
StreamIt on Fleet

Amir Kamil
Computer Science Division, University of California, Berkeley

kamil@cs.berkeley.edu

UCB-AK06

July 16, 2008

1 Introduction
StreamIt [1] is a high-level programming language for streaming application. The developers claim [3] that its con-
structs are designed to “expose the parallelism and communication of streaming applications without depending on the
topology or granularity of the underlying architecture.” In this memo, we consider StreamIt’s application to the Fleet
architecture [4].

2 StreamIt Background
StreamIt is a streaming programming language for signal processing applications [1]. It is designed for communication-
exposed architectures, such as Raw [5], in which multiple processing cores are arranged on a grid with network con-
nections between adjacent cores. In this section, we provide an overview of the StreamIt language and some of the
compiler techniques used to obtain high performance on Raw.

2.1 Language
A StreamIt program is composed of blocks of code called filters. In addition to an optional initialization function, a
filter consists of a steady-state work function that corresponds to a single execution step of the filter. The work function
can consist of more or less arbitrary sequential code. A filter also has an input and output queue, which can be accessed
via push, pop, and peek functions. Push adds an element to the output queue, pop removes an element from the input
queue, and peek returns the value at the given index without dequeuing it. The filter must statically specify its I/O rates
for each of these three functions1.

The composition of one or more filters is called a stream. Streams can be built in multiple different ways. In a
pipeline, the output of one filter is connected to the input of the next, so that the two filters are composed sequentially.
A splitjoin splits an input queue among mulitple parallel streams and joins their outputs into a single output queue. The
input data can be replicated so that each of the parallel streams sees the same input, or it can be divided in a roundrobin
fashion, with w1 items sent to the first stream, w2, sent to the second stream, and so on until wn for the last stream, at

1The language specification states that the programmer may specify a range for each rate or even that the rate is completely unknown [1].
However, various StreamIt compiler papers require that the rate be static [3, 2].

UCB-AK06 printed on April 11, 2011 page 1 of 7



UCB-AK06

stream1 splitter joiner

pipeline splitjoin feedbackloop

stream2

stream3

stream1 stream2 stream3

joiner

stream1

splitter

stream1

Figure 1: Streams in StreamIt can be composed in pipelines, splitjoins, and feedbackloops.

which point the process restarts with the first stream. The output data can only be joined in this roundrobin manner.
A feedbackloop consists of an internal loop of two streams. The input to the first stream is a join of the input to the
feedbackloop and the output of the second stream, and the output of the first stream is split between the output of the
feedbackloop and the input of the second stream. Figure 2.1 shows examples of each type of filter composition.

StreamIt also includes a mechanism for sending out-of-band messages to upstream or downstream filters. The
receiving filter must specify a handler for each type of message that it can receive. Prior to each execution of the filter’s
work function, its message queue is checked, and any messages received are passed to the appropriate handlers. The
sending filter can time the message to a particular data item passed between the two filters. If the receiving filter is
downstream from the sending filter, the message can be synchronized with any past of future data produced by the
sender. If the receiving filter is upstream from the sending filter, the message can only be synchronized with data the
sender will consume in the future.

The messaging system also allows dynamic reconfiguration of a portion of the stream graph [6]. A message targeted
at the initialization function of a stream causes the stream to re-initialize itself, potentially resulting in a new underlying
structure for that stream if the initialization parameters are different than they were in the original initialization. The
StreamIt compiler recognizes re-initialization and can account for all possible stream configurations.

2.2 Partitioning
The StreamIt compiler attempts to hide the granularity of the underlying architecture by partitioning stream programs
[3]. In this process, the program is transformed into a set of N load-balanced filters, where N is the number of
computational units in the underlying machine. The compiler applies fusion and fission transformations in order to
accomplish this.

2.2.1 Fusion Transformations

Fusion transformations combine multiple adjacent filters into a single filter. In vertical fusion, pipelined filters are
collapsed into a single filter, as showin in Figure 2.2.1. Figure 2.2.1 illustrates horizontal fusion combines parallel
components of a splitjoin. Since each filter has a static I/O rate, the compiler can simulate the I/O of each filter
to determine the amount of buffering required and to translate push, peek, and pop operations into buffer accesses.
Vertical fusion may require circular buffers, but the compiler can optimize these accesses to avoid modulo operations
[3]. In horizontal fusion, the splitjoin components are executed sequentially within a single combined filter and can

UCB-AK06 printed on April 11, 2011 page 2 of 7



UCB-AK06

Th NThreeN
push(3 * pop());

Increment
push(1 + pop());

ThreeNPlus1
int buffer[1];
buffer[0] = 3 * pop();
push(1 + buffer[0]);

push(1 + pop());

Figure 2: An example of vertical fusion. No circular buffering is required.

duplicate

Th NPl 1A dH l

ThreeNPlus1
int buffer[1];
buffer[0] = 3 * pop();
push(1 + buffer[0]);

Halve
push(pop() / 2);

ThreeNPlus1AndHalve
int buffer[1];
buffer[0] = 3 * peek(0);
push(1 + buffer[0]);
push(peek(0) / 2);
for (int i = 1; i < 2; i++)
pop();

roundrobin

pop();

Figure 3: An example of horizontal fusion. No output reordering is required.

share the same input buffer if a duplicate splitter is used. If the output needs to be reordered, a second filter is pipelined
with the combined filter to perform the reordering. These two filters may then be vertically fused by the compiler.

2.2.2 Fission Transformations

A stream program can be parallelized by applying fission transformations to it. Vertical fission produces pipeline
parallelism by dividing a single filter into multiple pipelined filters. This does not appear to be implemented in the
StreamIt compiler [3]. Data parallism can be exploited in a stateless filter by placing multiple copies of the filter within
a splitjoin. This is called horizontal fission and is illustrated in Figure 2.2.2.

2.3 Layout and Communication Scheduling
Once the stream graph has been partitioned, the StreamIt compiler performs layout and communication scheduling
phases to map the graph to hardware [3]. The mapping process is dependent on the hardware architecture.

The layout phase assigns filters from the final stream graph to computation elements in the hardware. For a particu-
lar architecture, the layout is computed using the set of legal layouts for that architecture, a cost function that measures
the cost of a particular layout based on the communication properties of the stream graph, and a perturbation function.
The compiler uses simulated annealing to choose a good layout for the stream graph.

UCB-AK06 printed on April 11, 2011 page 3 of 7



UCB-AK06

Th NPl 1A dH l Th NPl 1A dH l Th NPl 1A dH l

roundrobin

ThreeNPlus1AndHalve
int buffer[1];
buffer[0] = 3 * peek(0);
push(1 + buffer[0]);
push(peek(0) / 2);
for (int i = 1; i < 2; i++)
pop();

ThreeNPlus1AndHalve
int buffer[1];
buffer[0] = 3 * peek(0);
push(1 + buffer[0]);
push(peek(0) / 2);
for (int i = 1; i < 2; i++)
pop();

ThreeNPlus1AndHalve
int buffer[1];
buffer[0] = 3 * peek(0);
push(1 + buffer[0]);
push(peek(0) / 2);
for (int i = 1; i < 2; i++)
pop();

roundrobin

pop(); pop(); pop();

Figure 4: An example of horizontal fission.

Once a layout has been chosen, communication is scheduled between the computational elements in the hardware.
Since I/O rates are known at compile-time, this can be done statically. The scheduling algorithm is dependent on the
communication model of the underlying hardware.

3 StreamIt Characteristics Suitable for Fleet
The StreamIt language has many features that make it an appealing candidate for compiling to Fleet. This section
discusses some of these features.

3.1 Graph Structure
Perhaps the most novel feature of StreamIt is the heirarchical structure it imposes on the stream graph. The difference
between these structured graphs and arbitrary stream graphs is likened by the StreamIt authors to the distinction be-
tween structured control flow and jump statements [6]. In exchange for restricting expressiveness in some cases, the
structure makes the resulting program easier to analyze and compiler as well as easier to read and less error-prone.

Since a Fleet implementation is likely to have a hierarchical layout of ships, StreamIt’s hierarchical structure may
make it easier to compile to Fleet than a less structured language. Even with a flat Fleet implementation, the structured
communication pattern of a StreamIt program would make it easier to schedule communication on Fleet hardware.

3.2 Explicit Communication
The stucture of a StreamIt program cleanly separates communication from computation. All computation is performed
inside of filters, and filters can only communicate through the pop, peek, and push operations and the messaging
system. Filters can only access local memory, so implicit communication through memory accesses is impossible.

StreamIt’s explicit communication model is suitable for Fleet since all communication is explicit in Fleet. In
addition, communication between StreamIt filters can be done over the switch fabric instead of through memory as
would be done on a multicore implementation of StreamIt.

UCB-AK06 printed on April 11, 2011 page 4 of 7



UCB-AK06

3.3 Static I/O Rates
Assuming StreamIt filters can only have static I/O rates, as multiple StreamIt papers have suggested (see §2.1), commu-
nication can be completely scheduled statically for a particular StreamIt program. Static scheduling of the Fleet switch
fabric would ensure that it was being used as efficiently as possible while providing a guarantee against deadlock. In
addition, the instruction count can be minimized by using repeating instructions.

3.4 Automatic Parallelization
The fission transformations described in §2.2.2 allow a StreamIt program to be parallelized by the compiler. A StreamIt
program could thus scale to the size of a particular Fleet implementation without requiring the programmer to be aware
of the size.

4 StreamIt Characteristics Unsuitable for Fleet
The StreamIt language also contains numerous features that are difficult to implement on Fleet.

4.1 Filter Size
As discussed in §3.2, the filter abstraction cleanly separates communication from computation. However, this assumes
that each filter can run entirely on a single computational unit of the target architecture. Unfortunately, this is not the
case for Fleet, as the computational units are simple ships. Since StreamIt filters can contain more or less arbitrary
sequential code, compiling a filter to Fleet appears to be nearly as difficult as compiling any other sequential language
to Fleet.

4.2 Peeking
Filters that peek beyond the front of their input queues require their input to be buffered and indexable. Since neither the
switch fabric nor even FIFO ships are indexable, this implies that each such filter must have an associated scratchpad
to store its input. Sharing a scratchpad among multiple filters would make it a bottleneck, increasing the input latency
to those filters.

4.3 Single Input and Output
StreamIt filters can only have a singal input and output, and only basic splitters and joiners are allowed. This requires
programmers to perform various contortions in order to write certian simple codes. For example, if the programmer
wishes to add two vectors, the streams representing these two vectors must first be interleaved before each pair of
elements can be added, as illustrated in Figure 4.3. Other cases are downright impossible, such as performing the
merge step of a merge sort without knowing how many items there are, since the two substreams must be joined using
an irregular pattern.

Unlike StreamIt filters, Fleet ships can have multiple inputs or outputs. Since the single input and output require-
ment introduces serialization where it isn’t necessary in the hardware, StreamIt programs may not run at full efficiency
on a Fleet implementation.

UCB-AK06 printed on April 11, 2011 page 5 of 7



UCB-AK06

duplicate

f(x) g(x)

roundrobin

Adder(2)
push(pop() + pop());

Figure 5: A stream that computes f(x) + g(x). The partial results must be interleaved before being added.

4.4 Out-of-Band Messages
StreamIt’s messaging system allows messages to be timed relative to data movement between the sending and receiving
filters. When the message sender is upstream of the receiver, the message can be synchronized to data produced in
the past. This appears to require all data to be held for as long as a future message may be synchronized to it. This is
inefficient on even a synchronous network, but Fleet’s asynchronous switch fabric may complicate things even further.

5 Conclusion
The StreamIt language introduced many features and restrictions that made it appropriate for communication-exposed
architectures such as Raw. Its hierarchical structure and static communication model allow programmers to write code
that takes maximal advantage of such architectures while avoiding many of the pitfalls of parallel programming.

However, StreamIt was not designed with Fleet in mind, so some of its features may prove to be very difficult to
implement on Fleet. Instead, it may serve as an inspiration for a new language designed for Fleet that includes the
positive features of StreamIt but removes those features that cannot be mapped efficiently to Fleet.

References
[1] Streamit language specification, version 2.1, September 2006. http://cag.csail.mit.edu/streamit/papers/streamit-lang-spec.pdf.

[2] M. I. Gordon, W. Thies, and S. Amarasinghe. Exploiting coarse-grained task, data, and pipeline parallelism in stream programs. In ASPLOS-XII:
Proceedings of the 12th international conference on Architectural support for programming languages and operating systems, pages 151–162,
New York, NY, USA, 2006. ACM.

[3] M. I. Gordon, W. Thies, M. Karczmarek, J. Lin, A. S. Meli, A. A. Lamb, C. Leger, J. Wong, H. Hoffmann, D. Maze, and S. Amarasinghe. A
stream compiler for communication-exposed architectures. In ASPLOS-X: Proceedings of the 10th international conference on Architectural
support for programming languages and operating systems, pages 291–303, New York, NY, USA, 2002. ACM.

[4] I. E. Sutherland. FLEET - A One-Instruction Computer, August 2005. http://research.cs.berkeley.edu/class/fleet/docs/people/ivan.e.sutherland/ies02-
FLEET-A.Once.Instruction.Computer.pdf.

[5] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald, H. Hoffman, P. Johnson, J.-W. Lee, W. Lee, A. Ma, A. Saraf,
M. Seneski, N. Shnidman, V. Strumpen, M. Frank, S. Amarasinghe, and A. Agarwal. The Raw Microprocessor: A Computational Fabric for
Software Circuits and General-Purpose Programs. IEEE Micro, 22(2):25–35, 2002.

UCB-AK06 printed on April 11, 2011 page 6 of 7



UCB-AK06

[6] W. Thies, M. Karczmarek, and S. P. Amarasinghe. StreamIt: A Language for Streaming Applications. In CC ’02: Proceedings of the 11th
International Conference on Compiler Construction, pages 179–196, London, UK, 2002. Springer-Verlag.

UCB-AK06 printed on April 11, 2011 page 7 of 7


	1 Introduction
	2 StreamIt Background
	2.1 Language
	2.2 Partitioning
	2.2.1 Fusion Transformations
	2.2.2 Fission Transformations

	2.3 Layout and Communication Scheduling

	3 StreamIt Characteristics Suitable for Fleet
	3.1 Graph Structure
	3.2 Explicit Communication
	3.3 Static I/O Rates
	3.4 Automatic Parallelization

	4 StreamIt Characteristics Unsuitable for Fleet
	4.1 Filter Size
	4.2 Peeking
	4.3 Single Input and Output
	4.4 Out-of-Band Messages

	5 Conclusion

