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Parallel Programming Problem: Histogram

• Consider the problem of computing a histogram:
-Large number of “words” streaming in from somewhere
-You want to count the # of words with a given property

• In shared memory
-Lock each bucket

A’s B’s C’s … Y’s Z’s

• Distributed memory: the array is huge and spread out
-Each processor has a substream and sends +1 to the 

appropriate processor… and that processor “receives”

A’s B’s C’s D’s Y’s Z’s…



Goals of PGAS Programming

• Applications: convenient programming of irregular codes
-Graphs
-Hash tables
-Sparse matrices
-Adaptive (hierarchical) meshes

• Machines: expose best available performance on a 
given machine
-Low latency for small messages
-High bandwidth even for medium sized messages
-High injection bandwidth



PGAS = Partitioned Global Address Space

• Global address space: thread may directly read/write 
remote data 
• Convenience of shared memory

• Partitioned: data is designated as local or global
• Locality and scalability of message passing
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Hello World in UPC

• Any legal C program is also a legal UPC program
• If you compile and run it as UPC with P threads, it will 

run P copies of the program.
• Using this fact, plus a few UPC keywords:

#include <upc.h> /* needed for UPC extensions */
#include <stdio.h>

main() {
printf("Thread %d of %d: hello UPC world\n", 

MYTHREAD, THREADS);
}



PGAS means directly accessing remote data

• SPMD: fixed number of threads (e.g., one per core)
• Distributed arrays are built-in
shared int a[100]; // shared array
a[10] = 3;         // put, possibly remote
int x = a[14];     // get, possibly remote

• Global pointer are like C pointers: 
shared int *p = &a[4]; // can also upc_alloc
*p = 3;          // put 
x =  *p;        // get 
p++;            // move to next element

• UPC has locks and barriers for synchronization and 
collective communication (broadcast, reduce, etc.)



Partitioned Global Address Space  (review)

• Directly read/write remote memory; partitioned for locality
• One-sided communication underneath:

Put:  a[i] = … ;    *p = ...;    upc_mem_get(..)
Get: ... = a[i]...;   ... = *p;     upc_mem_put(...)
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UPC Non-blocking Bulk Operations

#include<upc_nb.h> 

upc_handle_t h =
upc_memcpy_nb(shared void * restrict dst, 

shared const void * restrict src,
size_t n); 

void upc_sync(upc_handle_t h);  // blocking wait
int upc_sync_attempt(upc_handle_t h); // non-blocking 

Important for performance: 
• Communication overlap with computation
• Communication overlap with communication (pipelining)
• Low overhead communication 



One-Sided Communication in PGAS (e.g., GASnet inside)

• A two-sided message needs to be matched with a receive
-Ordering requirements on messages can also hinder bandwidth

• A one-sided put/get message can be handled directly by a network 
interface with RDMA support
-Decouples transfer from synchronization
-Avoids interrupting the CPU or storing data from CPU (preposts)

address

message id

data payload

data payload

one-sided put message
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network
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memory
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Latency on a Cray Aries (NERSC Cori-P1)
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Bandwidth on a Cray Aries (NERSC Cori-P1)
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Medium sized “flood” bandwidth across machine
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Application Challenge: Fast All-to-All

Joint work with Chris Bell, Rajesh Nishtala, Dan Bonachea

chunk = all rows with same destination

pencil = 1 row

Transpose in 3D FFT

• Three approaches:
• Chunk:

• Wait for 2nd dim FFTs to finish
• Minimize # messages

• Slab:
• Wait for chunk of rows destined for 1 

proc to finish
• Overlap with computation

• Pencil:
• Send each row as it completes
• Maximize overlap and
• Match natural layout slab = all rows in a single plane with 

same destination



Bisection Bandwidth

DEGAS Overview

• Avoid congestion at node interface: allow all cores to communicate
• Avoid congestion inside global network: spread communication 

over longer time period (send early and often)
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FFT Performance on BlueGene/P (Mira)

• UPC implementation 
outperforms MPI

• Both use highly 
optimized FFT library 
on each node

• UPC version avoids 
send/receive 
synchronization
• Lower overhead
• Better overlap
• Better bisection 
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De novo Genome Assembly

• DNA sequence consists of 4 bases: A/C/G/T
• Read: short fragment of DNA 
• De novo assembly: Construct a genome 

(chromosomes) from a collection of reads

DEGAS



• Sequencers produce fragments called “reads”
• Chop them into overlap fixed-length fragments, “K-mers”
• Parallel DFS (from randomly selected K-mers) à “contigs”

• Hash tables used here (and in other assembly phases)
-Different use cases, different implementations

• Some tricky synchronization to deal with conflicts

PGAS in Genome Assembly
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DEGAS



Partitioned Global Address Space Programming
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• Store the connections between read fragments (K-mers) in a hash 
table

• Allows for TB-PB size data sets

key: cca
val: t 

key: gta
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key: tac
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DEGAS
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Evangelos Georganas, Aydın Buluç, Jarrod Chapman, Steven Hofmeyr, Chaitanya Aluru, Rob Egan, 
Lenny Oliker, Dan Rokhsar, and Kathy Yelick. HipMer: An Extreme-Scale De Novo Genome Assembler, 
SC’15

.	

HipMer (High Performance Meraculous) Assembly Pipeline

Distributed Hash Tables in PGAS
• Remote Atomics, Dynamic Aggregation, Software Caching
• 13x Faster than MPI code (Ray) on 960 cores



Comparison to other Assemblers
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Science Impact: HipMer is transformative

• Human genome (3Gbp) “de novo” assembled :
-Meraculous: 48 hours
-HipMer: 4 minutes (720x speedup                         

relative to Meraculous)
• Wheat genome (17 Gbp) “de novo” assembled (2014):

-Meraculous (did not run): 
-HipMer: 39 minutes; 15K cores (first all-in-one 

assembly)
• Pine genome (20 Gbp) “de novo” assembled (2014) :

-Masurca : 3 months; 1 TB RAM
• Wetland metagenome (1.25 Tbp) analysis (2015):

-Meraculous (projected): 15 TB of memory
-HipMER: Strong scaling to over 100K cores  

(contig gen only)
21Georganas, Buluc, Chapman, Oliker, Rokhsar, Yelick, 

[Aluru,Egan,Hofmeyr] in SC14, IPDPS15, SC15

Makes unsolvable 
problems solvable!

DEGAS



p0 p1 p2

UPC++:  PGAS with “Mixins”

• Default execution model is SPMD, but

• UPC++ uses templates (no compiler 
needed)

shared_var<int> s; 
global_ptr<LLNode> g; 
shared_array<int> sa(8);

s: 16

g: 

x: 5
y: 

x: 7
y: 0

sa: 

18                  63           27• Remote procedure calls, async
async(place) (Function f, T1 arg1,…);
wait();     // other side does poll();

• Interoperability is key; UPC++ can be use with OpenMP or MPI

• Teams for hierarchical 
algorithms and machines
teamsplit (team) { ... }

DEGAS



UPC++ Performance Close to UPC
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DEGAS

Difference between UPC++ and 
UPC is about 0.2 μs (~220 cycles)



Application Challenge: Data Fusion in UPC++

24

• Seismic modeling for energy applications “fuses” observational 
data into simulation

• With UPC++ “matrix assembly” can solve larger problems

French and Romanowicz use code with UPC++ phase to compute first ever whole-mantle 
global tomographic model using numerical seismic wavefield computations (F & R, 2014, 
GJI, extending F et al., 2013, Science). 

First ever sharp, three-dimensional scan of Earth’s interior that conclusively connects plumes 
of hot rock rising through the mantle with surface hotspots that generate volcanic island chains 
like Hawaii, Samoa and Iceland.

DEGAS



Application Challenge: Data Fusion in UPC++

25

Distributed Matrix Assembly
• Remote asyncs with user-controlled resource management
• Remote memory allocation
• Team idea to divide threads into injectors / updaters
• 6x faster than MPI 3.0 on 1K nodes
à Improving UPC++ team support

See French et al, IPDPS 2015 for parallelization overview.
DEGAS



Load Balancing and Irregular Matrix Transpose

• Hartree Fock example (e.g., in NWChem)

Local	Array
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Increase scalability!• Inherent load imbalance
• UPC++

• Work stealing and fast atomics 
• Distributed array: easy and fast transpose

• Impact
• 20% faster than the best existing solution 

(GTFock with Global Arrays)

David Ozog , Amir Kamil , Yili Zheng, Paul Hargrove , Jeff R. Hammond, Allen Malony, 
Wibe de Jong, Katherine Yelick



Hartree Fock Code in UPC++

Strong Scaling of UPC++ HF Compared to GTFock with Global Arrays on 
NERSC Edison (Cray XC30) 

David Ozog , Amir Kamil , Yili Zheng, Paul Hargrove , Jeff R. Hammond, Allen Malony, 
Wibe de Jong, Katherine Yelick



UPC++ Communication Speeds up AMR

• Adaptive Mesh Refinement 
on Block-Structured Meshes
-Used in ice sheet modeling, 

climate, subsurface (fracking), 
astrophysics, accelerator 
modeling and many more
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Beyond Put/Get: Event-Driven Execution

• DAG Scheduling in a distributed (partitioned) memory context
• Assignment of work is static; schedule is dynamic
• Ordering needs to be imposed on the schedule

-Critical path operation: Panel Factorization
• General issue: dynamic scheduling in partitioned memory

-Can deadlock in memory allocation
- “memory constrained” lookahead

some edges omitted

Uses a Berkeley extension to 
UPC to remotely synchronize

29



symPACK: Sparse Cholesky

• Sparse Cholesky using fan-both algorithm in UPC++
-Uses asynchronous tasks with dependencies

Matthias Jacquelin, Yili Zheng, Esmond Ng, Katherine Yelick

2) Column j of L is used to update the remaining columns
of A.

If A is a dense matrix, then every column k, k > j, is
updated.

Once the factorization is computed, the solution to the
original linear system can be obtained by solving two
triangular linear systems using the Cholesky factor L.

B. Cholesky factorization of sparse matrices
For large-scale applications, A is often sparse, meaning

that most of the elements of A are zero. When the Cholesky
factorization of A is computed, some of the zero entries
will turn into nonzero (due to the subtraction operations in
the column updates; see Alg. 1). The extra nonzero entries
are referred to as fill-in. For in-depth discussion of sparse
Cholesky factorization, the reader is referred to [1].

Following is an important observation in sparse Cholesky
factorization. It is expected that the columns of L will
become denser and denser as one moves from the left to the
right. This is due to the fact that the fill-in in one column will
result in additional fill-in in subsequent columns. Thus, it is
not uncommon to find groups of consecutive columns that
eventually share essentially the same zero-nonzero structure.
Such a group of columns is referred to as a supernode. To be
specific, if columns i, i+1, · · ·, j form a supernode, then the
diagonal block of these columns will be completely dense,
and row k, j + 1  k  n, within the supernode is either
entirely zero or entirely nonzero.

Fill-in entries and supernodes of a sample symmetric
matrix are depicted in Figure 1a. In this example, 10
supernodes are found. Fill-in entries are created in supernode
8 because of the nonzero entries in supernode 6.
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Figure 1: Sparse matrix A partitioned into supernodes, i
denotes the i-th supernode. represents original nonzero
elements in A, while + denotes fill-in entries. Colors
correspond to the 4 distributed memory nodes on which
supernodes are mapped in a 1D-cyclic way.

The elimination tree of A (or L) is a very important
and useful tool in sparse Cholesky factorization. It is an

acyclic graph that has n vertices {v1, v2, · · · , vn}, with v
i

corresponding to column i of A. Suppose i > j. There is an
edge between v

i

and v
j

in the elimination tree if and only
if `

ij

is the first off-diagonal nonzero entry in column j of
L. Thus, v

i

is called the parent of v
j

and v
j

is a child of v
i

.
The elimination tree contains a lot of information regarding
the sparsity structure of L and the dependency among the
columns of L. See [2] for details.

An elimination tree can be expressed in terms of supern-
odes rather than column. In such a case, it is referred to as
a supernodal elimination tree. An example of such tree is
depicted in Figure 1b.

C. Scheduling in parallel sparse Cholesky factorization

In the following, we discuss scheduling of the computa-
tion in the numerical factorization. The only constraints that
have to be respected are the numerical dependencies among
the columns: column k of A has to be updated by column j
of L, for any j < k such that `

k,j

6= 0, but the order in which
the updates occur is mathematically irrelevant, as long as the
updates are performed before column k of A is factored.
There is therefore significant freedom in the scheduling of
computational tasks that factorization algorithms can exploit.

For instance, on sequential platforms, this has led to two
well-known variants of the Cholesky factorization algorithm:
left-looking and right-looking schemes, which have been
introduced in the context of dense linear algebra [3]. In the
left-looking algorithm, before column k of A is factored,
all updates coming from columns i of L such that i < k
and `

k,i

6= 0 are first applied. In that sense, the algorithm is
“looking to the left” of column k. In right-looking, after a
column k has been factored, every column i such that k < i
and `

i,k

6= 0 is updated by column k. The algorithm thus
“looks to the right” of column k.

Distributed memory platforms add the question of where
the computations are going to be performed. Various par-
allel algorithms have been proposed in the literature for
Cholesky factorization, such as MUMPS [4], which is based
on the multifrontal approach (a variant of right-looking), and
PASTIX [5], which is left-looking.

In [6], the author classifies parallel Cholesky algorithms
into three families: fan-in, fan-out and fan-both.

The fan-in family includes all algorithms such that all
updates from a column k to other columns i, for k < i such
that `

i,k

6= 0, are computed on the processor owning column
k. When one of these columns, say i, will be factored, the
processor owning i will have to “fan-in” (or collect) updates
from previous columns.

The fan-out family includes algorithms that compute
updates from column k to columns i, for k < i such that
`
k,i

6= 0, on processors owning columns i. This means
that the processor owning column k has to “fan-out” (or
broadcast) column k of the Cholesky factor.

2) Column j of L is used to update the remaining columns
of A.

If A is a dense matrix, then every column k, k > j, is
updated.

Once the factorization is computed, the solution to the
original linear system can be obtained by solving two
triangular linear systems using the Cholesky factor L.

B. Cholesky factorization of sparse matrices
For large-scale applications, A is often sparse, meaning

that most of the elements of A are zero. When the Cholesky
factorization of A is computed, some of the zero entries
will turn into nonzero (due to the subtraction operations in
the column updates; see Alg. 1). The extra nonzero entries
are referred to as fill-in. For in-depth discussion of sparse
Cholesky factorization, the reader is referred to [1].

Following is an important observation in sparse Cholesky
factorization. It is expected that the columns of L will
become denser and denser as one moves from the left to the
right. This is due to the fact that the fill-in in one column will
result in additional fill-in in subsequent columns. Thus, it is
not uncommon to find groups of consecutive columns that
eventually share essentially the same zero-nonzero structure.
Such a group of columns is referred to as a supernode. To be
specific, if columns i, i+1, · · ·, j form a supernode, then the
diagonal block of these columns will be completely dense,
and row k, j + 1  k  n, within the supernode is either
entirely zero or entirely nonzero.

Fill-in entries and supernodes of a sample symmetric
matrix are depicted in Figure 1a. In this example, 10
supernodes are found. Fill-in entries are created in supernode
8 because of the nonzero entries in supernode 6.
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Figure 1: Sparse matrix A partitioned into supernodes, i
denotes the i-th supernode. represents original nonzero
elements in A, while + denotes fill-in entries. Colors
correspond to the 4 distributed memory nodes on which
supernodes are mapped in a 1D-cyclic way.

The elimination tree of A (or L) is a very important
and useful tool in sparse Cholesky factorization. It is an

acyclic graph that has n vertices {v1, v2, · · · , vn}, with v
i

corresponding to column i of A. Suppose i > j. There is an
edge between v

i

and v
j

in the elimination tree if and only
if `

ij

is the first off-diagonal nonzero entry in column j of
L. Thus, v

i

is called the parent of v
j

and v
j

is a child of v
i

.
The elimination tree contains a lot of information regarding
the sparsity structure of L and the dependency among the
columns of L. See [2] for details.

An elimination tree can be expressed in terms of supern-
odes rather than column. In such a case, it is referred to as
a supernodal elimination tree. An example of such tree is
depicted in Figure 1b.

C. Scheduling in parallel sparse Cholesky factorization

In the following, we discuss scheduling of the computa-
tion in the numerical factorization. The only constraints that
have to be respected are the numerical dependencies among
the columns: column k of A has to be updated by column j
of L, for any j < k such that `

k,j

6= 0, but the order in which
the updates occur is mathematically irrelevant, as long as the
updates are performed before column k of A is factored.
There is therefore significant freedom in the scheduling of
computational tasks that factorization algorithms can exploit.

For instance, on sequential platforms, this has led to two
well-known variants of the Cholesky factorization algorithm:
left-looking and right-looking schemes, which have been
introduced in the context of dense linear algebra [3]. In the
left-looking algorithm, before column k of A is factored,
all updates coming from columns i of L such that i < k
and `

k,i

6= 0 are first applied. In that sense, the algorithm is
“looking to the left” of column k. In right-looking, after a
column k has been factored, every column i such that k < i
and `

i,k

6= 0 is updated by column k. The algorithm thus
“looks to the right” of column k.

Distributed memory platforms add the question of where
the computations are going to be performed. Various par-
allel algorithms have been proposed in the literature for
Cholesky factorization, such as MUMPS [4], which is based
on the multifrontal approach (a variant of right-looking), and
PASTIX [5], which is left-looking.

In [6], the author classifies parallel Cholesky algorithms
into three families: fan-in, fan-out and fan-both.

The fan-in family includes all algorithms such that all
updates from a column k to other columns i, for k < i such
that `

i,k

6= 0, are computed on the processor owning column
k. When one of these columns, say i, will be factored, the
processor owning i will have to “fan-in” (or collect) updates
from previous columns.

The fan-out family includes algorithms that compute
updates from column k to columns i, for k < i such that
`
k,i

6= 0, on processors owning columns i. This means
that the processor owning column k has to “fan-out” (or
broadcast) column k of the Cholesky factor.



symPACK: Sparse Cholesky

• Scalability of symPACK on Cray XC30 (Edison)
-Comparable or better than best solvers (evaluation in progress)
-Notoriously hard parallelism problem

Matthias Jacquelin, Yili Zheng, Esmond Ng, Katherine Yelick
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Figure 7: Impact of communication strategy and scheduling
on symPACK performance

communications when using a push strategy also signif-
icantly constrains the schedule. Removing the constraints
on how communications are scheduled while avoiding still
deadlocks through the use of the Pull strategy allows to
achieve a better scalability.

This trend is further improved by using a dynamic
scheduling policy in conjunction with the Pull strategy. This
confirms the dynamic scheduling as described in Section IV
is a good way to improve scalability in the context of
sparse matrix computations. In the rest of the paper, results
corresponding to symPACK will correspond to the Pull +
dynamic scheduling variant.

B. Strong scaling

In the next set of experiments, we evaluate the strong
scaling of our sparse symmetric solver symPACK. We
compare its performance to two state-of-the-art parallel
symmetric solvers: MUMPS 5.0 [4] and PASTIX 5.2.2 [5].
The package MUMPS is a well-known sparse solver based on
the multifrontal approach and that implements a symmetric
factorization. The code PASTIX is based on is a left-looking
supernodal formulation.

We also provide the run times achieved by
SuperLU_DIST 4.3 [15], [16] as a reference. Note
that SuperLU_DIST is not a symmetric code and
therefore requires twice as much memory and floating point
operations (if the columns are factored in the same order).
However, it is well known for its good strong scaling.
Therefore, only scalability trend rather than run times
should be compared.

As this paper focuses solely on distributed memory
platforms, neither PASTIX, MUMPS nor SuperLU_DIST
are using multi-threading. Furthermore, the term processor
corresponds to a distributed memory process. Each data
point corresponds to the average of three runs.

On the G3 circuit matrix, for which results are depicted
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Figure 8: Strong scaling of symPACK on G3 circuit
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Figure 9: Strong scaling of symPACK on Flan 1565

in Figure 8, MUMPS and PASTIX perform better when using
up to 96 and 192 processors respectively. On larger platform,
symPACK becomes faster than these two state-of-the-art
solvers, displaying a better strong scaling. The average
speedup against the fastest solver for this specific matrix is
1.07, with a minimum value of 0.24 and a maximum value
of 5.70 achieved when using 2048 processors.

The performance of symPACK on a smaller number of
processors can be explained by the data structures which are
used to reduce the memory usage at the expense of more
expensive indirect addressing operations. The G3 circuit
matrix being extremely sparse, it is very likely that simpler
structures with lower overhead would yield a higher level of
performance. In terms of scalability, symPACK displays a
favorable trend when compared to SuperLU_DIST, which
scales up 192 processors on the expanded problem.

On other problems, symPACK is faster than all alterna-
tives, as observed on Figures 9, 10, 11, 12, and 13. Detailed
speedups over the best symmetric solver and the best overall
solver (thus including SuperLU_DIST) are presented in
Table II. The highest average speedup is achieved on the



Common Pattern for Distributed Data Structures

• Many UPC programs avoid the UPC style arrays in 
factor of directories of objects

typedef shared [] double *sdblptr;
shared sdblptr directory[THREADS];
directory[i]=upc_alloc(local_size*sizeof(double));

directory

• These are also more general:
• Multidimensional, unevenly distributed
• Ghost regions around blocks

physical and 
conceptual 
3D array 
layout



Summary: PGAS for Irregular Applications

• Lower overhead of communication makes PGAS useful for 
latency-sensitive problems or bisection bandwidth problems

• Specific application characteristics that benefit:
-Fine-grained updates (Genomics HashTable construction)
-Latency-sensitive algorithms (Genomics DFS)
-Distributed task graph (Cholesky)
-Work stealing (Hartree Fock)
-Irregular matrix assembly / transpose (Seismic, HF)
-Medium-grained messages (AMR)
-All-to-all communication (FFT)

• There are also benefits of thinking algorithmically in this 
model: parallelize things that are otherwise hard to imagine



Summary: PGAS for Modern HPC Systems

• The lower overhead of communication is also important 
given current machine trends
-Many lightweight cores per node (do not want a hefty 

serial communication software stack to run on them)
-RDMA mechanisms between nodes (decouple 

synchronization from data transfer)
-GAS on chip: direct load/store on chip without full 

cache coherence across chip
-Hierarchical machines: fits both shared and distributed 

memory, but supports hierarchical algorithms
-New models of memory: High Bandwidth Memory on 

chip or NVRAM above disk



Installing Berkeley UPC++, UPC, and GASNet

• UPC++ Open source with BSD license
https://bitbucket.org/upcxx
• UPC++ installation   
https://bitbucket.org/upcxx/upcxx/wiki/Installing%20UPC++
• GASNet communication

https://gasnet.lbl.gov
• Examples

-DAXPY, Conjugate Gradient, FFT, GUPS, 
MatrixMultiply, Mutigrid, Minimum Degree Ordering, 
Sample Sort, Sparse Matrix-Vector mutliply

Available on Mac OSX, Linux, Infiniband clusters, Ethernet 
clusters, and most HPC systems



Using Berkeley UPC at NERSC or ALCF

Load the bupc module via
module load bupc

Compile code with the upcc
upcc –V  // shows version

Add the following line to your ~/.soft file: 
PATH += /home/projects/pgas/berkeley_upc-
2.22.3/V1R2M2/gcc-narrow/bin/ 

OR, if using the xl compilers, add: 
PATH += /home/projects/pgas/berkeley_upc-
2.22.3/V1R2M2/xlc-narrow/bin/ 

Run 
resoft

Compile with upcc.  To see the version and configuration, run
upcc -V



UPC++ V1.0 
A C++ Library for Lightweight 

PGAS Programing

Led by Scott B. Baden and Paul Hargrove (LBNL)
Presented by Amir Kamil (LBNL/University of Michigan)



UPC++ V1.0 Overview

• A complete redesign of UPC++ that leverages GASNet-
EX to deliver better performance and scalability

• A “compiler-free” approach for PGAS
-Leverage C++ standards and compilers
-Influence future directions of the C++ standard

• Interoperates with existing programming systems
-1-to-1 mapping between MPI rank and UPC++ rank
-OpenMP and CUDA can be easily mixed with 

UPC++ in  the same way as MPI+X
• Design philosophy: 

All communication is explicit
Most operations are non-blocking to encourage
asynchronous programming
No non-scalable data structures



Hello World in UPC++

• If you compile and run a UPC++ program with P ranks, it 
will run P copies of the program

• However, need to initialize UPC++ before calling any 
UPC++ functions:

#include <upcxx/upcxx.hpp> // UPC++ header
#include <iostream>
int main(int argc, char **argv) {
upcxx::init();               // Start UPC++ state
std::cout << "Hello world from rank "

<< upcxx::rank_me() // Who am I?
<< std::endl;

upcxx::finalize(); // Close down UPC++ state
}



The API

• Foundational types
-Global Pointers
-Futures (and promises)
-Distributed Objects

• Communication
-1-sided Communication

• rput/rget (bulk and single element), non-contiguous 
transfers, memory kinds

-RPC (remote procedure call)
• Callbacks
• Remote Atomics
• Teams (mechanism for grouping ranks together)
• Progress and the Memory Model



Example: Monte Carlo Pi Calculation

• Estimate Pi by throwing darts at a unit square
• Calculate percentage that fall in the unit circle

-Area of square = r2 = 1
-Area of circle quadrant = ¼ * p r2 = p/4

• Randomly throw darts at x,y positions
• If x2 + y2 < 1, then point is inside circle
• Compute ratio:

-# points inside / # points total
- p = 4*ratio 

r =1



Each rank calls “hit” separately

Initialize random in 
math library

Each rank can use 
input arguments

Each rank gets its own 
copy of these variables

Pi in UPC++ 

• Independent estimates of pi:
int main(int argc, char **argv) {
upcxx::init();
int hits, trials = 0;
double pi;

if (argc != 2) trials = 1000000;
else trials = atoi(argv[1]);

srand(upcxx::rank_me()*17);

for (int i=0; i < trials; i++) hits += hit();
pi = 4.0*hits/trials;
cout << "PI estimated to " << pi << endl;
upcxx::finalize();

}



Helper Code for Pi in UPC++

• Required includes:
#include <iostream>
#include <cstdlib>
#include <upcxx/upcxx.hpp>

• Function to throw dart and calculate where it hits:
int hit() {
double x = ((double) rand()) / RAND_MAX;
double y = ((double) rand()) / RAND_MAX;
if (x*x + y*y <= 1.0) {

return 1;
} else {

return 0;
}

}



C++11 Helper Code for Pi

• Required includes and variables:
#include <iostream>
#include <random>
#include <upcxx/upcxx.hpp>
default_random_engine generator;
uniform_real_distribution<> dist(0.0, 1.0);

• Function to throw dart and calculate where it hits:
int hit() {
double x = dist(generator);
double y = dist(generator);
if (x*x + y*y <= 1.0) {

return 1;
} else {

return 0;
}

}

UPC++ allows full use 
of the C++ Standard 
Template Library



Private vs. Shared Memory in UPC++

• Normal C++ variables and objects are allocated in the 
private memory space for each thread

• Memory from the shared space is allocated explicitly
global_ptr<int> gptr =

new_<int>(rank_me());
int mine;

• Shared memory can be accessed from a remote rank

Shared

G
lo

ba
l a

dd
re

ss
 

sp
ac

e

Private
mine: mine: mine: 

Rank0 Rank1 Rankn

0

gptr: gptr: gptr:

1 n

upcxx:: qualifier elided 
from here on out
UPC++ names in green



Futures

• UPC++ has no implicit blocking
-We underline blocking operations

• A future holds a sequence of values and a state (ready / 
not ready)

• Waiting on the returned future lets user tailor degree of 
asynchrony they desire

future<T> f1 = rget(gptr1); // asynchronous op
future<T> f2 = rget(gptr2); 
// unrelated work...
bool ready = f1.ready(); // non-blocking poll
wait(f1);  // block until future is ready
T t = f1.result();    // fails if not ready



One-Sided Communication

• Remote read
future<T> rget(global_ptr<T> src);

• Remote write
future<> rput(T val, global_ptr<T> dest);

-There is also a signaling version, that runs a handler 
at the destination after rput operation is visible at the 
target

• Support for non-contiguous transfers

Example: To put a 3-d block of data, shaped 2x3x4, starting at location (5, 6, 7) in A to B in location (8,
9, 10), the arguments to upc memput strided can be set as follows:

double A[11][12][13]; /* local array */
shared [] double B[14][15][16]; /* remote array */

void * srcaddr;
shared void * dstaddr;
size_t count[3];
size_t stridelevels;

srcaddr = &(A[5][6][7]);
srcstrides[0] = 13 * sizeof(double); /* stride in bytes for the rightmost dimension */
srcstrides[1] = 12 * 13 * sizeof(double); /* stride in bytes for the middle dimension */
dstaddr = &(B[8][9][10]);
dststrides[0] = 16 * sizeof(double); /* stride in bytes for the rightmost dimension */
dststrides[1] = 15 * 16 * sizeof(double); /* stride in bytes for the middle dimension */
count[0] = 4 * sizeof(double); /* number of bytes of contiguous data (width in rightmost dimension) */
count[1] = 3; /* width in middle dimension */
count[2] = 2; /* width in leftmost dimension */
stridelevels = 2;

upc_memput_strided(srcaddr, dststrides, dstaddr, srcstrides, count, stridelevels);

Figure 2: Illustration of a 3-d upc memput strided (Design B), and the in-memory data layout of the source
or destination
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Pi in UPC++: Shared Memory Style

• Parallel computing of pi, but with a bug
int main(int argc, char **argv) {

init();
int trials = atoi(argv[1]);
int my_trials = (trials+rank_n()-1)/rank_n();
global_ptr<int> hits =
wait(broadcast(new_<int>(0), 0));

srand(rank_me()*17);
for (int i=0; i < my_trials; i++) {
int old_hits = wait(rget(hits));
wait(rput(old_hits+hit(), hits));

}
barrier();
if (rank_me() == 0)
cout << "PI estimated to "

<< 4.0*(*hits.local())/trials;
finalize();

}

broadcast 
pointer to 
shared 
memory 
from rank 0

divide work up evenly

accumulate hits
block on 
communication

What is the problem with this program?



UPC++ Synchronization

• UPC++ has two basic forms of barriers:
- Barrier: block until all other threads arrive 

barrier();

- Asynchronous barriers
future<> f =
barrier_async(); // this thread is ready for barrier

// do computation unrelated to barrier
wait(f); // wait for others to be ready

• Shared data can be synchronously updated by 
sending the update to the owner as an RPC (remote 
procedure call)



Remote Procedure Call

future<R> rpc(intrank_t r,
F func, Args&&... args);

-Executes func(args...) on rank r and returns the 
result
-R is the return type of func

• Empty future if func returns void

-There is also a ‘fire and forget’ version that returns 
no result
-Some restrictions apply to what UPC++ operations 

can be issued in an RPC: the restricted context
• Limits on blocking operations from within an RPC



Pi in UPC++: RPC

• RPC used to synchronize updates
int hits = 0;
int main(int argc, char **argv) {
init();
int trials = atoi(argv[1]);
int my_trials = (trials+rank_n()-1)/rank_n();
srand(rank_me()*17);
for (int i=0; i < my_trials; i++) {

wait(rpc(0, [](int hit) { hits += hit; },
hit()));

}
barrier();
if (rank_me() == 0)
cout << "PI estimated to " << 4.0*hits/trials;

finalize();
}

RPC can refer to global variable

send update to rank 0 
block on the update



Pi in UPC++: Data Parallel Style w/ Collectives

• The previous version of Pi works, but is not scalable:
-Updates are serialized on rank 0, ranks block on updates

• Use a reduction for better scalability:

// int hits;
int main(int argc, char **argv) {
...
for (int i=0; i < my_trials; i++) 

my_hits += hit();
my_hits =         // input, binary op

wait(allreduce(my_hits, std::plus<int>));
// barrier();
if (rank_me() == 0)
cout << "PI: " << 4.0*my_hits/trials;

finalize();
}

no global variables or shared memory

barrier implied by reduction



Distributed Objects

• Any C++ type can be made into a distributed object
• One instance on every rank of a team
class Mesh { public: Mesh(A, B, C); private: … };
A a; B b; C c;
dist_object<Mesh> dmesh(myTeam, a, b, c);
dist_object<int> counter(0); // over world team

-Collective over team, but not blocking
• Can access remote instances within team
auto f1 = rpc(someRank, 

[foo](dist_object<Mesh> &remote) {
remote->someFunction(foo);
return remote->recalc(); },

dmesh);
future<int> f2 = fetch(counter, someRank);



Pi in UPC++: Distributed Object Version

• Alternative fix to the race condition 
• Have each rank update a separate counter:

-Do it in a distributed object, have one rank compute sum
int main(int argc, char **argv) {

… declarations and initialization code omitted
dist_object<int> all_hits(0);
for (int i=0; i < my_trials; i++) 
*all_hits += hit();

barrier();
if (rank_me() == 0) {
for (int i=0; i < rank_n(); i++)
hits += wait(fetch(all_hits, i));

cout << "PI estimated to " << 4.0*hits/trials;
}
finalize();

}

all_hits
distributed 
across all ranks

update element 
with local affinity

collect each 
rank's 
contribution



Distributed Objects in Stencil Code

• Communication in 1D stencil (nearest-neighbor 
computation):
int main(int argc, char **argv) {

… declarations and initialization code omitted
global_ptr<double> my_grid =
new_array<int>(interior+2);

dist_object<global_ptr<double>> grids(my_grid);
global_ptr<double> left =
wait(fetch(grids, (rank_me()+rank_n()-1)%rank_n()));

global_ptr<double> right =
wait(fetch(grids, (rank_me()+1)%rank_n()));

for (int i=0; i < timesteps; i++) {
future<double> f1 = rget(left+interior);
future<double> f2 = rget(right+1);
… wait on futures and do computation

}
…

}

construct local grids 
and distributed object

get pointers 
to neighbors' 
grids

get ghost cells



Summary

• UPC++ is a PGAS library that supports lightweight 
communication over GASNet-EX

• Close to the metal performance, lean interface
-Trade offs to reduce overheads and increase 

flexibility
• Asynchronous and explicit communication
• Reduced consistency guarantees

• Advanced features not covered in talk:
-Promises, callbacks, remote atomics, progress, 

memory model, teams
• V1.0 release targeted for September 30, 2017

-Will include programmer’s guide
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