Relocatable Fleet Code

Amir Kamil
Computer Science Division, University of California, Berkeley
kamil@cs.berkeley.edu

UCB-AKO08
October 23, 2008

1 Introduction

In this memo, I discuss the hardware requirements necessary for relocatable Fleet [2] code. In a standard computer,
code is relocatable if its base execution address can be changed. In Fleet, I call code relocatable if the set of ships it
runs on can be changed.

It is desirable for Fleet code to be relocatable, particularly if the code is dynamically scheduled. In this case, the
original set of ships that the code targets may not be available, and it would likely be more efficient to relocate the code
to a different set of ships instead of waiting for the original set to be freed.

2 A Simple Program

Consider the following simple program that reads 10 values from memory, computes their sum, and stores the result in
a fifo:

#ship mem: Memory
#ship add: Adder
#ship fifo: Fifo

mem.inAddr.readMany:

literal 0; /71

deliver; // 2
mem.inCount:

literal 10; // 3

deliver; // 4
mem.inStride:

literal 1; // 5

deliver; // 6

mem.outData:
[10] take, sendto add.in2; // 7
add.inl:

UCB-AKOS8 printed on April 11, 2011 page 1 of 7

UCB-AKOS8

Destination Name Absolute Address
mem. inAddr.readMany.instr addr00
mem.inCount.instr addr01
mem.inStride.instr addr02
mem.outData.instr addr03
add.inl.instr addr04
add.inl.data addr05
add.in2.instr addr06
add.in2.data addr07
add.inOp.instr addr08
add.out.instr addr09
fifo.in.instr addrl0
fifo.in.data addrll

Table 1: Destination addresses in the program.

literal O0; // 8

deliver; // 9

[9] take, deliver; // 10
add.in2:

[10] take, deliver; // 11
add. inOp;

literal Adder.ADD; // 12

[10] deliver; // 13
add.out:

[9] take, sendto add.inl; // 14

take, sendto fifo.in; // 15
fifo.in:

take, deliver;

// 16

If the Fleet switch fabric uses absolute addressing and assuming the addresses in Table 1, the program will be
encoded in memory as follows, as defined by the Fleet architecture manual [1]:

36

2625 23

76 0

1 addr00 01 0x0 0x1

36 2625 1817 7 6 0
) addr00 10001000 0 0x1

36 2625 7 6 0
3 addr01 01 Oxa 0x1

36 2625 1817 7 6 0
4 addr01 10001000 0 0x1

UCB-AKO08

printed on April 11, 2011

page 2 of 7

UCB-AKOS8

Source Name Destination Name Relative Path
mem.outData.data | mem.inAddr.readMany.instr path00
mem.outData.data mem.inCount.instr path01
mem.outData.data mem.inStride.instr path02
mem.outData.data mem.outData.instr path03
mem.outData.data add.inl.instr path04

add.out.data add.inl.data path05
mem.outData.data add.in2.instr path06
mem.outData.data add.in2.data path07
mem.outData.data add.inOp.instr path08
mem.outData.data add.out.instr path09
mem.outData.data fifo.in.instr pathl0

add.out.data fifo.in.data pathll

2625 23

Table 2: Data paths used in the program.

5 addr02 01 0x1 0x1
36 2625 1817 76 0

6 addr02 10001000 0 Ox1
36 2625 1817 7 6 0

7 addr03 10111000 addr07 Oxa
36 2625 23 76 0

8 addr04 01 0x0 0x1
36 2625 1817 76 0

9 addr04 10001000 0 0x1
36 2625 1817 76 0

addr04 10111000 0 0x9

10.

36 2625 1817 76 0

11 addr06 10111000 0 Oxa
36 2625 23 76 0

12 addro8 01 AdderADD 0x1

UCB-AKOS8 printed on April 11, 2011

page 3 of 7

UCB-AKOS8

36 2625 1817 7 6 0

addr08 10001000 0 Oxa
13.
36 2625 1817 76 0
14 addr09 10111000 addr05 0x9
36 2625 1817 76 0
15 addr09 10111000 addrll 0x1
36 2625 1817 76 0
16 addrl0 10111000 0 0x1

If, on the other hand, the Fleet switch fabric uses relative addressing and assuming the paths in Table 2, the program
will be encoded similarly, with path00 replacing addr00, pathO1 replacing addr0l1, and so on. I assume that the code
is dispatched from mem. outData.

3 Rewriting the Code

When moving the code to a different set of ships, each instruction must be modified to run on its corresponding new
ship, and each sendto instruction must have its data destination replaced. Thus, 19 fields in the above 16 instructions
must be replaced.

There are a few cases in which the amount of modification required can be reduced. If the switch fabric uses
absolute addressing, and the new set of ships intersects with the old, then the locations in the intersection do not need
to be modified. On the other hand, if the switch fabric uses relative addressing, and it just so happens that a relative
path in the new set of ships is equivalent to its corresponding old path, then that path need not be changed. In fact, the
Fleet hardware and compiler can be arranged such that no relative paths ever need to be modified when moving to a
new set of ships.

The Fleet hardware must be divided into groups of ships, which I call files. Each tile must contain enough of each
type of ship such that a Fleet compiler can target any computation for a single tile. All tiles must be composed of
the same set of ships, arranged such that all relative paths among them are the same in every tile. Figure 1 shows an
example of a Fleet divided into tiles.

A tile is the unit of relocation in a Fleet processor, and a compiler for Fleet must target computation to tiles instead
of to arbitrary sets of ships. It is up to the compiler to determine how to divide an entire program among multiple tiles,
and the compiler must cooperate with the runtime scheduler to execute the code.

4 Flow Control

According to my description of tiles above, the tiles in a Fleet processor can be arranged in any way as long as the
relative locations of each ship are the same in every tile. They can occupy separate portions of the switch fabric, as
in Figure 2, or they can be interleaved in the switch fabric, as in Figure 3. The two arrangements, however, have far
different ramifications for flow control.

Consider the separated arrangement in Figure 2. Suppose the arithmetic unit (AU) in the red tile needs to send a
lot of data to the shift unit (SU), as demonstrated by the thick, red path in the switch fabric. Suppose also that no other

UCB-AKOS8 printed on April 11, 2011 page 4 of 7

UCB-AKOS8

Global
Network

Figure 1: A Fleet processor composed of tiles.

e e . oo ol e . = > v
g g0 @ &b @F

Figure 2: A Fleet processor composed of two tiles in separate parts of the switch fabric.

UCB-AKOS8 printed on April 11, 2011 page 5 of 7

UCB-AKOS8

f‘E AU B f’E MU B FIFO B9 .‘E N > ’: SU
| = Y = Y
| |

=

—
'tE AU D,

A\

_: MU B _: LU

Figure 3: A Fleet processor composed of two tiles interleaved in the switch fabric.

communication is necessary in the red tile. The compiler then may choose to allocate the entire capacity of each link
in the red path to the communication between the AU and the SU.

Now suppose that in the blue tile, the only communication required is between the memory unit (MU) and the logic
unit (LU), as shown by the blue path. Again, the compiler may allocate the entire capacity of each link in the blue path
to this task.

In the separated arrangement, there is no conflict between the communication in each tile. The same operations
in the interleaved arrangement of Figure 3, however, result in conflicts for the purple portions of the switch fabric.
Allocation of this part of the switch fabric must take into account the communication needs of both tiles. Suppose that
the red tile is already running at full network capacity, and a dynamic scheduler wishes to start running code in the blue
tile. In the interleaved case, the red tile must be stopped and reconfigured to use less network capacity before the blue
tile can start execution. This is not necessary in the separated case.

Thus, in order to minimize the work that the runtime scheduler needs to do, the Fleet processor should be arranged
such that tiles are separated from each other in the switch fabric. Communication within a tile should not interfere with
any communication outside of the tile.

I assumed in this discussion that data can turn around at any point in the switch fabric. It is only necessary, however,
that data travelling between two points in a tile be allowed to turn around at some point before leaving the tile. Thus, a
two-level horn and funnel suffices, with shortcuts at the edges of each tile.

5 Conclusion

To summarize, the Fleet processor should obey the following constraints:

UCB-AKOS8 printed on April 11, 2011 page 6 of 7

UCB-AKOS8

1. The switch fabric uses relative addressing.
2. The Fleet processor is divided into sets of equivalent ships, or files.
3. Each tile has the same relative layout.
4. Communication within a single tile is isolated from communication external to the tile.
If these conditions are met, then the procedure for relocating code is greatly simplified, resulting in simpler compilers

and dynamic schedulers.

References

[1] The FleetTwo Architecture Manual, August 2007. http://research.cs.berkeley.edu/fleet/docs/people/adam.megacz/The.FleetTwo. Architecture.Manual.pdf.

[2] I.E.Sutherland. FLEET - A One-Instruction Computer, August 2005. http://research.cs.berkeley.edu/class/fleet/docs/people/ivan.e.sutherland/ies02-
FLEET-A.Once.Instruction.Computer.pdf.

UCB-AKOS8 printed on April 11, 2011 page 7 of 7

	1 Introduction
	2 A Simple Program
	3 Rewriting the Code
	4 Flow Control
	5 Conclusion

