiarity with the Chapel execution model including how to run codes in parallel on a single
node, across nodes, and both

e Learn Chapel concepts by compiling and running provided code examples
* Serial code using map/dictionary, (k-mer counting from bioinformatics)
e Parallelism and locality in Chapel
e Distributed parallelism and 1D arrays, (processing files in parallel)
o Distributed parallelism and 2D arrays, (heat diffusion problem will see in UPC++ and CAF)
o Distributed parallel image processing, (coral reef diversity example)
e GPU parallelism (stream example)

e Where to get help and how you can participate in the Chapel community

— .

HOW TO PARTICIPATE IN THIS TUTORIAL AND AFTERWARDS

e During the tutorial today and tomorrow (July 26-27, 2023)
« Download the tarball of examples and follow the instructions in the README

curl -LO https://go.lbl.gov/cuf23.tar.gz
tar xzf cuf23.tar.gz

cd cuf23/

o After the tutorial

o The cuf23 tarball will still be available or clone from hiifps://go./bl.gov/cuf23-repo for Chapel code
o Attempt this Online website for running Chapel code

— Go to main Chapel webpage at https://chapel-lang.org/ and click on the ATO icon on the lower left
« Using a container on your laptop

— First, install docker for your machine and then start it up O m D
— Then, the below commands work with docker n -
docker pull docker.io/chapel/chapel-gasnet # takes about 5 minutes

docker run --rm -v "SPWD":/myapp -w /myapp chapel/chapel-gasnet chpl hello.chpl
docker run --rm -v "S$PWD":/myapp -w /myapp chapel/chapel-gasnet ./hello -nl 1

— .

SERIAL CODE USING MAP/DICTIONARY: K-MER COUNTING

‘Map’ and 'l0O" are two of the standard
libraries provided in Chapel. A 'map'is like a

kmer.chpl

use Map, I10;

config const infilename = "kmer
config const k = 4;

var sequence, line string;

open (infilename,
f.reader () ;
.readLine (line) {

line.strip ()

var T
var infile
while infile

sequence +=

}

var nkmerCounts

for ind in 0..<(sequence.size-k)
nkmerCounts [sequence[ind. .#k]]

}

ioMode.r) ;

map (string, int);

dictionary in python.

large input.txt";

‘config const' indicates a configuration
constant, which result in built-in
command-line parsing

Reading all of the lines from the input
file into the string 'sequence’.

The variable 'nkmerCounts' is being

declared as a dictionary mapping
strings to ints

{ Counting up each kmer in the sequence
= 1

—

| 24

make run-—-kmer

EXPERIMENTING WITH THE K-MER EXAMPLE

e Some things to try out with 'kmer.chpl'
chpl kmer.chpl
./kmer -nl 1

./kmer -nl 1 —--k=10 # can change k
./kmer -nl 1 --infilename="kmer.chpl" # changing infilename
./kmer -nl 1 --k=10 --infilename="kmer.chpl" # can change both

» Key concepts
e 'use' command for including modules
« configuration constants, '‘config const"'
 reading from a file
e 'map' data structure

— .

LEARNING OBJECTIVES FOR TODAY'S CHAPEL TUTORIAL

e Compile and run Chapel programs

e Familiarity with the Chapel execution model including how to run codes in parallel on a single
node, across nodes, and both

e Learn Chapel concepts by compiling and running provided code examples

e Parallelism and locality in Chapel

e Distributed parallelism and 1D arrays, (processing files in parallel)

o Distributed parallelism and 2D arrays, (heat diffusion problem will see in UPC++ and CAF)
o Distributed parallel image processing, (coral reef diversity example)

e GPU parallelism (stream example)

e Where to get help and how you can participate in the Chapel community

— .

PARALLELISM SUPPORTED BY CHAPEL

e Synchronous parallellism

o 'coforall', distributed memory parallelism across
processes/locales with 'on' syntax

o 'coforall’, shared-memory parallelism over threads

« 'cobegin’, executes all statements in block in parallel
o Asynchronous parallelism

 'begin’, creates an asynchronous task

« 'sync' and 'atomic' vars for task coordination

e spawning subprocesses
e Higher-level parallelism abstractions
‘forall', data parallelism and iterator abstraction
‘foreach’, SIMD parallelism
'scan’, operations such as cumulative sums

'reduce’, operations such as summation

—

coforall loc in Locales do on loc { /* ... */
coforall tid in 0..<numTasks { /* */)
cobegin { doTaskO(); doTaskl(); doTaskN () ;
var x atomic int = 0, vy sync int = 0;
sync {

begin x.add (1) ;

begin y.writeEF (1) ;

begin x.sub (1) ;

begin y.writeFF (0) ;

}
assert (x.read|()
assert (y.readFE ()

) g
) S

var n = [1i in 1..10] i*i;

forall x in n do x += 1;

var nPartialSums = + scan n;
var nSum = + reduce n;

}

}

APPLICATIONS OF CHAPEL: LINKS TO USERS’ TALKS (SLIDES + VIDEO)

CHAMPS: 3D Unstructured CFD

CHIUW 2021 CHIUW 2022

Lattice-Symmetries: a Quantum Many-Body Toolbox

CHIUW 2022

== e R

Chapel-based Hydrologic;INr»JIodel Calibration

CHIUW 2023

—

Python3 Client mMa Chapel Server

Socket
Dispatcher

Array

neration

Gey

t ! Distributed

Distributed

Object Store
Platform

Arkouda: Interactive Data Science at Massive Scale

CHIUW 2020 CHIUW 2023

Low-pass filter with LOWESS (intrinsically parallely

100

80 .

60 |ys

at Lake Mead

RH (%)

2010 2011 2012 2013 2014 2015
date

Desk dot chpl: Utilities for Environmental Eng.

CHIUW 2022

FEATURES ENSEMBLES
Ex?Lonhanﬁz'an|0~ALE

CrayAl HyperParameter Optimization (HPO)
CHIUW 2021

P
LN

[-z-3] [a a] [1-2-%
ChOp: Chapel-based Optimization

CHIUW 2021 CHIUW 2023

¥

RapidQ: Mapping Coral Biodiversity

CHIUW 2023

CHGL: Chapel Hypergraph Library

" CHIUW 2020

(images provided by their respective teams and used with permission)

ChplUltra: Simulating Ultralight Dark Matter

CHIUW 2020 CHIUW 2022

[s

ChapQG: Layered Quasigeostrophic CFD

?

Your Application Here?

|28

USE OF PARALLELISM IN SOME APPLICATIONS AND BENCHMARKS

Application | Distributed | Threaded | Asynchronous | 'cobegin’ sync or subprocesses | forall | scan
‘coforall ‘coforall 'begin’ atomic vars

HPO v v v

Arkouda v v v v

CHAMPS v v

Chop v v v Vv

ParFlow v

Coral Reef v v v v

Task Graph v v

— .

PARALLELISM ACROSS LOCALES AND WITHINLOCALES |7°"¢ runTheiiopar

e Parallel hello world
« hellopar.chpl

o Key concepts

 configuration constants, 'config const'
e range expression, 'O..<tasksPerLocale'
o 'writeln'

e inline comments start with '//'

‘coforall' over the "Locales’ array with an "on’ statement
o 'coforall' creating some number of tasks per locale

// can be set on the command line with --tasksPerLocale=2

config const tasksPerlocale = 1;

// parallel loops over nodes and then over threads

coforall loc in Locales do on loc {
coforall tid in 0. .<tasksPerLocale {

writeln ("Hello world! ",
"(from task ", tid,
" of ", tasksPerLocale,

on locale ", here.id,

" of ", numLocales, ")");

ISO

LOCALES AND EXECUTION MODEL IN CHAPEL

e In Chapel, a locale refers to a compute resource with...

e processors, so it can run tasks
e memory, so it can store variables

e For now, think of each compute node as having one locale run on it

Node O

Compute

Compute

Node 1

Compute

Node 2

[]Memory

Compute
Node 3

Processor Core

31

LOCALES AND EXECUTION MODEL IN CHAPEL

e Two key built-in variables for referring to locales in Chapel programs:

« Locales:
 here:

An array of locale values representing the system resources on which the program is running

The locale on which the current task is executing

Locale O

Locale 1

Locale 2

[]Memory

Locale 3

Processor Core

32

KEY CONCERNS FOR SCALABLE PARALLEL COMPUTING

1. parallelism: Which tasks should run simultaneously?
2. locality: Where should tasks run? Where should data be allocated?

Locale 1

dhe dh
O O dh

Locale 2

Processor Core

[]Memory

33

BASIC FEATURES FOR LOCALITY

All Chapel programs begin running

basics-on.chpl
as a single task on locale O

writeln ("Hello from locale ", here.id);

Variables are stored using the
memory local fo the current task

var A: [1..2, 1..2] real;

on Locales[1] {
var B: [1..2, 1..2] real; on-clauses move tasks

to other locales

¥
remote variables can be
accessed directly

This is a serial, but distributed computation

Locale O Locale 1 Locale 2 Locale 3

o o

—

— .

BASIC FEATURES FOR LOCALITY

basics-for.chpl

writeln ("Hello from locale ",
var A: [1..2, 1..2] real;

for loc in Locales {

on loc {
var B = A;

}

here.id) ;

This is also a serial, but distributed computation

Locale O ‘

o —

Locale 1

o

Locale 2

o

1

S \._
a \,~
e —— —

This loop will serially iterate over

the program’s locales

Locale 3

o

™ |

H]

35

MIXING LOCALITY WITH TASK PARALLELISM

basics-coforall.chpl

writeln ("Hello from locale ", here.id);

var A: [1..2, 1..2] real;

The coforall loop creates

e a parallel task per iteration

on loc {
var B = A;

}

Locale O ‘ Locale 1 Locale 2 Locale 3

R

ARRAY-BASED PARALLELISM AND LOCALITY

basics-distarr.chpl

writeln ("Hello from locale ", here.id);

real;

var A: [1..2, 1..2]

use BlockDist;

var D = Block.createDomain({1..2, 1..2}

var B: [D] real;
B = A;

They also result in parallel distributed computation

Locale O Locale Locale 2
Lt ¢ @
__L_J !ST\\\\\ L™

Chapel also supports distributed
domains (index sets) and arrays

Locale 3

o

™ |

37

PARALLELISM ACROSS LOCALES AND WITHINLOCALES |7°"¢ runTheiiopar

e Parallel hello world
« hellopar.chpl

o Key concepts

‘coforall' over the "Locales’ array with an "on’ statement
o 'coforall' creating some number of tasks per locale

 configuration constants, 'config const'
e range expression, 'O..<tasksPerLocale'
o 'writeln'

e inline comments start with '//'

e Things to try

./run-hellopar -nl 1 --tasksPerLocale=3
./run-hellopar -nl 2 --tasksPerLocale=3

—

// can be set on the command line with --tasksPerLocale=2

config const tasksPerlocale = 1;

// parallel loops over nodes and then over threads

coforall loc in Locales do on loc {
coforall tid in 0. .<tasksPerlLocale {

writeln ("Hello world! ",
"(from task ", tid,
" of ", tasksPerLocale,
" on locale ", here.id,

" of ", numLocales, ")");

|38

PARALLELISM AND LOCALITY ARE ORTHOGONAL IN CHAPEL

e This is a parallel, but local program:

coforall i in 1..msgs do
writeln ("Hello from task ", 1i);

e This is a distributed, but serial program:

writeln ("Hello from locale 0!™);
on Locales[l] do writeln("Hello from locale 1!");
on Locales[2] {

writeln("Hello from locale 2!");

on Locales[0] do writeln("Hello from locale 0!");

}

writeln ("Back on locale 0");

e This is a distributed parallel program:

coforall i in 1..msgs do
on Locales[i%numLocales] do
writeln ("Hello from task ", i, " running on locale ",

here.id);

—

39

LEARNING OBJECTIVES FOR TODAY'S CHAPEL TUTORIAL

e Compile and run Chapel programs

e Familiarity with the Chapel execution model including how to run codes in parallel on a single
node, across nodes, and both

e Learn Chapel concepts by compiling and running provided code examples

e Distributed parallelism and 1D arrays, (processing files in parallel)

e Distributed parallelism and 2D arrays, (heat diffusion problem will see in UPC++ and CAF)
e Distributed parallel image processing, (coral reef diversity example)

e GPU parallelism (stream example)

e Where to get help and how you can participate in the Chapel community

— o

PROCESSING FILES IN PARALLEL

e See 'parfilekmer.chpl' in the repository

o Some things to try out with 'parfilekmer.chpl'

chpl parfilekmer.chpl --fast
./parfilekmer -nl 2 --dir="SomethingElse/"

./parfilekmer -nl 2 —--k=10

make run-parfilekmer

change dir with inputs files

can also change k

|41

ANALYZING MULTIPLE FILES USING PARALLELISM

parfilekmer.chpl

use FileSystem;

config const dir = “DataDir”;

var flList = findFiles(dir);

var filenames =
Block.createArray (0. .<flList.size,string);

filenames = flist;

// per file word count
forall f in filenames {

// code from kmer.chpl

prompt> chpl --fast parfilekmer.chpl
prompt> ./parfilekmer -nl 1
prompt> ./parfilekmer -nl 4

shared and distributed-memory
parallelism using forall’

* in other words, parallelism within
the locale/node and across
locales/nodes

a distributed array
command line options to indicate
number of locales

BLOCK DISTRIBUTION OF ARRAY OF STRINGS

Locale O Locale 1

"filenamel" | "filename2" | "“filename3" | "filename4" | "“filename5" | "filename6" | "filename7" | "filename8"

e Array of strings for filenames is distributed
across locales

o ‘forall' will do parallelism across locales and then
prompt> chpl --fast parfilekmer.chpl within each locale to take advantage of multicore

prompt> ./parfilekmer -nl 2

make run-parfilekmer

PROCESSING FILES IN PARALLEL

e See 'parfilekmer.chpl' in the repository

o Some things to try out with 'parfilekmer.chpl'

chpl parfilekmer.chpl --fast
./parfilekmer -nl 2 --dir="SomethingElse/" # change dir with inputs files

./parfilekmer -nl 2 —--k=10 # can also change k

e Concepts illustrated
o 'forall' provides distributed and shared memory parallelism when do a ‘forall’
over the Block distributed array

« No puts and gets happening yet

— »

LEARNING OBJECTIVES FOR TODAY'S CHAPEL TUTORIAL

e Compile and run Chapel programs

e Familiarity with the Chapel execution model including how to run codes in parallel on a single
node, across nodes, and both

e Learn Chapel concepts by compiling and running provided code examples

o Distributed parallelism and 2D arrays, (heat diffusion problem will see in UPC++ and CAF)
o Distributed parallel image processing, (coral reef diversity example)
e GPU parallelism (stream example)

e Where to get help and how you can participate in the Chapel community

— .

CHAPEL SUPPORTS A GLOBAL NAMESPACE WITH PUTS AND GETS

Note 1: Variables are allocated on the locale where the task is running

onClause.chpl

config const verbose = false;
var total = O,
done = false;

locale O

on Locales[1l] {
var x, y, z: int;

CHAPEL SUPPORTS A GLOBAL NAMESPACE

Note 2: Tasks can refer to lexically visible variables, whether local or remote

onClause.chpl

config const verbose = false;
var total = O,
done = false;

on Locales[1] {
if !done {
if verbose then

total += computeMyContribution() ;
}

writef ("Adding locale 1’s contribution");

code runs on locale 1,

but refers to values

locale O stored on locale O

if !done {
if verbose then

writef ("Adding..

total += computi..

}

locale 1

I 47

2D HEAT DIFFUSION EXAMPLE make run-heat 2D

make run-heat 2D dist
make run-heat 2D buffers

e See 'heat_2D.*.chpl' in the Chapel examples

e 'heat_2D.chpl' - shared memory parallel version that runs in locale O
« 'heat_2D_dist.chpl' - parallel and distributed version that is the same as 'heat_2D.chpl' but with distributed arrays
 'heat_2D_dist_buffers.chpl' - parallel and distributed version that copies to neighbors landing pad and then into local halos

e Some things to try out with these variants
chpl heat 2D.chpl
./heat 2D -nl 1

--nt 10 -—-nx=2048 —--ny=2048 # decreases the number of time steps
and reduces the size of the domain
along each dimension from default 4096

|48

ARRAY-BASED PARALLELISM AND LOCALITY

basics-distarr.chpl

writeln ("Hello from locale ", here.id);
var A: [1..2, 1..2] real;

use BlockDist;

1..2}

var D = Block.createDomain ({1l..2,
var B: [D] real;

B = A;

They also result in parallel distributed computation

Locale O Locale 1

Locale 2

o

Chapel also supports distributed
domains (index sets) and arrays

Locale 3

o

™ |

49

PARALLEL HEAT DIFFUSION INHEAT_2D.CHPL

O ' 1] T
L hLLL LT 7198 -
o |Q |o X . £
O o s
uTl un+1

Stored 1in un Stored 1n u

Fixed
boundary
values

e 2D heat diffusion PDE

ou azu 02u Simplified form for below

— = y—— 4+ v—— assume Ax=Ay, and let
ot Ox2 dy? a=vAt/Ax2

» Solving for next temperatures at each time step
using finite difference method

n+1

n- n
i,j

— N n n _ n n
=ul; +a(uly; tuly; — 4 Hul ul)

u

e All updates in a timestep can be done in parallel

forall (i, j) in indicesInner do
uli, Jj] = un[i, J] + alpha *
(un{i, 3-1]1 + un[i-1, J] + unfli+l, J] +
un[i, j+1] - 4 * unfl[i, J]);

e Output is the mean and standard deviation of all

the values and time to solution
I 50

DISTRIBUTED AND PARALLEL HEAT DIFFUSION IN HEAT_2D DIST.CHPL

e Declaring 'u' array
const indices = {0..<nx, 0..<ny}
var u: [indices] real;

9: adzna 11 Hetrduge,l

@) Q.. E)......... snadunnafunns-.-...-.-...-.-r.:.“:‘ﬁ ° Declaring |u| array as diSTribUTed

(@ LI LT CLLL T FEXT Lk el g PO Ll

const 1ndices = {0..<nx, 0..<ny},
INDICES = Block.createDomain (indices) ;

var u: [INDICES] real;

u™ n+1

u e Reads that cross the distribution boundary will

HALO BUFFER OPTIMIZATION IN HEAT_2D_DIST_BUFFERS.CHPL

(1) write to neighbor halo

—

u

(2) copy into local halo

n+1

£

e Each locale has own copies
of 'u' and 'un' subdomains
with a one-cell halo

e (1) Array assignment writes
edge values into neighbors'
halo landing pads

e (2) copy into local halo

e (3) compute next uin
parallel locally

(3) compute next u in parallel locally

52

HALO BUFFER OPTIMIZATION CODE

const indices = {0.
indicesInner

.<nx, 0..<nvy},

Declare and distribute 'u' array.
= 1indices.expand(-1),

INDICES = Block.createDomain (indices) ;

const u: [INDICES]

var LOCALE DOM =

real;

Block.createDomain (u.targetLocales () .domain) ;

var haloArans: [LOCALE DOM] [0..<4] haloArray;

param N = 0, S = 1,
for 1..nt {
haloArrays[tidX,

b.barrier (

E =2, W= 3;

tidY-1] [E] .v = uLocal2[.., WW+1];

uLocall <=>\ulocal?;

ulLocall[.., W

forall (i,j) in
ulLocal2[i,]] =

+ ulLocall[i, -

b.barrier () ;

}

haloArrays[tidX, tidY][W].v;

calIndicesInner do

—

ocall[i,]J] + alpha* (uLocalll[i-1, 7]
+ ulLocall([i,j+1] - 4*ulocallli,Jjl);

Declare North, South, East, and West halo
arrays per locale

Copy local edge results into neighbor's halo
array. 'tidX' and 'tidY' are the locale's task id

X and Y coordinates. Using array slicing in
‘'uLocal2[.,.WW+1]".

Copy halo array into local halo.

+ uLocall[i+1,7]

Compute ull,j] in local subdomain.

Barrier over all locales

make run—heat_ZD
make run-heat 2D dist
make run-heat 2D dist buffers

2D HEAT DIFFUSION EXAMPLE

o See 'diffusion/heat_2D.*.chpl' in the Chapel examples
e 'heat_2D.chpl' - shared memory parallel version that runs in locale O
« 'heat_2D_dist.chpl' - parallel and distributed version that is the same as 'heat_2D.chpl' but with distributed arrays
 'heat_2D_dist_buffers.chpl' - parallel and distributed version that copies to neighbors landing pad and then into local halos

e Concepts illustrated

o 'forall' provides distributed and shared memory parallelism when do a ‘forall’
over the 2D Block distributed array

 'heat_2D_dist.chpl' version doesn't do any special handling of the halo exchange

 'heat_2D_dist_buffers.chpl' shows an optimization that explicitly copies
subarrays info buffers

— .

IMAGE PROCESSING EXAMPLE

» See 'image_analysis/' subdirectory in the Chapel examples
o Coral reef diversity analysis written by Scott Bachman
« Reads a single file in parallel
« Uses distributed and shared memory parallelism
o Is being used and modified by Scott and collaborators for climate research

* 'image_analysis/README' explains how to compile and run it
cd image analysis
chpl main.chpl --fast
./main -nl 2 --in name=banda ai --map type=benthic --window size=100000

55

IMAGE PROCESSING FOR CORAL REEF DISSIMILARITY

e Analyzing images for coral reef diversity
« Important for prioritizing interventions
e Algorithm implemented productively

o Add up weighted values of all points in a
neighborhood, i.e., convolution over image

e Developed by Scott Bachman, NCAR scientist who
is a visiting scholar on the Chapel team

« Scott started learning Chapel in Sept 2022, started
Coral Reef app in Dec 2022, already had
collaborators presenting results in Feb 2023

o Last week with ~5 lines changed, ran on a GPU
e Performance

e Less than 300 lines of Chapel code scales out to
100s of processors on Cheyenne (NCAR)

o Full maps calculated in seconds, rather than days

— .

Distributed Parallelism: Divide the domain into “strips” and allocate a task per strip

IMAGE PROCESSING EXAMPLE

» See 'image_analysis/' subdirectory in the Chapel examples
o Coral reef diversity analysis written by Scott Bachman
« Reads a single file in parallel
« Uses disfributed and shared memory parallelism
« Is being used and modified by Scott and collaborators for climate research

* 'image_analysis/README' explains how to compile and run it

e Concepts illustrated
o User-defined modules

« Reading a single file in parallel

e Sparse domains used to create masks in 'distance_mask.chpl’

« Creating a 1D block distribution by reshaping the 'Locales' array

» Gets to locale O will occur for some smaller arrays that live on locale O

— .

GPU SUPPORT IN CHAPEL

» Generate code for GPUs
o Support for NVIDIA and AMD GPUs
o Exploring Intel support

» Chapel code calling CUDA examples

o https://qgithub.com/chapel-
lang/chapel/blob/main/test/gpu/interop/stream/streamChpl.chpl

o https://qgithub.com/chapel-
lang/chapel/blob/main/test/gpu/interop/cuBLAS/cuBLAS.chpl

o Key concepts

» Using the 'locale' concept to indicate execution and data
allocation on GPUs

o 'forall' and 'foreach’ loops are converted to kernels

» Arrays declared within GPU sublocale code blocks are
allocated on the GPU

e For more info...
 https://chapel-lang.org/docs/technotes/gpu.html

—

gpuExanuﬂe£hpI\

use GpuDiagnostics;
startGpuDiagnostics () ;

var operateOn =
if here.gpus.size>0 then here.gpus
else [here,];

// Same code can run on GPU or CPU
coforall loc in operateOn do on loc {
var A [1..10] int;

foreach a in A do a+=1;

writeln (A) ;

stopGpuDiagnostics () ;
writeln (getGpuDiagnostics()) ;

|59

STREAM TRIAD: DISTRIBUTED MEMORY, GPUS AND CPUS

stream-ep.chpl

config var n = 1 000 000,
alpha = 0.01; ‘cobegin { ... } creates a task

per child statement

coforall loc in Locales do on loc
cobegin {

coforall gpu in here.gpus do on gpu { ——
var A, B, C: [l..n] real; one task runs our multi-GPU triad

A =B + alpha * C;

{
var A, B, C: [1l..n] real; \
A =B + alpha * C; the other runs the multi-CPU triad

} This program uses all CPUs and GPUs
} across all of your compute nodes

— o

STREAM TRIAD: PERFORMANCE VS. REFERENCE VERSIONS

Stream (using NVIDIA Tesla T4) Stream (using AMD instinct MI1100)
—8- —8 o o
506 f' ¢ C+CUDA 800 {' ¢ C+HIP
-8- Chapel 1.31 -8- Chapel 1.31
150 |

A D
o O
o O

Throughput
(GiB/s)
3

Throughput
(GiB/s)

200 =

a1
o

1 1] O 1 1]
32 64 128 32 64 128
Number of Elements (M) Number of Elements (M)

o

Performance vs. reference versions has become competitive as of the last release

KEY CONCERNS FOR SCALABLE PARALLEL COMPUTING

1. parallelism: What tasks should run simultaneously?

2. locality: Where should tasks run? Where should data be allocated?
« complicating matters, compute nodes now often have GPUs with their own processors and memory

o

o

O

o

Locale O

Locale 1

o

o

O

O

Locale 2

o

o

[]Memory

o

o

Locale 3

o

o

Processor Core

o

o

62

KEY CONCERNS FOR SCALABLE PARALLEL COMPUTING

1. parallelism: What tasks should run simultaneously?
2. locality: Where should tasks run? Where should data be allocated?

« complicating matters, compute nodes now often have GPUs with their own processors and memory
« we represent these as sub-locales in Chapel

Locale O Locale 1 Locale 2 Locale 3

dhs dh dhe edhe
dh O o o

o o o
= = =
E E E

(1]
v
(=
[-]
[1]
-
[
(1]
o
c
(-]
[]
-
'
(1]
o
c
(-]

(1]
=

(1]
=
»
(1]
: v
c
(-]

oo
oo
L=
oo
oo
B
oo

oo

oo
Ledhod
L=
oo
oo

oo
Ledhod
L=
oo
oo

oo
e dhod
L=

(1]
g
(]
-
(1]
g
(1]
=
(1]
g
(1]
=
(1]
g
(1]
=

ik
o0
=
odb
oo
[
edbed
Lo dhed

wdhod
o0

o0
oo
Processor Core

[]Memory

oo
oo
oo
e dhed
oo

oo

|63

STREAM TRIAD: DISTRIBUTED MEMORY, CPUS ONLY

stream-glbl.chpl

config const n = 1 000 000,
alpha = 0.01;

use BlockDist;

const Dom = Block.createDomain({1l..n}):;
var A, B, C: [Dom] real;

A =B + alpha * C;

stream-ep.chpl

These programs are both CPU-only

Nothing refers to GPUs,
explicitly or implicitly

config const n = 1 000 000,
alpha = 0.01;

coforall loc in Locales {
on loc {

var A, B, C: [1l..n] real;

A =B + alpha * C;

64

STREAM TRIAD: DISTRIBUTED MEMORY, GPUS ONLY

stream-ep.chpl

config const n = 1 000 000,
alpha = 0.01;

coforall loc in Locales do on loc {
coforall gpu in here.gpus do on gpu {

var A, B, C: [l..n] real;
A =B + alpha * C;

Use a similar ‘coforall’ + ‘on’ idiom
to run a Triad concurrently
on each of this locale’s GPUs

This is a GPU-only program

Nothing other than coordination code
runs on the CPUs

65

STREAM TRIAD: DISTRIBUTED MEMORY, GPUS AND CPUS

stream-ep.chpl

config const n =
alpha =

1 000 000,
0.01;

coforall loc in Locgless
cobegin {
coforall gpu in here.gpus do on gpu {
var A, B, C: [1l..n] real;
A =B + alpha * C;

0 on loc {

A =B + alpha * C;

‘cobegin { ... } creates a task

per child statement

one task runs our multi-GPU triad

}
{
var A, B, C: [l..n] real; B 1 the other runs the multi-CPU triad

This program uses all CPUs and GPUs
across all of our compute nodes

Iéé

OTHER CHAPEL EXAMPLES & PRESENTATIONS

e Primers
 https://chapel-lang.org/docs/primers/index.html

» Blog posts for Advent of Code
o https://chapel-lang.org/blog/index.html

» Test directory in main repository
o https://github.com/chapel-lang/chapel/tree/main/test

» Presentations
o https://chapel-lang.org/presentations.html

— .

TUTORIAL SUMMARY

» Takeaways

o Chapelis a PGAS programming language designed to leverage parallelism
e It is being used in some large production codes

o Our team is responsive to user questions and would enjoy having you participate in our community

 How to get more help
o Ask the Chapel team and users questions on discourse, gitter, or stack overflow
o Also feel free to email me at michelle.strout@hpe.com

e Engaging with the community
e Share your sample codes with us and your research community!
« Join us at our free, virtual workshop in June, https://chapel-lang.org/CHIUW.htm|

— L

CHAPEL RESOURCES

Chapel homepage: hitps://chapel-lang.org

« (points to all other resources)

Social Media:
o Twitter: @ChapelLanguage
e Facebook: @ChapellLanguage

e YouTube: http://www.youtube.com/c/ChapelParallelProgramminglLangquage

Community Discussion / Support:
e Discourse: https://chapel.discourse.group/

o Gitter: https://gitter.im/chapel-lang/chapel

o Stack Overflow: https://stackoverflow.com/questions/tagged/chapel

o GitHub Issues: https://github.com/chapel-lang/chapel/issues

—

CHAaAPEL

Home

What is Chapel?
What's New?

Upcoming Events
Job Opportunities

How Can | Learn Chapel?
Contributing to Chapel

Download Chapel
Try Chapel Online

Documentation
Release Notes

Performance
Powered by Chapel

User Resources
Developer Resources

Social Media / Blog Posts
Press

Presentations
Papers | Publications

CHIUwW
CHUG

Contributors | Credits

chapel_info@ecray.com

(¥ e J 710
vyED

The Chapel Parallel Programming Language

What is Chapel?

Chapel is a programming language designed for productive parallel computing at scale.
Why Chapel? Because it simplifies parallel programming through elegant support for:

« distributed arrays that can leverage thousands of nodes' memories and cores

+ a global namespace supporting direct access to local or remote variables

+ data parallelism to trivially use the cores of a laptop, cluster, or supercomputer
+ task parallelism to create concurrency within a node or across the system

Chapel Characteristics

» productive; code tends to be similarly readable/writable as Python
+ scalable: runs on laptops, clusters, the cloud, and HPC systems

« fast: performance competes with or beats C/C++ & MPI & OpenMP
« portable: compiles and runs in virtually any *nix environment

» open-source: hosted on GitHub, permissively licensed

New to Chapel?

As an introduction to Chapel, you may want to...

+ watch an overview talk or browse its slides

» read a blog-length or chapter-length introduction to Chapel
+ learn about projects powered by Chapel

» check out performance highlights like these:

PRK Stencil Performance (Gop's) NPB-FT Performance (Gop's)

Locales (x 36 cores / locale) Locales {x 36 cores / locale)

» browse sample programs or learn how to write distributed programs like this one:

use CyclicDist; the Cyclic distribution Library
config const n = 188; n=<val> when executing te override this default

forall i in {1..n} dmapped Cyclic(startIdx=1) do
writeln("Hello from iteration ", i, " of ", n, " running on node ", here.id);

69

CURRENT CHAPEL TEAM AT HPE

: HPE PROPRIETARY | 70

BACKUP SLIDES AND ADDITIONAL CONTENT

— .

GENERAL TIPS WHEN GETTING STARTED WITH CHAPEL (ALSO IN README)

e Online documentation is here: https://chapel-lang.org/docs/

o The primers can be particularly valuable for learning a concept: https://chapel-lang.org/docs/primers/index.html
—These are also available from a Chapel release in ‘SCHPL_HOME/examples/primers/’

or ‘SCHPL HOME/test/release/examples/primers/’ if you clone from GitHub

 When debugging, almost anything in Chapel can be printed out with ‘writeln(exprl, expr2, expr3);
« Types can be printed after being cast to strings, e.g. ‘writeln("Type of “, expr, “ is “, expr.type:string);
« A quick way to print a bunch of values out clearly is to print a tuple made up of them ‘writeln((x, y, 2));

e Once your code is correct, before doing any performance timings, be sure to re-compile with ‘--fast’
o Turns on optimizations, turns off safety checks, slows down compilation, speeds up execution significantly
« Then, when you go back to making modifications, be sure to stop using "--fast ™ in order to turn checks back on

e For vim / emacs users, syntax highlighters are in SCHPL_HOME/highlight
o Imperfect, but typically better than nothing
 Emacs MELPA users may want to use the chapel-mode available there (better in many ways, weird in others)

— .

OTHER TASK PARALLEL FEATURES

» begin / cobegin statements: the fwo other ways of creating tasks

begin stmt; // fire off an asynchronous task to run ‘stmt’
cobegin ({ // fire off a task for each of ‘stmt1’, ‘stmt2’, ...
stmtl;
stmtZ2;
stmt3;
} // wait here for these tasks to complete before proceeding

» atomic / synchronized variables: types for safe data sharing & coordination between tasks

var sum: atomic int; // supports various atomic methods like .add(, .compareExchange(, ...
var cursor: sync int; //stores a full/lempty bit governing reads/writes, supporting .readEFQ, .writeEFQ

 task intents / task-private variables: confrol how variables and tasks relate

coforall i in 1..niters with (ref x, + reduce y, var z: int) { .. }

—

SPECTRUM OF CHAPEL FOR-LOOP STYLES

for loop: each iteration is executed serially by the current task
 predictable execution order, similar to conventional languages

foreach loop: all iterations executed by the current task, but in no specific order
 a candidate for vectorization, SIMD execution on GPUs

forall loop: all iterations are executed by one or more tasks in no specific order
« implemented using one or more tasks, locally or distributed, as determined by the iterand expression

forall
forall
forall
forall
forall

i in 1..n do ..

(1,3) in {1..n, 1..n} do ..
elem in myLocArr do ..
elem in myDistArr do ..
do ..

1 in myParIter (..)

// forall loops over ranges use local tasks only
// ditto for local domains...

// ..and local arrays
// distributed arrays use tasks on each locale owning part of the array

// you can also write your own iterators that use the policy you want

coforall loop: each iteration is executed concurrently by a distinct task
« explicit parallelism; supports synchronization between iterations (tasks)

—

|74

SIDEBAR: PROMOTION OF SCALAR SUBROUTINES

e Any function or operator that takes scalar arguments can be called with array expressions instead

proc foo(x: real, y: real, z: real) {
return x**y + 10*z;

}

e Interpretation is similar to that of a zippered forall loop, thus:
C = foo(a, 2, B);

is equivalent to:

forall (¢, a, b) in zip(C, A, B) do
c = foo(a, 2, b);

as is:
C = A**2 + 10*B;

e So, in the Jacobi computation,

abs (A[D] - Temp[D]);

forall (a,t) in zip(A[D], Temp[D]) do abs(a - t);

— .

.7/} BERKELEY LAB (0 ENERGY

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

UPC++: An Asynchronous RMA/RPC Library
for Distributed C++ Applications

Amir Kamil

https://go.lbl.gov/ICUF23
pagoda@lbl.gov

OAK RIDGE
Nat1onal Laborator
Applied Mathematics and Computational Research Division L
| Lawrence Berkeley National Laboratory G
Berkeley, California, USA = \(\ ll—)

19

What does UPC++ offer?

Asynchronous behavior
RMA.:
Get/put to a remote location in another address space

Low overhead, zero-copy, one-sided communication.
RPC: Remote Procedure Call:

Moves computation to the data

Design principles for performance
All communication is syntactically explicit
All communication is asynchronous: futures and promises

Scalable data structures that avoid unnecessary replication

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

20

Review: Asynchronous communication (RMA)

By default, all communication operations are split-phased
Initiate operation

Wait for completion
A future holds a value and a state: ready/not-ready

global ptr<int> gptrl = ...;
future<int> f1 = rget(gptrl);
// unrelated workRk...

int t1 = fl.wait();

Wait returns the result when
the rget completes

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

Review: Remote procedure call (RPC)

Execute a function on another process, sending arguments and returning an
optional result
1.Initiator injects the RPC to the target process
2.Target process executes fn(argl, arg2) at some later time determined at the target
3.Result becomes available to the initiator via the future

Many RPCs can be active simultaneously, hiding latency

@ upcxx: :rpc(target, 2 Execute fn(argl, arg2)
fn, argl, arg2) on process target

(3 Result available
via a future

Process future Process
(initiator) (target)

++ - §
21 up(C 2
Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov BERKELEY LAB

22

Compiling and running a UPC++ program

UPC++ provides tools for ease-of-use
Compiler wrapper:
$ upcxx -g hello-world.cpp -o hello-world.exe
* Invokes a normal backend C++ compiler with the appropriate arguments (-I/-L etc).

« We also provide other mechanisms for compiling
* upcxx-meta
« CMake package
Launch wrapper:
$ upcxx-run -N 1 -n 4 ./hello-world.exe
« Arguments similar to other familiar tools

« Also support launch using platform-specific tools, such as srun, jsrun and aprun.

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov up L

=] A
~ A
rrrrrrr ‘"'|

BERKELEY LAB

23

Using UPC++ at US DOE Office of Science Centers

UPC++ installations available at ALCF (Polaris, Theta, Sunspot), NERSC
(Perlmutter), and OLCF (Summit, Frontier, Crusher)

Info and examples for all three centers are available from
https://upcxx.lbl.gov/site

Also contains links to UPC++ source and build instructions
UPC++ works on laptops, workstations, and clusters too

Instructions for the hands-on activities in this tutorial:
https://go.lbl.gov/ICUF23

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

Hands-on: Hello world compile and run

Everything needed for the hands-on activities is at:
https://go.lbl.gov/ICUF23

Online materials include:
« Module info for NERSC Perlmutter, OLCF Frontier, and other machines
« Download links to install UPC++

Once you have set up your environment, copied the tutorial materials, and
changed to the cuf23/upcxx directory:

Command to run _
in the terminal Copy this and change the number
S| make run-hello-world

after -n to use a different number of
upcxx hello-world.cpp -Wall -o hello-world processes, e.g..

upcxx-run -N 1 -n 4 ./hello-world i R il
Hello world from process 2 out of 4 processes
Hello world from process 0 out of 4 processes
Hello world from process 3 out of 4 processes
Hello world from process 1 out of 4 processes

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov BERKELEY LAB

25

make run-hello-world

Example: Hello world

#include <iostream>
#include <upcxx/upcxx.hpp>
using namespace std;

int main() { Set up UPC++
upcxx::init(); <« runtime

cout << "Hello world from process "
<< upcxx::rank me()
<< " out of " << upcxx::rank n()
<< processes"” << endl;

upcxx::finalize();
Close down
UPC++ runtime

world from process 0 of 4 processes
world from process 2 of 4 processes

world from process 3 of 4 processes
world from process 1 of 4 processes

Rl .
u Frereers "'|
Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov BERKELEY LAB

make run-hello-world-rpc-to-0

Hello world with RPC (synchronous)

We can rewrite hello world by having each process launch an RPC to
process 0

int main() {
upcxx::init();
for (int 1 = @; 1 < upcxx::rank n(); ++i) {

if (upcxx::rank me() == i) {
C++ lambda function

upcxx::rpc(9, [](int rank) {
cout << "Hello from process
}, upcxx::rank me()).wait();

} Wait for RPC to complete
before continuing

upcxx: :barrier();

<< rank << endl;

Rank number is the

} . . argument to the lambda
upcxx: :finalize();
} Barrier prevents any process from

proceeding until all have reached it

=] A
22 \
i
rrrrrrr
26 e

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov BERKELEY LAB

27

Futures
RPC returns a future object, which represents a computation that may or
may not be complete

Calling wait () on a future causes the current process to wait until the
future is ready

Empty future type that
does not hold a value,
but still tracks readiness
upcxx: :future<> fut =

upcxx: :rpc(9, [](int rank) {

}, upcxx::rank me());

fut.wait();

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

What is a future?

A future is a handle to an asynchronous operation, which holds:
* The status/readiness of the operation
* The results (zero or more values) of the completed operation

future "async_op"
op —| ready | true
The future is not the result itself, but a proxy for it data| 3

The wait () method blocks until a future is ready and returns the result

upcxx: :future<int> fut = /* ... */;
int result = fut.wait();

The then() method can be used instead to attach a callback to the future

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

29

Overlapping communication

Rather than waiting on each RPC to complete, we can launch every RPC
and then wait for each to complete

vector<upcxx: :future<int>> results;
for (int 1 = 0; 1 < upcxx::rank n(); ++i) {
upcxx: :future<int> fut = upcxx::rpc(i, []() {
return upcxx::rank me();

1))
results.push_back(fut);

}

for (auto fut : results) {
cout << fut.wait() << endl;

}

We'll see better ways to wait on groups of asynchronous operations later

up(C’

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

=] A
~ A
rrrrrrr ‘"'|

BERKELEY LAB

30

make run-jacld

1D 3-point Jacobi in UPC++

lterative algorithm that updates each grid cell as a function of its old value
and those of its immediate neighbors

Out-of-place computation requires two grids;
for (long i = 1; i < N"= 1; ++1)
new grid[i] = ©.25 *
(old_grid[i - 1] + 2*old grid[i] + old grid[i + 1]);

Sample data distribution of each grid
(12 domain elements, 3 processes, N=12/3+2=6):

Periodic
Ghost cells boundary
¥\ —

121 2 3 45 4567389 8 9101112 1

Process 0 Process 1 Process 2

upC'k

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

31

Jacobi boundary exchange (version 1)

RPCs can refer to static variables, so we use them to keep track of the
grids

double *old grid, *new_grid;

double get cell(long i) {
return old grid[i];

¥

double val = rpc(right, get cell, 1).wait();

* We will generally elide the upcxx: : qualifier from here on out. Periodic

Ghost cells boundary
¥\

/
121 2 3 45 4567389 8 9101112 1

Process 0 Process 1 Process 2

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

32

Jacobi computation (version 1)

We can use RPC to communicate boundary cells

future<double> left ghost = rpc(left, get cell, N-2);
future<double> right ghost = rpc(right, get cell, 1);

for (long 1 = 2; 1 < N - 2; ++1)
new grid[i] = ©.25 *
(old grid[i-1] + 2*o0ld grid[i] + old grid[i+1]);

new grid[1l] = ©.25 *
(left_ghost.wait() + 2*old grid[l1l] + old grid[2]);

new grid[N-2] = ©0.25 *
(old grid[N-3] + 2*old grid[N-2] + right ghost.wait());

std: :swap(old grid, new grid);
4 56 7 8 9

Process 1

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

Do interior
computation

Initiate
communication

Wait for
communication

to complete and
do boundary
computation

BERKELEY LAB

33

Race conditions

Since processes are unsynchronized, it is possible that a process can
move on to later iterations while its neighbors are still on previous ones

* One-sided communication decouples data movement from
synchronization for better performance

A straggler in iteration i could obtain data from a neighbor that is computing
iteration i + 2, resulting in incorrect values

[(3

process k-1 &= et g1

This behavior is unpredictable and may not be observed in testing

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

34

Naive solution: barriers

Barriers at the end of each iteration provide sufficient synchronization

future<double> left ghost = rpc(left, get cell, N-2);

future<double> right ghost rpc(right, get cell, 1);

for (long 1 = 2; 1 < N - 2; ++1)
/¥ oo X/
new grid[1l] = ©.25 *
(left_ghost.wait() + 2*old grid[1] + old grid[2]);
new grid[N-2] = ©0.25 *
(old grid[N-3] + 2*old grid[N-2] + right ghost.wait());

barrier(); . . Barriers around the swap
std: :swap(old grid, new grid); ensure that incoming RPCs in
barrier() ; both this iteration and the next

one use the correct grids

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

One-sided put and get (RMA)

UPC++ provides APls for one-sided puts and gets

Implemented using network RDMA if available — most efficient way to move
large payloads

« Scalar put and get:

global ptr<int> remote = /* ... */;
future<int> futl = rget(remote);
int result = futl.wait();

future<> fut2 = rput(42, remote);
fut2.wait();

* Vector put and get:
int *local = /* ... */;
future<> fut3 = rget(remote, local, count);

fut3.wait();
future<> fut4 = rput(local, remote, count);
futd.wait();

-

- A
:
: '\| .

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov BERKELEY LAB

36

Jacobi with ghost cells
Each process maintains ghost cells for data from neighboring processes

/ left _grid gptr / my grid right grid gptr
/
121 2 3 45 4567 89 8 9101112 1

Procéss 0 U Procéss 1 UProcéss 2

get from left get from right

Assuming we have global pointers to our neighbor grids, we can do a one-
sided put or get to communicate the ghost data:

double *my grid;
global ptr<double> left grid gptr, right grid gptr;

my grid[0] = rget(left grid gptr + N - 2).wait();
my_grid[N-1] = rget(right_grid_gptr + 1).wait();

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

37

Storage management

Memory must be allocated in the shared segment in order to be accessible
through RMA

global ptr<double> old grid gptr, new grid gptr;

old_grid_gptr = new_array<double>(N);
new_grid_gptr = new_array<double>(N);

These are not collective calls — each process allocates its own memory,
and there is no synchronization

« Explicit synchronization may be required before retrieving another
process’s pointers with an RPC

« The pointers must be communicated to other processes before they
can access the data

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov up L

-

- A
:
: '\| .

BERKELEY LAB

38

Downcasting global pointers

If a process has direct load/store access to the memory referenced by a global
pointer, it can downcast the global pointer into a raw pointer with 1local()

global ptr<double> old grid gptr, new grid gptr;

double *old grid, *new_grid;

void make grids(size t N) {
old grid gptr = new array<double>(N);
new _grid gptr = new _array<double>(N);
old grid = old grid gptr.local();
new_grid = new _grid gptr.local();

}

Downcasting can also be used to optimize for co-located processes that share
physical memory

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov up L BERKELEY LAB

39

Jacobi RMA with gets

Each process obtains boundary data from its neighbors with rget ()
Remote source (global ptr) Local dest ptr
| |
r o \
future<> left get = rget(left old grid + N - 2, old grid, 1);
future<> right get = rget(right old grid + 1, old grid + N - 1, 1);

for (long 1 = 2; 1 < N - 2; ++1)
VAT VS Begin asynchronous
Overlapped computation RMA gets

on interior cells

Wait for communication,
left get.wait(); « then consume values

new grid[1l] = 0.25*(old grid[@] + 2*o0ld grid[1] + old grid[2]);

right_get.wait();

new grid[N-2] = 0.25*(old grid[N-3] + 2*old grid[N-2] + old grid[N-1]);

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

40

Callbacks

The then() method attaches a callback to a future

« The callback will be invoked after the future is ready, with the future’s
values as its arguments

future<> left update =
rget(left old grid + N - 2, old grid, 1)
then([10) { -
new grid[1l] = ©0.25 *
(old grid[©] + 2*old grid[1] + old grid[2]);

})s

future<> right update =
rget(right old grid + N - 2)
.then([](double value) { -
new grid[N-2] = ©0.25 *
(old grid[N-3] + 2*o0ld grid[N-2] + value);

})s

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

=] A
~ A
rrrrrrr ‘"'|

BERKELEY LAB

41

Chaining callbacks

Callbacks can be chained through calls to then()

global ptr<int> source = /* ... */;

global ptr<double> target = /* ... */;

future<int> futl = rget(source);

future<double> fut2 = futl.then([](int value) {
return std::log(value);

})s then({log(value)})

future<> fut3 =
fut2.then([target](double value) {

return rput(value, target);

});
fut3.wait();

then({rput(value,target)})

This code retrieves an integer from a remote location, computes its log, and
then sends it to a different remote location

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov up L

BERKELEY LAB

42

Conjoining futures

Multiple futures can be conjoined with when_all() into a single future that
encompasses all their results

Can be used to specify multiple dependencies for a callback

global ptr<int> sourcel = /* ... */;
global ptr<double> source2 = /* ... */;
global ptr<double> target = /* ... */;

future<int> futl = rget(sourcel);
future<double> fut2 = rget(source2);
future<int, double> both =
when_all(futl, fut2);
future<> fut3 =
both.then([target](int a, double b) {
return rput(a * b, target);

});
fut3.wait();

when_all

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov up L

BERKELEY LAB

43

Jacobi RMA with puts and conjoining

Each process sends boundary data to its neighbors with rput (), and the
resulting futures are conjoined

future<> puts = when_all(

rput(old grid[1], left old grid + N - 1),
rput(old grid[N-2], right old grid));

for (long 1 = 2; 1 < N - 2; ++1)
VAR

. Ensure outgoing puts have completed
puts.wait();

barrier(); Ensure incoming puts have completed

new grid[1l] = ©0.25 * (old grid[@] + 2*o0ld grid[1] + old grid[2]);
new grid[N-2] = ©0.25 * (old grid[N-3] + 2*old grid[N-2] + old grid[N-1]);

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

. . ultft=ult +a(uly +ulty —4ul +ult o +ult
2D heat diffusion data layout L =y o ol bl = e)
make run-heat2d
Fixed
boundary . _
values Global (Abstract) View Local (Concrete) View
Process 2
/ o T up
Q........:: = .
O"‘(-)-...O. I sunafssnnpunsn ololo
O 1= O
Process 1 T _old T new
\ T _down
Process 0 A
“Landing zone” for
receiving data from
u™ untt downward neighbor

= A
i A
Frereers ‘"'|

44

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov BERKELEY LAB

45

n+1

u

2D heat diffusion computation

—_ n n n n n n
=g ta(ulg g tulty —dul Ful Hulg)

L]

Global pointer to

make run-heat2d

Computation loop: neighbor’s landing zone S _dovn
for (int t = 0; t < num_timesteps;[t++) { .
// initiate asynchronous puts to| neighbors i T up
future<> fut = :

“

when all(rput(T_old, gptr_down; X),
rput(T_old+offset, gptr_up, X)); T:xid

// overlapped computation of interior T_new
compute_inner_T_new();

L}
L
.0
2

// wait for my puts to complete
fut.wait();

T old

// ensure everyone's puts have completed 5
barrier(); g

// compute boundaries using data received from neighbors
compute surface T new();

// set up next timestep
std::swap(T_new, T old);
barrier();

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

BERKELEY LAB

Distributed objects

A distributed object is an object that is partitioned over a set of processes
dist _object<T>(T value, & = ());

The processes share a universal name for the object, but each has its own
local value

Similar in concept to a co-array, but with advantages
» Scalable metadata representation
» Does not require a symmetric heap
 No communication to set up or tear down

dist object<int>
all nums(rand());

all_nums all_nums ® o0 all_nums

Process 0 Process 1 Process p

up ("

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

47

Distributed objects in 2D heat diffusion

Distributed objects can be used to obtain global pointers to other
processes’ landing zones

global ptr<double> down in, up inj;

Construct landing zones for

1 (lo != 0
if (lo) { each neighbor (if necessary)

down_in = new_array<double>(X);
T_down = down_in.local();

}.' . Construct distributed objects containing
if (hi I=Y) { pointers to each process’s landing zones
up_in = new_array<double>(X);

T up = up_in.local();

} Fetch landing-zone pointer
dist_object<global ptr<double>> dist_up{down_in}; from the neighbor below

dist object<global ptr<double>> dist down{up_in};
if (lo != @) gptr_down = dist_down.fetch(down).wait();
if (hi !=Y) gptr_up = dist_up.fetch(up).wait();

barrier(); Ensure that all fetches have completed
before the distributed objects are destroyed +
upC

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

-

- A
:
: '\| .

BERKELEY LAB

make run-dmap-insert-test

Hands-on: Distributed hash table (DHT)
Distributed analog of std: :unordered_map (similar to Python dict, Java
HashMap)

» Supports insertion and lookup

 We will assume the key and value types are std: :string

* Represented as a collection of individual unordered maps across processes

 We use RPC to move hash-table operations to the owner

Hash table partition: a
std: :unordered_map
per process

X ‘3'

key|val

Process 0 Process p

48

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

49

DHT data representation

A distributed object represents the directory of unordered maps

claS§ DlstPMap { Define an abbreviation for a helper type
using dobj map t = <

dist object<std::unordered map<std::string, std::string>>;

// Construct empty map

dobj_map_t local_map{{}};

int get_target_rank(const std::string &key) {
return std::hash<string>{}(key) % rank n();

}
s

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

DHT insertion

Insertion initiates an RPC to the owner and returns a future that represents
completion of the insert

future<> insert(const string &key, Send RPC to the process
const string &Val) { determined by key hash

return rpc(get _target rank(key),
[](dobj map _t &Ilmap, const string &key, const string &val) {

(*1map)[key] = val; Key and value passed

}, local_map, key, val); « as arguments to the
remote function

UPC++ uses the

distributed object’s

universal name to
look it up on the
remote process

Process 0 Process p

50

up ("

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

DHT find

Find also uses RPC and returns a future

Send RPC to the process

future<string> find(const string &key) { determined by key hash
return rpc(get _target rank(key),

[](dobj map t &lmap, const string &key) {
. - _ Check whether ke
if (lmap->count(key) == 0) - existsivr\:local mag
return string("NOT FOUND");

else Retrieve corresponding
return (*lmap) [key] s value from the local

map and return it
}, local map, key);

UPC++ uses the
distributed object’s
universal name to
look it up on the
remote process

Key passed as
argument to the
remote function

Process 0 Process p

++ - §
5 up(C 2
Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov BERKELEY LAB

52

make run-dmap-erase-update-test

Additional DHT operations

// Erases the given key from the DHT.
future<> erase(const string &key) {
return rpc(get_target rank(key),
[](dobj map_t &Imap, const string &key) {
lmap->erase(key); Lambda to remove

}, local map, key); the key from the local
} map at the target

// Replaces the value associated with the given Rey and returns the old
// value with which i1t was previously associated.
future<string> update(const string &key, Lambda to
const string &value) { LRl U Lees
return rpc(get_target rank(key),
[](dobj map_t &lmap, const string &key,
const string &value) {

return local update(*1lmap, key, value);
} }, local _map, key, value); Helper function to update local map

in the local map
at the target

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov up L

BERKELEY LAB

make run-drmap-insert-test

Optimized DHT scales well

Excellent weak scaling up to 32K cores [IPDPS19]
 Randomly distributed keys

RPC and RMA lead to simplified and more efficient design
« Key insertion and storage allocation handled at target

» Without RPC, complex updates would require explicit synchronization and two-
sided coordination

10 5
104 3
=]
%‘]
1. .
5 10 Cori @ NERSC
g e (KNL)
o] 3 T —r . T T T T
— 3 L B
= = : Element size Cray XC40
22, oo —— 8K
10 3 . —— JK
] : —=— 520B
] —— 136B
1(}_2 T T |- T T T T
20 22 24 25 28 2]0 212 2]4
Processes

. 712 +"
BERKELEY LAB

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

54

UPC++ advanced features

UPC++ has many advanced features that enable further optimizations
« Team-based barrier, reduction, and broadcast collectives

 Remote atomic operations that utilize hardware offload capabilities of
modern networks

« Serialization of complex standard-library and user types in RPC’s
« Shared-memory bypass for co-located processes on many-core nodes

» Additional forms of communication completion notification such as
promises and “signaling put”

* Non-contiguous RMA with automated packing and aggregation of strided
or sparse data

 Memory kinds for data transfer between remote or local host (CPU) and
device (e.g. GPU) memory

o .. Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

55

Memory kinds: Accelerated RMA to/from GPU memory

Modern GPUs and NICs can support
peer-to-peer data transfers

Example: Put with source on GPU

* In the absence of necessary
hardware and OS support:

1. Data must be copied from GPU
memory to host memory

2. RDMA from host memory’s copy

« With support:

1. RDMA directly from GPU
memory (no copies)

GPU
Memory

GPU
Memory

~

GPU

Network
Interface

GPU

Network
Interface

Host
Memory

{4

Data movement
without
acceleration

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

Host
Memory

Data movement
with
acceleration

56

Memory kinds: Accelerated RMA to/from GPU memory

Measurements of flood bandwidth of RMA Get Bandwidth (remote GPU to local host memory)
upcxx: :copy() on OLCF’s Summit UPC++ 2020.11.0 vs. IBM Spectrum MPI 10.3.1.2 on OLCF Summit
Difference between two consecutive Sl TR EREEEE EEEEEE R SR ') - @ @ - -

releases shows benefit of GASNet-

EX’s support for accelerated 4096 |- SOdee_t;e;
transfers via Nvidia’s “GDR”. P I
« No longer staging through host 1024 Fl 2 transfers 2x better | _
o bandwidth
memory o l
_ o for large
« Large xfers: 2x better bandwidth 256 |7 rEneiare e
« Small xfers: up to 30x better =

bandwidth

Get operations to/from GPU memory
now perform comparably to host

(@)
N

- - -- 12.5 GB/s (limiting wire speed)

Single-rail Flood Bandwidth (MiB/s)

16 —&@— upcxx: :copy (GDR, v2020.11.0) -
memory —&— upcxx: :copy (Reference, v2020.10.0)
Comparisons to MPI RMA in GDR- L | | MPI Get | | |
enabled IBM MPI show UPC++ 16 B 64 B 256 B 1kiB 4kiB 16kiB 64kiB 256kiB 1MiB 4MiB
saturating more quickly to the peak Transfer Size

UPC++ results were collecting using the version of the cuda_benchmark test that appears in the 2020.11.0 release.
MPI results are from osu_get_bw test in a CUDA-enabled build of OSU Micro-Benchmarks 5.6.3.
All tests were run on OLCF Summit, between two nodes with one process per node, over its EDR InfiniBand network. u p (++ "\l \'-:?|

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

BERKELEY LAB

UPC++ applications

UPC++ has been used successfully in several applications to improve
programmer productivity and runtime performance, including:

« symPack, a sparse symmetric matrix solver
« SIMCoV, agent-based simulation of lungs with COVID T |
 MetaHipMer, a genome assembler AL
* Actor-UPCXX, used in the Pond tsunami simulator
A UPC++ backend for NWChemEx/TAMM

« UPC++ DepSpawn, a library for data-flow computing
« Mel-UPX, half-approximate graph matching solver

57

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

58

symPACK: UPC++ provides productivity + performance

Run times for audikw_1

Productivity (NERSC Cori Haswell Cray XC Aries)
18 -o- pastix_ 5 2 3
« RPC allowed very simple notify-get system 6. T PACK 20
* Interoperates with MPI 14-
. oy 12 1
* Non-blocking API =
r £ 101
Reduced communication costs = ol E
« Low overhead reduces the cost of fine-grained &
communication 4

Overlap communication via asynchrony/futures 5 ¢ o
Increased efficiency in the extend-add operation Processes
Outperform state-of-the-art sparse symmetric solvers

https://upcxx.lbl.gov/sympack

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

SIMCoV: Spatial Model of Imnmune Response to Viral Lung Infection

59

Model the entire lung at the cellular level:

* 100 billion epithelial cells

* 100s of millions of T cells

« Complex branching fractal structure

« Time resolution in seconds for 20 to 30 days

SIMCoV in UPC++

« Distributed 3D spatial grid

« Particles move over time, but computation is
localized

« Load balancing is tricky: active near infections

UPC++ benefits:

Heavily uses RPCs

« FEasy to develop first prototype

« Good distributed performance and avoids
explicit locking

« Extensive support for asynchrony improves
computation/communication overlap

=»0.0016
0.0014
0.0012
0.0010
0.0008
0.0006
0.0004
0.0002

0.0000

viral load

— virs

W

o] 5 10 15 20
Time (days)

25000

20000

15000

10000

5000

T cells

—fvas
= ktis

o s 10 15 20
Time (days)

0.004

0.003

0.002

0.001

0.000

viral load

— wvirs

o 5 10 1s 20
Time (days)

https://qgithub.com/AdaptiveComputationLab/simcov

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

Ly 600

500

400

300

200

100

(0]

T cells

— tvas
— tEis

o] 5 10 15 20

Time (days)

up (")

BERKELEY LAB

ExaBiome: Exascale Solutions for Microbiome Analysis

What happens to microbes after a How do microbes affect disease and

ens e . rowth of switchgrass for biofuels (4TB
wildfire? (1.5TB) What are the microbial dynamics g ? 4T8)

of soil carbon cycling? (3.3 TB)

“N2C Counts ¢ at% BN at%

What at the seasonal fluctuations
in a wetland mangrove? (1.6 TB) Combine genomics with isotope tracing methods for improved
functional understanding (8TB)

+ '\| 1
60 _
Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov BERKELEY LAB

-

Co-Assembly improves quality and is an HPC problem

Full wetlands data: 2.6 TB of data in 21 lanes (samples)
« Time-series samples from multiple sites of Twitchell Wetlands in the San Francisco Bay-Delta

* Previously assembled 1 lane at a time (multiassembly)
« MetaHipMer coassembled together — higher quality assembly, in 3.5 hours on 16K cores

e B 5 T 50 i
--= hgl

Multiassembly Coassembly all assembled
1 lane at a time together — more new genomes
at higher completeness

10000 —
% Cori KNL MHM1 .Cori KNL MHM2 B Summit MHM2 A Summit MHM2 GPU
T *
*
||
| |
1000 —+ ® A

2 ¢ " A
= *
(@)
I Y ® |]
()
3 * ®
= [|

100 14 o

1 . [|
. | |
[|
10 | | | | |
100 500 1000 5000 10000 50000

Metagenome Data Size (GB)

This was the largest, high-quality de novo metagenome assembly completed at the time
More recently: new record 30TB metagenome assembly on 1500 nodes (63K cores and 9K GPUs) of

61

OLCF Summit in 2022
Evangelos Georganas, Rob Egan, Steven Hofmeyr, Eugene Goltsman, Bill Arndt, u Q»+ "\l ‘.?.]
Andrew Tritt, Aydin Buluc, Leonid Oliker, Katherine Yelick, SC18 best paper finalist BERKELEV LAB

62

MetaHipMer utilized UPC++ features

C++ templates — efficient code reuse

dist _object — as a templated functor
& data store

Asynchronous all-to-all exchange — not
batch synchronous

« 5x improvement at scale relative to
previous MP| implementation

Future-chained workflow
« Multi-level RPC messages
« Send by node, then by process

Time (s)

10% 4

103 1

—s— (Contig generation
—e— Scaffolding
—&— Overall

- Perfect scaling

32

64 128

256

Nodes

Promise & fulfill (advanced UPC++ feature) — for a fixed-size memory footprint

* |ssue promise when full, fulfill when available

Work and results by Rob Egan,

https://sites.qoogle.com/Ibl.gov/exabiome/downloads

funded by ECP ExaBiome Group

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov

up (" Rl

63

« Open-source/free library implementation

UPC++ additional resources

Website: upcxx.lbl.gov includes the following content:

“We found UPC++ to be a very powerful and
flexible tool for the development of parallel
applications in distributed memory
environments that enabled us to reach the high
Tutorial t Ibl Itraini level of performance required by our DepSpawn
utorial resources at Upcxx.iol.goviiraining project, so that we could outperform the state-
of-the-art approaches. It is also particularly
important in our opinion that, while supporting a
really wide range of mechanisms, it is very well
documented and supported.”

- : -- Basilio Bernardo Fraguela Rodriguez,
Formal UPC++ speC|f|cat|on Universidade da Corufia, Spain

* Portable from laptops to supercomputers

« UPC++ Programmer’s Guide
* Videos and exercises from past tutorials

 All the semantic details about all the features “If your code is already written in a one-sided
fashion, moving from MPI RMA or SHMEM

Links to various UPC++ publications to UPC++ RMA is quite straightforward and
intuitive; it took me about 30 minutes to

' ' ' i convert MPlI RMA functions in my application
Links to optional extensions and partner projects o UPC++ RMA, and | am getting similar

: : performance to MPI RMA at scale.”
Contact information and support forum Sayan Ghosh, PNNL

Kamil / UPC++ / CUF23 Tutorial / upcxx.lbl.gov up L BERKELEY LAB

BERKELEY LAB

Office of Science
Bringing Science Solutions to the World

Coarray Fortran Tutorial

Damian Rouson
Computer Languages & System Software

Hosted by ECP, NERSC, and OLCF, 26-27 July 2023

R

Day 2

%w CAF at Scale

Qm
w Teams

& :
w Image enumeration

C_)m
s Synchronization

(\%
s Collective Subroutines

(‘-‘m
w Coarrays

(Q‘.‘
w Events

CAF at Scale: Magnetic Fusion

Multithreaded Global Address Space Communication
Techniques for Gyrokinetic Fusion Applications on
Ultra-Scale Platforms

Figure 2: GTS field-line following grid & toroidal do-
main decomposition. Colors represent isocontours
of the quasi-two-dimensional electrostatic potential

Preissl, R., Wichmann, N., Long, B., Shalf, J., Ethier, S., & Koniges, A. (2011,
November). Multithreaded global address space communication techniques for
gyrokinetic fusion applications on ultra-scale platforms. In Proceedings of 2011
International Conference for High Performance Computing, Networking, Storage
and Analysis (pp. 1-11).

Bringing Science Solutions to the World

- Application focus:

The shift phase of charged particles in a
tokamak simulation code

=i
Robert Preiss| Nathan Wichmann Bill Lon H H .
w Programming models studied
National Laboratory St. Paul, MN, USA, 55101 St. Paul, MN, USA, 55101 -
Berkeley, CA, USA 94720 wichmann@cray.com longb@cray.com
rpreissl@Ibl.gov
John Shalf Stephane Ethier Alice Koniges AF O M P
Lawrence Berkeley Pnrﬁ:elon Plasma Lawrence Ber%eley C + p e n 0 r
National Laboratory Physics Laboratory National Laboratory
Berkeley, CA, USA 94720 Princeton, NJ, USA, 08543 Berkeley, CA, USA 94720
jshalf@Ibl.gov ethier@pppl.gov aekoniges@Ibl.gov

Two-sided MPI + OpenMP

s Highlights:

Experiments on up to 130,560 processors

58% speed-up of the CAF implementation
over the best multithreaded MPI shifter
algorithm on largest scale

“the complexity required to implement ...
MPI-2 one-sided, in addition to several
other semantic limitations, is prohibitive.”

18

CAF at Scale: CFD, FFTs, Multigrid BERKELEY LAB

Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locatel ficp

Comparing Coarray Fortran (CAF) with MPI for several @m sssss
structured mesh PDE applications

haw S. Balsara?, John Reid”

Relative efficiency for 7 point stencil

1
0 “ || N ‘“ “ |“ I‘ ‘

2 N D PR P R PG > @ P
R NN A bp%\\g,‘b%w«bg,%

Efficiency
o o o
S (=)} <]

o
[N}

Cores

u CAF Blue Waters m MPI-3 Blue Waters ~ m CAF Darter m MPI-3 Darter

Garain, S., Balsara, D. S., & Reid, J. (2015). Comparing Coarray Fortran (CAF)
with MPI for several structured mesh PDE applications. Journal of Computational
Physics, 297, 237-253.

Bringing Science Solutions to the World

- Applications studied:
— Magnetohydrodynamics (MHD)

— 3D Fast Fourier Transforms (FFTs) used in
infinite-order accurate spectral methods

— Multigrid methods with point-wise
smoothers requiring fine-grained messaging

- Programming models studied:
— CAF or
— One-sided MPI-3

se Highlights:
— Simulations on up to 65,536 cores

— “... CAF either draws level with MPI-3 or
shows a slight advantage over MPI-3.”

— “CAF and MPI-3 are shown to provide
substantial advantages over MPI-2.

— “CAF code is of course much easier to write
and maintain...”

19

CAF at Scale: Weather

Article

A Partitioned Global Address Space
implementation of the European

Centre for Medium Range Weather "
Forecasts Integrated Forecasting
System

George Mozdzynski, Mats Hamrud and Nils Wedi

Figure 7. EQ_REGIONS partitioning of grid-point space, showing a partition at the poles and then an increasing number of
partitions as we approach the equator.

Mozdzynski, G., Hamrud, M., & Wedi, N. (2015). A partitioned global address
space implementation of the European centre for medium range weather
forecasts integrated forecasting system. The International Journal of High
Performance Computing Applications, 29(3), 261-273.

-~~~

rrrerer

ﬂ BERKELEY LAB

Bringing Science Solutions to the World

- Application:
— European Centre for Medium Range

Weather Forecasts (ECMWF) operational
weather forecast model

- Programming models studied:
— CAF or
— Two-sided MPI

s Highlights:
— Simulations on > 60K cores

— performance improvement from switching to
CAF peaks at 21% around 40K cores

§ F ¥ &

Performance Improvement

¥

o 10000 20000 0o Ap0 S0000 000 0000
Number of Cores

Figure 14, Performance improvement of the T2047 (~10 km) model with 137 levels by using Fortran2008 coarrays on HECToR
(Cray XE6)

20

CAF at Scale: Climate

Development and performance comparison of MPI and Fortran
Coarrays within an atmospheric research model
Extended Abstract
Soren Rasmussen', Ethan D Gutmann?, Brian Friesen®, Damian Rouson?, Salvatore Filippone !,

Irene Moulitsas !
I ul

ABSTRACT

Shuulstien tiese |3

Trmulstion tise [s

Puambes of proceiaes

(¢) 400 points per process (d) Cray weak scaling

Figure 3: (a-c) Weak scaling results for 25, 100, and 400 points per process (d) weak scaling for Cray.

Rasmussen, S., Gutmann, E. D., Friesen, B., Rouson, D, Filippone, S., &
Moulitsas, I. (2018). Development and performance comparison of MPI and
Fortran Coarrays within an atmospheric research model. Parallel Applications
Workshop - Alternatives to MPI+x (PAW-ATM), Dallas, Texas, USA.

-~~~

gl BERKELEY LAB
Bringing Science Solutions to the World
- Application:
— Intermediate Complexity Atmospheric
Research (ICAR) model

— Regional impacts of global climate change

- Programming models studied:
— CAF over one-sided MPI
— CAF over OpenSHMEM
— Two-sided MPI
— Cray CAF

- Highlights:

— “... we used up to 25,600 processes and
found that at every data point OpenSHMEM
was outperforming MPI.”

— “The coarray Fortran with MPI backend
stopped being usable as we went over
2,000 processes... the initialization time
started to increase exponentially.”

21

New Frontiers: T-Cell Motility BERKELEY LAB

Bringing Science Solutions to the World

Cell Reports

Interstitial Migration of CD8«3 T Cells in the Small
Intestine Is Dynamic and Is Dictated by

- Application:

Environmental Cues — Matcha: Motility Analysis of T Cells in Activation
! oy oA Toren e — Matching the speed & turning angle
v [distributions to observed T cells, simulations
I can explore large spatial volumes and

self-specific CD8 T cells in the small

S| st oo ot evest s parameter spaces.

Motility changes in the speed and volume of

3 o [ty 3
et s g 2 s w Programming models:

— — Coarray halo exchanges in a 3D diffusion PDE
!.-licir:;gTh::l I ny s T cell simulation of patrolled volume Solver
B KL o N — Do concurrent for automatic GPU offloading
. il\::::;yﬂl;:ﬁsmcmdmm memory respenses and is CO103 IE :-: N] .
e Seclif-specific CD8 T cells initially arested with antigen, but :. R WL O _— nghllghts:

— This tutorial’s 2D heat equation solver was the

T —— Cell prototype for the 3D diffusion solver.

https://go.lbl.gov/matcha

Thompson, E. A., Mitchell, J. S., Beura, L. K., Torres, D. J., Mrass, P., Pierson,

M. J., ... & Vezys, V. (2019). Interstitial migration of CD8af T cells in the small

intestine is dynamic and is dictated by environmental cues. Cell reports, 26(11),

2859-2867. 22

™ COPYRIGHT.bd

https://go.Ibl.gov/inference-engine

Réleases i

T Shartar Wat-5ulte execution

Contributors &

LR

Bringing Science Solutions to the World

w Application:
— Inference-Engine
— In situ neural network training and large-
batch inference for HPC applications
- Language-based parallel & GPU programming:

— Extensive use of array statements,
elemental procedures, do concurrent

— Functional programming pattern:

Every procedure is pure except those that
create and consume JSON file objects.

— Coming soon:
Parallel mini-batch training via co_sum

23

-~~~

|mp|IC|t|y Parallel Trainin (il BerkeLEY LAB

Bringing Science Solutions to the World

® @ 7 inference-engine — vim srcfinference_engine/trainable_engine_s.f90 — 132x55
136 I =0.; b =0.e0 ! Initialize weights and biases

137

138 iterate_across_batches: &

139 do iter = 1, size(mini_batches)

140

141 cost = 0.; dcdw = 0.; dcdb = 0.

142

143 associate(input_output_pairs => mini_batches(iter)%input_output_pairs())

144 inputs = input_output_pairs%inputs()

145 expected_outputs = input_output_pairs%expected_outputs()

146 mini_batch_size = size(input_output_pairs)

147 end associate

148

149 iterate_through_batch: &

150 do pair = 1, mini_batch_size

151

152 a(l:num_inputs, @) = inputs(pair)%values()

153 y = expected_outputs(pair)%outputs()

154

155 feed_forward: &

156 do 1 = 1,output_layer

157 z(1:n(1),1) = matmul(w(l:n(1),21:n(1-1),1), a(1:n(1-1),1-1)) + b(1:n(1),1)

158 a(1l:n(1),1) = self¥differentiable_activation_strategy_%activation(z(1:n(1),1))
159 end do feed_forward

160

161 cost = cost + sum((y(1l:n(output_layer))-a(l:n(output_layer),output_layer))*x2)/(2.e0+mini_batch_size)
162

163 delta(l:n(output_layer),output_layer) = &

164 (a(Ll:n(output_layer),output_layer) — y(l:n(output_layer))) &

165 * self%differentiable_activation_strategy_%activation_derivative(z(1l:n(output_layer),output_layer))
166

167 back_propagate_error: &

168 do 1 = n_hidden,1,-1

169 delta(1:n(1),1) = matmul(transpose(w(1:n(1+1),1:n(1),1+1)), delta(1:n(1+1),1+1))
170 delta(1:n(1),1) = delta(1:n(1),1) * self%differentiable_activation_strategy_%activation_derivative(z(1:n(1),1))
174 end do back_propagate_error

172

173 sum_gradients: &

174 do 1 = 1,output_layer

175 dedb(1:n(1),1) = dedb(1:n(1),1) + delta(1:n(1),1)

176 do concurrent(j = 1:n(1))

177 dedw(j,1:n(1-1),1) = dcdw(j,1:n(1-1),1) + a(1:n(1-1),1-1)*delta(j,1)

178 end do

179 end do sum_gradients

180 end do iterate_through_batch

181

182 adjust_weights_and_biases:

183 do 1 = 1,output_layer

184 dedb(1:n(1),1) = dedb(1:n(1),1)/mini_batch_size

185 b(1:n(1),1) = b(1:n(1),1) - etaxdcdb(1:n(1),1) ! Adjust biases

186 dedw(1:n(1),1:n(1-1),1) = dedw(1:n(1),1:n(1-1),1)/mini_batch_size

187 w(l:n(l),1:n(1-1),1) = w(l:n(1),1:n(1-1),1) - etaxdcdw(1l:n(1),1:n(1-1),1) ! Adjust weights
188 end do adjust_weights_and_biases

189 end do iterate_across_batches

136,9 72%

-~~~

“LOOp” Structure (il BerkeLEY LAB

Bringing Science Solutions to the World

7 inference-engine — vim srcfinference_engine/trainable_engine_s.f90 — 132x55

I =0.; b =0.e0 ! Initialize weights and biases

iterate_across_batches: &
do iter = 1, size(mini_batches’

136
137
‘S 1
_outpuz_pair: | 138
ts = input_ot i 139

e = size(inpt |

140

g 141

i_Match_size 142

inputs! | 143

(pair)? | 144

feed_forward: & 145
do 1 = 1,output_layer

z(1:n(1),1) = matmulf\w(1 146

a(1:n(1),1) = selfxdi§fer | 147

end do feed_forward

- 148

cost = cost + sum((y(L1:n(Q 1 149

delta(l:n(output_layer),oul | 150

(a(1l:n(output_layer),out| lara

* self%differentiable_aci

W =0.; b=0.e0 ! Initialize weights and biases

iterate_across_batches: &
do iter = 1, size(mini_batches)

cost = 0.; dcdw = 0.; dcdb = 0.

associate(input_output_pairs => mini_batches(iter)%input_output_pairs())
inputs = input_output_pairs%inputs()
expected_outputs = input_output_pairs%expected_outputs()
mini_batch_size = size(input_output_pairs)

end associate

iterate_through_batch: &
do pair = 1, mini_batch_size

back_propagate_error: &
do 1 = n_hidden,1,-1
delta(1:n(1),1) = matmul(transpose
delta(1:n(1),1) = delta(1:n(1),1)
end do back_propagate_error

sum_gradients: &
do 1 = 1,output_layer
dedb(1:n(1),1) = dedb(1:n(1),1) + ¢
do concurrent(j = 1:n(1))
dedw(j,1:n(1-1),1) = dcdw(j,1:n(]
end do
end do sum_gradients

end do iterate_through_batch

adjust_weights_and_biases: &

lterating sequentially across and within mini-batches of
input/output pairs facilitates in situ training at application
runtime, potentially eliminating the export of large training
data sets or at least making it so that the resulting network
can be trained off-line in fewer iterations.

do 1 = 1,output_layer

-

dedb(1:n(1),1) = dedb(1:n(1),1)/mini_batch_size

b(1:n(1),1) = b(1:n(1),1) - etaxdedb(1:n(1),1) ! Adjust biases
dedw(1:n(1),1:n(1-1),1) = dedw(1:n(1),1:n(1-1),1)/mini_batch_size
w(l:n(l),1:n(1-1),1) = w(l:n(1),1:n(1-1),1) - etaxdcdw(1l:n(1),1:n(1-1),1) ! Adjust weights
end do adjust_weights_and_biases
end do iterate_across_batches
136,9

-~~~

“LOOp” Structure (il BerkeLEY LAB

Bringing Science Solutions to the World

® @ 7 inference-engine — vim srcfinference_engine/trainable_engine_s.f90 — 132x55

136 I =0.; b =0.e0 ! Initialize weights and biases

137

138 iterate_across_batches: &

139 do iter = 1, size(mini_batches)

140

141 cost = 0.; dcdw = 0.; dcdb = 0.

142

143 associate(input_output_pairs => mini_batches(iter)%input_output_pairs())

144 inputs = input_output_pairs%inputs()

145 expected_outputs = input_output_pairs%expected_outputs()

146 mini_batch_size = size(input_output_pairs)

147 end associate

148

149 iterate_through_batch: &

150 do pair = 1, mini_batch_size

151

152 a(l:num_inputs, @) = inputs(pair)%values()

153 y = expected_outputs(pair)%outputs()

154

155 feed_forward: &

156 do 1 = 1,output_layer

157 z(1:n(1),1) = matmul(w(1l:n(1),1:n(1-1),1), a(1:n(1-1),1-1)) + b(1:n(1),1)

158 a(1:n(1),1) = self%differentiable_activation_strategy_%activation(z(1:n(1),1))

159

160 R
i | The only other sequential logicis |-« All other logic is implicitly parallel
163 H

= |the (mostly) necessary stepping array statements or do concurrent
165 utput_layer)

= |through layers: blocks:

168 — e -
169 delta(l:n(l),l) = matmujI+«-.-~wn~.‘l...fﬂ‘nl1\'|\ Adenf1)Y T2V AAT+alAMenmlT Y TiaV)

170 delta(1:n(1),1) = deltal

174 a back_propagate_errc .

172 173 sum_gradients: &

o e \ 174 do 1 = 1,output_layer

gi /1) = dgdgg) 175 dedb(1:n(1),1) = decdb(1:n(1),1) + delta(1:n(1),1)
177 y=¢ 176 do concurrent(j = 1:n(1))

e 7 dedw(j,1:n(1-1),1) = decdw(j,1:n(1-1),1) + a(1:n(1-1),1-1)*=delta(j,1)
180 178 end do

s s 179 end do sum_gradients

183 180 end do iterate_through_batch

184 dcdb(1:n(S

185 b(1:n(1),1) = B(1:n(1),1)

186 dedw(1:n(1),1:n(1-1),1) = — = p—

187 w(l:n(l),1:n(1-1),1) = w(1l:n(1),1:n(1-1),1) - etaxdcdw(1l:n(1),1:n(1-1),1) ! Adjust weights

188 end do adjust_weights_and_biases

189 end do iterate_across_batches

136,9 72%

Fast-GPT BERKELEY LAB

Bringing Science Solutions to the World

ecoe < > © 5] & ondrejcertik.com/blog/2023/03/fastapt-faster-tharn- C M +

Ondfej Certik

FASTGPT: FASTER THAN PYTORCH IN 300 LINES

OF FORTRAN

March 14, 2023
Authors: OndFej Certik, Brian Beckman

In this blog post | am announcing fastGPT, fast GPT-2 inference written in Fortran. In it, | show
1. Fortran has speed at least as good as default PyTorch on Apple M1 Max.
2. Fortran code has statically typed arrays, making maintenance of the code easier than with Python

3. It seems that the bottleneck algorithm in GPT-2 inference is matrix-matrix multiplication. For physicists
like us, matrix-matrix multiplication is very familiar, unlike other aspects of Al and ML. Finding this
familiar ground inspired us to approach GPT-2 like any other numerical computing problem.

4. Fixed an unintentional single-to-double conversion that slowed down the original Python.

5. | am asking others to take over and parallelize fastGPT on CPU and offload to GPU and see how fast
you can make it.

About one month ago, | read the blogpost GPT in 60 Lines of NumPy, and it piqued my curiosity. | looked at
the corresponding code (picoGPT) and was absolutely amazed, for two reasons. First, | hadn't known it could
be so simple to implement the GPT-2 inference. Second, this looks just like a typical computational physics
~code, similar to many that | have developed and maintained throughout my career.
" L 4 o - ,r»vr'»rr ,,.‘,,,‘ w-———‘—i .v ~rti

Toams
BERKELEY LAB

Bringing Science Solutions to the World

An ordered set of images created by execution of a form team statement, or the initial
ordered set of all images.

Team 1 Team 2

Image 1 Image 2 Image 3 Image 4 Image 5 Image 6

Teams facilitate the execution of an image sets independently from other image sets,
e.g., a sync all statement synchronizes the current team only.

An extensible derived type team type with private components describes a team after
the successful execution of a form team statement.

28

CAF/MPI Rosetta Stone BERKELEY LAB

Bringing Science Solutions to the World

Program execution sequence over time (left axis) in 12 images
(top) initially globally and then within subgroups.

Fortran MPI procedure
statement or or variable

procedure

foxm ‘teamf.) MPI_Comm Split(..)

change team(..)

® A T | i il S
[T _ o
1 P = — Defaultg:ommunication
team_number (...) color w— mechanisms
end team MPI_Barrier(.) | ...
...... Optional communication
------ mechanism

29

Teams Test Code

Incremental caffeination of a terrestrial hydrological modeling
framework using Fortran 2018 teams
Extended Abstract

Damian Rouson
Sourcery Institute
Oakland, California
damian@sourceryinstitute.org

ABSTRACT

We present Fortran 2018 teams (grouped processes) running a par-
allel ensemble of simulations built from a pre-existing Message
Passing Interface (MPI) application. A challenge arises around the
Fortran standard’s eschewing any direct reference to lower-level
communication substrates, such as MPL, leaving any interoperabil-

James L. McCreight Alessandro Fanfarillo
National Center for Atmospheric Research National Center for Atmospheric Research
Boulder, Colorado Boulder, Colorado

jamesmec@uear.edu elfanfa@uear.edu
1 INTRODUCTION
1.1 Motivation and Background

Since the publication of the Fortran 2008 standard in 2010 [4], For-
tran supports a Single-Program Multiple-Data (SPMD) program-
‘ming style that facilitates the creation of a fixed number of repli-
cas of a compiled program, wherein each replica executes asyn-

Coarray Fortran (CAF) Teams: Ensemble members run using CAF teams
o~ ~
// Message Passing Inteeface (MPY) ard GAF mix: WRF-Hyto Modal Chain iy
/ (onmenpho of NOAA'S National Winter Model rplementation) \\
|
& NWM Forcing b. NoahMP LSM c L.::nmng
11 km grie) ¥ km grid) 2wty do ey
—rr i
{ }
d. NHDPIus Catchmant . Channel & | t | ,—"
;%W Roservolt i | .
unique Rou Model Outpu
catchments and —_— mmg -RI sap &
river reaches) Nudging Data Farecast Products.

K L Assimilation =] L;l%{‘,«'

Figure 4: WRF-Hydro caffeination via Fortran 2018 teams:
example components of the National Water Model. Differ-
ent MPI colors represent independent teams, each of which
is an ensemble member.

Rouson, D., McCreight, J. L., & Fanfarillo, A. (2017, November). Incremental
caffeination of a terrestrial hydrological modeling framework using Fortran 2018
teams. In Proceedings of the Second Annual PGAS Applications Workshop (pp.

1-4).

-~~~

rrrerer

program main

ﬂ BERKELEY LAB

Bringing Science Solutions to the World

I'l Test team_number intrinsic function

use iso_fortran_env, only

use assertions_module , only :

implicit none

integer , parameter ::
type(team_type), target ::

: team_type
assertions

standard_initial_value = -1

home

call assert(team_number() == standard_initial_value)

associate(my_team=>mod(this_image(),2) + 1)

form team(my_team, home)
change team(home)
call assert(team_numbe
end team
call assert(team_number(
end associate

sync all

! Map even|odd images—->teams 1|2

r() == my_team)

) == standard_initial_value)

if (this_image() == 1) print *, "Test passed."

end program

30

Image Enumeration
BERKELEY LAB

Bringing Science Solutions to the World

- Obtaining an image index:
this image([team]) image index(coarray, sub, team number)
this image(coarray [,team]) image index(coarray, sub, team)

this image(coarray, dim [,team]) image index(coarray, sub)

scripted — vim image-enumeration.f90 — 64x10

S . . . program main
s« Obtaining an image count: S et
integer a[-1:%], b(1@0)[-1:1, -1:x]
num_images() if (this_image()==num_images()} then

print %, this_image(a)
) print %, image_index(a,[3]}, image_index(b,
num 1mages(team) print %, lcobound(a), ucobound(a}
- end if

end program

num images (team number)

31

Image Enumeration
BERKELEY LAB

b(:)

Bringing Science Solutions to the World

a [[0 | [T | (21| [38] | [4]

[-1,0] | [0,0]

scripted — vim image-enumeration.f90 — 64x10

eoe
program main
implicit none

[-1,-1]1| [0,-1] |[1,-1]

1.
2
3 integer al-1:%], b(10)}[-1:1, -1:x]
4 if (this_image()==num_images())} then
5 print %, this_image(a)

6 print x, image_index(a,[3]), image_index(b, [0,0])
7 print *, lcobound(a), ucobound(a)

N] = scripted — -zsh — 64x10 ALl
cuf23-tutorial: cafrun -n 5 ./image-enumeration ,
3 -
3 5
-1 3

cuf23-tutorial: ~571

| 8 end if

cafrun -n 1 ./image—enumeration

=1
(% (%
=1 =1

32

cuf23-tutorial: [

Synchronization
BERKELEY LAB

Bringing Science Solutions to the World

- Image barriers (“meet-ups”):
sync all(stat, errmsqg)

sync ilmages(image-set, stat, errmsgqg)

allocate() for coarrays only, including implicit
} (de)allocation at end of a block or procedure

deallocate()

stop stop code (integer or character codes allowed)

end program

call move alloc(from,to) with coarray arguments.

Any statement causing an implicit coarray deallocation by completing a block or procedure.
« Deprecated by Metcalf, Reid & Cohen (2018):

sync memory(stat, errmsgqg)

33

Other Image Control Statements
BERKELEY LAB

Bringing Science Solutions to the World

S . . .
w Locks: A lock variable is a

: coarray object of the
tock(lock-variable, errmsg) } extens)i/blejintrinsic type
lock_ type with private

components.

unlock(lock-variable, stat, errmsqg)

< Critical blocks:
critical(stat, errmsgqg)
end critical
« Teams
form team(team number, team variable)
change team(team value, ..)

end team

[
w Events An event variable is a

event post(event-variable, stat, errmsqg) coarray object of the
extensible intrinsic type

event type with
private components.

event wait(event-variable, stat, errmsgqg)

34

Collective Subroutines
BERKELEY LAB

Bringing Science Solutions to the World

w Behavior:
— Successful execution of a collective subroutine performs a calculation on all the
images of the current team and assigns a computed value on one or all of them.

— If it is invoked by one image, it shall be invoked by the same statement on all
active images of its current team in segments that are not ordered with respect
to each other

— Corresponding references participate in the same collective computation.
w Complete list:

—co_sum(a, result_image, stat, errmsg)

—co_max(a, result_image, stat, errmsg)

—co_min(a, result_image, stat, errmsg)

—co broadcast(a, source image, stat, errmsg)

—co_reduce(a, operation, result_image, stat, errmsg)

35

co_sum BERKELEY LAB

Bringing Science Solutions to the World

co sum(a, result image, stat, errmsqg)

w Argument a
— shall be of numeric type,
— shall have the same shape, type, & type parameter values, in corresponding references.
— shall not be a coindexed object
— is an intent (inout) argument

w Argument result image (optional)
—shall be of scalar type integer
—is an intent (in) argument

—If present, it shall be present on all images of the current team, have the same value on
all images of the current team, and shall be an image index of the current team

36

co_sum BERKELEY LAB

Bringing Science Solutions to the World

Team 1 Team 2

Image 1 Image 2 Image 3 Image 4 Image 5 Image 6

a(1:4)[2]

Baa0)

Image 1 Image 2 Image 3 Image 4 Image 5 Image 6
a(1:4)[5] a(1:4)[6]

|9 12] 8 u [§]9 12| 8 [u
’

37

co_max BERKELEY LAB

Bringing Science Solutions to the World

co max(a, result image, stat, errmsqg)

w Argument a
— shall be of numeric type,
— shall have the same shape, type, & type parameter values, in corresponding references.
— shall not be a coindexed object
— is an intent (inout) argument

w Argument result image (optional)
—shall be of scalar type integer
—is an intent (in) argument

—If present, it shall be present on all images of the current team, have the same value on
all images of the current team, and shall be an image index of the current team

38

co_max BERKELEY LAB

Bringing Science Solutions to the World

Team 1 Team 2

Image 1 Image 2 Image 3 Image 4 Image 5 Image 6
a(1:4)[2] a(1:4)[3] a(1:4)[6]

26l sl 017} 4141011

Time

Image 1 Image 2 Image 3 Image 4 Image 5 Image 6
a(l:4)(2] a(1:4)[4] || a(:4)5] || a(1:4)[6]

31619173 44(5[9 [4 [4[5|9|§ |l4]4]5(9
7

39

co_min BERKELEY LAB

Bringing Science Solutions to the World

co min(a, result image, stat, errmsqg)

w Argument a
— shall be of numeric type,
— shall have the same shape, type, & type parameter values, in corresponding references.
— shall not be a coindexed object
— is an intent (inout) argument

w Argument result image (optional)
—shall be of scalar type integer
—is an intent (in) argument

—If present, it shall be present on all images of the current team, have the same value on
all images of the current team, and shall be an image index of the current team

40

co _min

Team 1

Image 1 Image 2 Image 3

a(1:4)[2]

i/

Image 1 Image 2

a(1:4)[2]

AZED)

Image 3

a(1:4)[1]

1[4[3]1
L/

a(1:4)[6]

4[4]o]1]

Image 4 Image 5 Image 6

a(1:4)[6]

2[4)o]1

41

co_broadcast BERKELEY LAB

Bringing Science Solutions to the World

co broadcast(a, source image, stat, errmsqg)

w Argument a

— shall have the same shape, dynamic type, & type parameter values, in corresponding
references.

— shall not be a coindexed object
— is an intent (inout) argument

— successful execution causes a to become defined as if by intrinsic assignment on all
images in the current team with the value of a on the source_image

w Argument source image
—shall be of scalar type integer
—is an intent (in) argument

—If present, it shall be present on all images of the current team, have the same value on
all images of the current team, and shall be an image index of the current team

42

Co_brOadcaSt BERKELEY LAB

Bringing Science Solutions to the World

Team 1 Team 2

Image 1 Image 2 Image 3 Image 4 Image 5 Image 6

a(1:4)[6]

[i[ol1]

a(1:4)[1] a(1:4)[2] a(1:4)[3]

peegl| ecan)| Eoaal

Time

co broadcast(a,l)

Image 1 Image 2 Image 3 Image 4 Image 5 Image 6

a(1:4)[é]

3]4/s]1

a(1:4)[2]

1[s3[e]

43

co_reduce BERKELEY LAB

Bringing Science Solutions to the World

co reduce(a, operation, result image, stat, errmsgqg)

w Argument a
— shall be intent (inout), non-polymorphic and not coindexed

— shall have the same shape, dynamic type, & type parameter values, in corresponding
references.

— becomes the result of applying the reduction operation to values of a in the
corresponding references, and likewise on an element-wise basis if a is an array

w Argument operation

—shall implement an associative operation via a pure function with two arguments
w Argument result image

—shall be of scalar integer, intent(in) argument

—if present, it shall have the same value on all images of the current team and shall be an
image index of the current team

44

Hands-on co_reduce

ﬂ BERKELEY LAB

Bringing Science Solutions to the World

e < > 0 & github.comsourceryinstit @ h + O
= README.md s 2
Sourcery Library 3
A grab bag of useful tricks in Fortran 2018, ‘51
«/oydddy /. 6
./ sdmNNmmdh /. 7
/odNNmNmy shdh,/ .
—+ynNNmams . . . ohy. 8
+odnNNmdmn+. ... 9
~+sdnNNNadnmo .
/+ydaNNNaddmns— 1 0
~+ohmaNNNNmd damy ©
/+ohmatiNNNmdhdmmy / . 1 1
. ++ShdmNNNNNndhdmmh,/ .
: /+shdnmNNNNadhhmmay / . 1 2
«+/+ShammNNNNNmAhAmme#Houeress
1 e e 13
A Judl) yyhdd
..:oyh## / s#Esyyy - 14
. 20yhhdsh## /+shddmddy +##+hdysoosyys/-. . 15
. /ssssyhdmd:-##///// /##ndifmdhyooo+-
ynandy ; 16
2444/ { ++05yhhhdammmaNNNNNNNNmd o 17
+4+/ /111 +00ssshddmmmmmNNNady .
LA 11111 7 +++0osyhhddmmmmddy / . 18
.1/ //+++0ssyyhhhhhss: . 19
This library gathers softy that d at Arch Inc. and Sourcery
Institute find useful across many of our projects, including in courses that we teach. 2 1
Most code starts here because it is too limited in capability to release as a 2 2
standalone package but too distinct in purpose to fold into other existing packages.
Ower time, when code that starts here grows in capability, a new repository is born 2 3
and the corresponding code is removed from the Sourcery repository. Examples 2 4
include the Assert and Emulators libraries. Following the practice of semantic
versioning, code removal causes an increment in the major version number. 2 5
Contents 27
Procedures % g
* Array functions 3
* String functions 0
* User-defined collective subroutines 31
« Inputfoutput format strings and format string generators 3 2
Classes 33
« Parallel data partitioning and gathering, 34
» Aminimalistic unit testing framework comprised of two types: test_t and 3 5
test_result_t 36
+ [Co-)Object pattern abstract parent, 3 7
* Runtime units tracking,
* Atest oracle using the Template Method pattern, and 3 8
* A command-line abstraction that for prog 3 9

module co_all_m
implicit none

interface
module subroutine co_all(a)
implicit none
logical, intent(inout) :: a
end subroutine
end interface

end module

submodule(co_all_m) co_all_s
implicit none
contains
module procedure co_all
call co_reduce(a, and)
contains

pure function and(lhs, rhs) result(lhs_and_rhs)

logical, intent(in) :: lhs, rhs
logical lhs_and_rhs
lhs_and_rhs = 1lhs .and. rhs
end function
end procedure
end submodule

program main
use co_all_m, only : co_all
implicit none
logical :: operand = .true.

associate(me=>this_image())
call co_all(operand)
if (me==1) print *, operand
if (me==num_images()) operand = .false.
call co_all(operand)
if (me==1) print %, operand

end associate

end program

httDs://qithub.com/sourcervinstitute/rsrourcerv

45

-~~~

Heat Equation Solver S(i] BERKELEY LAB

Bringing Science Solutions to the World

cuf23-tutorial — vim heat-equation.f90 — 110x39

240 program heat_equation

241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

277 Bnd program

1l Parallel finite difference solver for the 2D, unsteady heat conduction partial differential equation
use subdomain_2D_m, only : subdomain_2D_t

use iso_fortran_env, only : inté4

use kind_parameters_m, only : rkind

implicit none

type(subdomain_2D_t) T

integer, parameter :: nx = 4896, ny = nx, steps = 50
real(rkind), parameter :: alpha = 1._rkind
real(rkind) T_sum

integer(inté4) t_start, t_finish, clock_rate

integer step

call T%define(side=1._rkind, boundary_val=1._rkind, internal_val=2._rkind, n=nx)! Initial/boundary cond.
call T%allocate_halo_coarray ! implicit synchronization

associate(dt => T%dx()*T%dy()/(4*alpha)) ! set time step
call system_clock(t_start)

do step = 1, steps
call T%exchange_halo ! put subdomain boundary values on neighboring images
sync all
T= T + dt * alpha * .laplacian. T ! asynchronous parallel user-defined operators
sync all
end do

end associate

T_sum = sum(T%values()) ! local sum
call co_sum(T_sum, result_image=1) ! distributed collective sum

call system_clock(t_finish, clock_rate)

if (this_image()==1) then
print %, "walltime: ", real(t_finish - t_start, rkind) / real(clock_rate, rkind)
print *,"T_avg = ", T_sum/(nx*xny)

end if

46

-~~~

Hands-On Heat Equation SRl ccrKELEY LAB

Bringing Science Solutions to the World

eoe < 0 B & github, uf23-tutori -equation e @M + 0§

‘= README.md V4

Heat Equation Exercise

In addition to demonstrating parallel features of Fortran 2018, this example shows an object-
oriented, functional programming style based on Fortran's user-defined operators such as the

.laplacian. operator defined in this example. To demonstrate the expressive power and
flexibility of this approach, try modifying the modifying the main program to use 2nd-order Runge-
Kutta time advancement:

T_half = T + @.5%dtxalphax .laplacian. T
call Txexchange_halo

sync all

T = T + dt*alpha* .laplacian. T_half
call T%exchange_halo

sync all

You'll need to append , T_half tothedeclaration type(subdomain_2D_t) T .With some
care, you could modify the main program to use any desired order of Runge-Kutta algorithm
without changing any of the supporting code.

This example also demonstrates a benefit of Fortran's facility for declaring a procedure to be

pure :the semantics of pure procedures essentially guarantees that the above right-hand-side
expressions can be evaluated fully asynchronously across all images. No operator can modify
state that would be observable by another operator other than via the first operator's result. This
would be true even if an operator executing on one image performs communication to get data
from another image via a coarray. To reduce communication waiting times, however, each image in
our example proactively puts data onto neighboring images. Puts generally outperform gets
because the data can be shipped off as soon the data are ready. With the exception of one
coarray allocationinthe define procedure, all procedures are asynchronous and all image
control is exposed in the main program.

47

Coarrays

w Non-allocatable (static):
character(len=max_greeting_length) :: greetingl[x*]
w Dynamically allocatable:

real(rkind), allocatable :: halo_x(:,:)[:]

w Derived type components:
type global_field_t

real, allocatable ::
end type

values_(:)[:]

w Local coarrays:

subroutine gather_image_numbers
integer, allocatable :: images(:)[:]
allocate(images(num_images()) [*]1)
end subroutine

s Derived type coarrays:

type payload_list_t
type(payload_t), allocatable ::
end type

payloads(:)

type(payload_1list_t), allocatable :: mailbox[:]

Bringing Science Solutions to the World

A coarray is a data entity that has nonzero
corank; it can be directly referenced or
defined by other images. It may be a
scalar or an array.

For each coarray on an image, there is
a corresponding coarray with the same
type, type parameters, and bounds on
every other image of a team in which it
is established

=> Symmetric memory
if intrinsic-type coarray

} Allow for asymmetric memory

48

User-defined, purely functional operators

PARR RSN

ut = -(.grad.p)/rho + nu*(.laplacian.u) -(u.dot. (.grad.u))

\\ ///

Distributed objects

Burgers Eq. Solver

Ut — V"LL:EI 7
o
1.00 &
& * Ll . b
&
0.80
3480 .714
3480, 714 A 2610.536
3‘0.60 2 1740, 357
.E \ ‘ o ‘%{ a70.179
b E o
£ oo
. 0.20 Q 0‘.' “@;::‘f,,?‘ ,:’:‘f“;k:-t ~
‘ # Weak caling ::1:*“ 1‘_‘ - “‘“l ':::;jf:
0.00 . »\;? o —,L' 7 -)
- 0 5000 10000 15000 ' Bee e
Number of Images 2, o
-_—
. | .
Burgelr§ilJ.tM.t(19ztti). i\hmatherfnatmal Platform * Cray XE6 (Hopper Rouson, Xia, & Xu (2011). Scientific
e s e %52, at NERSC) Sorinee besin.The Ojoc o e
| ! INCENOL

Way. Cambridge University Press.

- e W— _ 7 _
- R T~ : ™

Events
Hello, world!

Performance-oriented constraints:
— Query and wait must be local.

— Post and wait are disallowed in do concurrent constructs.

-
> i g v
Pro tips:
- — Overlap communication and computation. “
} — Wherever safety permits, query without waltmg i
S BT PR,

Events

An intrinsic module provides the derived type event type,
which encapsulates an atomic int kind integer
component default-initialized to zero.

® @
prografl main

implicit none

use iso_fortran_env, only : event_type
type(event_type), allocatable :: greeting_ready(:)[:]
type(event_type) :: ok_to_overwrite[x]

I

An image increments the event count on a " rouson — vim events.f90 — 56x7

remote image by executing event post.

The remote image obtains the post count
by executing event query.

Image Side Effect
Control
: -
defines count

Bringing Science Solutions to the World

< ':l il & github.comfrousonfcuf23-tutoriali#h @ [i'l aE @

README.md V4

Asynchronous Hello World Exercise

Try adjusting the delay_magnitude constant to larger or smaller
non-negative values. For each new value, recompile once and rerun
the program multiple times. Explain the resulting program output.

53

FEATS:

Framework for
Extensible
Asynchronous Task
Scheduling

Execution:

4- In each team, establish one scheduler image and
one or more compute images.

4- Schedulers post task_assigned events to compute
images in an order that respects dependencies in a
directed acyclic graph (DAG).

4 Compute images post ready_for_next_task events to
scheduler.

4- Atask_payload_map_t abstraction maps task task
identifiers to locations in a payload_t mailbox

coarray.

Initial target applications:
4- NASA’s Online Tool for the Assessment of Radiation
in Space (OLTARIS)
4 NCAR'’s Intermediate Complexity Atmospheric
Research (ICAR) model: work-sharing/work-stealing.
4- Fortran Package Manager: parallel builds.

& github.com/sourceryinstitute/FEATS

B sourceryinstitute [FEATS Public & Unwatch = &

i Star B Yok 1

¢»Code () Issues 2 I'l Pull requests (® Actions [Projects M wiki) Security |~ Insights

¥ main + P Bbranches ©2tags Go to file Add file ~ m

a rouson Merge pull request #28 from sourceryi w v 2%adbfz B hours ago (%) 124 commits

aithubworkflows doc: add and deploy ford documentation vesterday
doc doc: add and deploy ford documentation vesterday
example doc(example): add README.md in example dir yesterday
sre feat: replace sourcery dependency with assert 8 hours ago
tests Removed data_location_map, since it has becom... 15 days ago
gitignore doc: add and deploy ford documentation yesterday
LICENSE nitial commit

README.md doc(README]: delete broken link yesterday

fpm_tomi build(fpm): update dag dependency 8 hours ago

README.md 7

M‘S.OURCERY INSTITUTE

Framework for Extensible Asynchronous
Task Scheduling (FEATS)

[license 850-3 | reiease v0.2.0 | FOF README.md

Overview | Getting Started | Documentation | Dependencies | Acknowledgments | Donate

Overview

About

Framework for Extensible
Asynchronous Task
Scheduling

0 Readme

HE BSD-3-Clause License

Releases 2

% Update to dag ve... | Latest

ago

+ 1 release

Packages

No g
Publ

Contributors a

ﬁ rouson Damian Rouson

i everythingfunctional Br._.

@ hsnyder Harris Snyder

".: singleterry

Environments 1

27 github-pages (Active

FEATS:

Framework for
Extensible
Asynchronous Task
Scheduling

Execution:

4- In each team, establish one scheduler image and
one or more compute images.

4- Schedulers post task_assigned events to compute
images in an order that respects dependencies in a
directed acyclic graph (DAG).

4 Compute images post ready_for_next_task events to
scheduler.

4- Atask_payload_map_t abstraction maps task task
identifiers to locations in a payload_t mailbox

coarray.

Initial target applications:
4- NASA’s Online Tool for the Assessment of Radiation
in Space (OLTARIS)
4 NCAR'’s Intermediate Complexity Atmospheric

Research (ICAR) model: work-sharing/work-stealing.

4- Fortran Package Manager: parallel builds.

Define Tasks

I Partition Tasks and Form Teamsl

/L

% %%%'

scheduler cnmputel .

(nrnputeN

| task _assign/notify
R
| task assign/notify |

(ask _assign/notify |

|°°E 7 |ov4rlll(omput¢|mm;] T

—)]

ready_for_task
(7‘

| task_assign/netify
,4)‘

_ ready._for_task

Ioog 7 Twhile any nm;;lgmd usk;]

| task_assign/notify |

| ready_for_task

| task_assign/notify |

scheduler computel ...

computeN

% %:%%

s(heduler (ompu[el .

(ompu(eN

1 task_assign/notify
R

(ask _assign/notify |

M Tover all compute |magu| H

| task_assign/notify | |
—)v.

ready_for_task
47‘

| task assign/notify
‘4>‘

| ready for_task

IooE 7 [while any um;.gm mksl

| task_assign/notify |

| ready_for_task

| task_assign/notify |

scheduler computel ...

computeN

Team 1

-

~ -
~ - Py
Gather Final Results

Team N

Demo

Coming Soon to a Computer Screen Near You

L Fortran 2023
— Reductions in do concurrent
— Notified access for remote coarray data

L Fortran 202Y (Y ~ 8)
— Type-safe generic programming
— Task-based parallel programming

