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1 Introduction

The Fleet project is an attempt to design a new architecture around the constraints of modern chip fabrication methods,
in which logic is cheap but communication is expensive. It consists of a set of concurrently executing functional units
connected by a network. The programmer is given explicit control over communication between the functional units.

Since the Fleet architecture fundamentally differs from modern sequential and multicore machines, the languages
used to program those machines are unsuitable for Fleet. Instead, a new language must be designed with the Fleet
architecture in mind. This paper proposes the Admiral programming language. The goal of Admiral is to simplify
Fleet programming while taking maximum advantage of the concurreny in a Fleet implementation.

2 Fleet Overview

Most modern computer architectures have evolved from the designs of many decades ago. At the time, chips consisted
of relatively few transistors, so logic and storage were expensive while communication was not. The resulting designs
were thus based around sequential streams of relatively complicated instructions, and performance was increased by
making those instructions run faster through clock speed increases and other architectural improvements.

Modern processors, on the other hand, consist of many transistors, so logic and storage are now relatively cheap, but
communication is relatively more expensive. Performance increases now come primarily from exploiting parallelism
at both the instruction and the thread level. At their core, however, modern processors are still sequential designs, with
parallelism tacked on afterwards.

Instead of trying to extend inherently sequential architectures with parallelism, it may be more productive to design
a new architecture around the constraints of modern hardware implementation. The Fleet [2] project is an attempt at
such an architecture that is inherently concurrent and in which control of communication is put in the hands of the
programmer.

Figure 1 shows an example of a Fleet design. The main components are ships, the switch fabric, and docks.

2.1 Ships

The Fleet architecture includes a collection of functional units called ships, each of which may have any number of
inputs and outputs. Example ships include adders, multipliers, multiplexers, FIFOs, and so on. The Fleet architecture
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Switch Fabric

Figure 1: An example of a Fleet implementation.

itself is independent of the number of or types of functional untis, though an actual implementation must specify these
details. This allows the architecture to scale through the addition of more functional units, or to be customized for a
partcular application by changing which ships are included.

2.2 Switch Fabric

The Fleet architecture requires the existence of a network or switch fabric to alllow communication between ships. The
design of the switch fabric is not specified in the architecture. The only constraint is that the switch fabric must deliver
items sent between a single source and a single destination to the destination in the same order in which they leave the
source.

The simplest switch fabric is a tree structure, as shown in Figure 2. Switch fabric stages may also contain storage
for buffering data.

2.3 Docks

The Fleet architecture specifies a standardized interface between ships and the switch fabric, called a dock. Each input
or output of a ship is connected to a corresponding input or output dock, which is in turn connected to the switch fabric,
as shown in Figure 3.

The docks are the main control units in the Fleet architecture. They consist of a data latch, an instruction FIFO,
and a number of connections to the switch fabric and ship. Input and output docks differ in their connections. An input
dock has an incoming data connection from the switch fabric, an outgoing data connection to the ship, and an outgoing
token connection to the switch fabric. An output dock has an incoming data connection from the ship, an outgoing
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Figure 3: Input and output docks. Dashed lines correspond to token connections.

data connection to the switch fabric, and an incoming token connection from the switch fabric. Both dock types have
an incoming instruction connection from the switch fabric.

2.4 Instructions

Data movement through a dock is controlled by a stream of instructions. Instructions arrive from the switch fabric,
enter the instruction FIFO, and execute when they reach the end of the FIFO. Depending on the instruction type,
it may execute once, a specified number of times, or forever (standing instructions) until it is externally destroyed.
Alternatively, the instruction may execute once and then be requeued in the instruction FIFO.

Instructions in Fleet specifies whether to accept or discard data input to the dock, whether or not to latch the
accepted data item, and whether or not to send the latched data item through the data output. In the case of an input
dock, the data is sent to the ship, but for an output dock, the instruction specifies the destination dock. An instruction
for an input dock can also send a token to a specified destination, while an output dock can wait for a token to arrive
from the switch fabric before executing.

2.5 Fleet Programs

Fleet programs consist of a set of codebags, which are collections of instructions. For each instruction, the codebag
specifies which dock it is to be executed at. A codebag is dispatched by sending its descriptor to a special fetch
ship, which then injects all the instructions from the codebag into the switch fabric. The switch fabric then delivers
the instruction to their respective docks. The only sequencing guarantee between instructions in a codebag is that
instructions at a single dock arrive at that dock’s instruction FIFO in the order in which they appear in the codebag.

A Fleet program contains a special codebag that is dispatched at program startup. Subsequent codebags are only
dispatched when a previously dispatched codebag causes the new codebag’s descriptor to arrive at the fetch ship.

3 Problems in Programing Fleet

While the architectural design of Fleet is quite simple, programming Fleet has proven to be quite difficult. This section
discusses some of the reasons that this is the case.
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3.1 Dock Operations

Docks provide a number of instructions involving their data latches and connections to their ships and the switch fabric.
However, these instructions are all local to an individual dock, so a conceptually simple operation such as “move data
from A to B” requires at least one instruction at each of docks A and B. A slightly more complicated operation such as
“move data from A to both B and C” is even more difficult, requiring careful usage of the instruction FIFO at A to set
up a loop alternating between B and C.

3.2 Sequencing

The only sequencing guarantees that Fleet provides are that data from a single source to a single destination will arrive
in order, and that instructions for a single dock from a single codebag will arrive at the dock in the order in which they
appear in the codebag. For many programs, these guarantees are insufficient. Tokens can be used to enforce sequencing
when this is the case. For example, if dock C needs to receive alternating inputs from docks A and B, A and B can be
programmed to wait for a token before sending data to C, and C can send a token to A or B when it receives data from
the other. Depending on the sequencing pattern required, it may be difficult for the programmer to correctly set up the
required token management.

3.3 Deadlock

Given the concurrent nature of Fleet, there are many ways to deadlock the system. Deadlock can arise from semantic
errors, such as a circular dependency between a set of instructions. More insidious, however, are the kinds of deadlock
that can occur due to implementation details of a particular Fleet design.

A Fleet implementation can only have a limited amount of queue space in the switch fabric, so one way to deadlock
the system is to exhaust the queue space in a critical path through the switch fabric. For data traffic, a programmer
must set up flow control using tokens in order to prevent this from happening. For example, if dock A is sending a lot
of data to dock B, then A can be programmed to only send data when it receives a token, and B can be programmed to
send a token to A each time it receives a data item. Then, the programmer can seed this connection with a number of
tokens corresponding to how many items can be in flight at the same time. Increasing the number increases the amount
of concurrency in the system but also increases the possibility of deadlock. Determining the correct number may be
very difficult, and impossible to do without intimate knowledge of the rest of the program.

Flow control must also be done for instruction traffic, either by strictly limiting the number of instructions for a
particular dock in each codebag or by queuing instructions in a data FIFO before dispatching them. Either option is
tedious and can adversely affect the performance of a program.

3.4 Arbitrary Limits

A Fleet implementation also specifies limits that do affect program semantics. An instruction can either repeat or
requeue forever or a small number of times, where the limit on this small number is defined by the Fleet implementation.
A programmer must know what this limit is and work around it. The implementation also specifies the size of the
instruction FIFO in a dock, which corresponds to the maximum size of an instruction loop. Again, the programmer
must work around this limit.

3.5 Setup and Teardown

Setup and teardown for a repeating task can be quite difficult. In the flow control example in §3.3, docks A and B would
normally be programmed with an instruction that repeats forever, known as a standing instruction. To stop the flow of
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data from A to B, not only do the standing instructions need to be destroyed, but so do the tokens controlling the flow
of data between the docks. This can be difficult to accomplish cleanly. Setup and teardown are also quite difficult for
instruction loops.

3.6 Ship Management

Managing the collection of ships in a Fleet system poses some difficulties. A programmer must be careful not to use
the same ship for different purposes simultaneously, or interference can arise. This may not be trivial, as it can be
difficult to keep track of which ships are in use at each point in time. Even when a ship is no longer in use, if it contains
internal state, the state must be cleared before the ship can be reused. Similarly, the state in each dock must also be
reset before it can used again.

3.7 Topological Details

For a program to perform well, it may be necessary to take the topological of a Fleet implementation into account. For
example, if a program requires ships of type S; and S5 to communicate frequently and multiple ships of each type
exist, then the choice of which S; and S5 to use can affect performance. In particular, it may be beneficial to choose
two such ships that are located in close proximity, assuming a switch fabric that takes advantage of this proximity. In
other cases, it may be necessary to take advantage of bypass paths to reduce latency [1].

4 The Admiral Language

The Admiral language is an attempt to address the problems discussed in §3. It abstracts away some of the complex
details of the Fleet architecture while remaining focused on data movement. Admiral is to Fleet as C is to a sequential
machine.

Figure 4 shows the complete Admiral syntax. The different components of the language are discussed in the
following sections.

4.1 Moves

The move statement is the most basic operation in Admiral. It specifies a source dock and a list of destination docks.
A move operation causes a copy of the data item at the source to be sent to each of the destinations, while the item is
also removed from the source.

There are two types of moves, simple and counting moves. Their syntax is as follows:

source — > destination_list (simple)

source — [n]— > destination_list (counting)

A simple move executes only a single time, while a counting move executes the specified number of times.

4.2 Blocks

Move statements are grouped into blocks. There are two types of blocks, parallel and sequential. In a parallel block,
statements may execute in parallel, while in a sequential block, statements execute one after the other. Blocks may be
nested, so it is legal to have a sequential block nested inside a parallel block, as in Figure 5. In this case, the statements
in the sequential block will execute in sequence but in parallel to the rest of the statements in the parallel block.
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Figure 4: The Admiral sytax.
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a.b —> c.d ||

e.f => g.h ;;
i.3 —> k.1 ;;
For
m.n —> o0.p

}

Figure 5: A sequential block nested inside a parallel block.

The type of a block is specified by the separator between move statements. For a parallel block, the separator is
a pair of vertical bars, and for a sequential block, it is a pair of semicolons. The separator is optional after the last
statement in a block.

4.3 Variable Declarations

Admiral programs must declare variable before using them. A variable declaration consists of a ship type, which can
be virtual (§4.6), and a variable name, followed by a semicolon:

ship_type var_name ;

Variable declarations must occur at the beginning of a block, and the scope of a declaration is its enclosing block,
including nested sub-blocks.

Ships are automatically managed by the Admiral compiler. They are allocated at variable declarations, and when
a variable is no longer in scope, the associated ships are deallocated, and any internal state in either the ships or the
docks is cleared. It is unclear at this point how to handle a situation where a program attempts to allocate a ship when
all ships of that type are already in use.

4.4 Named Blocks

Admiral programs may contain named blocks at the top-level, using the following syntax:
name : block

Named blocks may be dispatched by sending their names to a fetch unit. The block named main is automatically
dispatched at program startup.

4.5 Sources and Destinations

The source of a move statement can be an integer literal, a block name, a constant, or a dock. A ship-specific constant
is specified by
ship_type.constant

and a dock-specifc constant is specified by

ship_type.dock_name.constant
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7

sendto mul.in2;
mul.in2:

take;

[*x] deliver;
mul.inl:

[x] take, deliver;
mul.out:

[x] take, sendto add.inl;
13:

sendto add.in2;
add.in2:

take;

[x] deliver;
add.inl;

[*x] take, deliver;

Figure 6: Fleet assembly for computing 7z + 13. The programmer must send input to mul.inl and retrieve output
from add. out, so this code is in passive mode. The code omits flow control and teardown of the standing instructions.

A dock is specified by
var_name.dock_name

Only docks may be the destinations of a move statement.

4.6 Virtual Ships

A common paradigm in programming Fleet is to connect multiple ships together using standing instructions in order
to accomplish a higher-level operation. For example, if the polynomial 7x 4 13 needs to be computed for many values
of x, this can be accomplished using a multiplier ship and an adder ship with standing instructions at the output of the
multiplier and an input of the adder to constantly send data between them, using flow control to prevent flooding of the
switch fabric. In addition, standing instructions can be placed at one of the inputs of the multiplier and the other input
of the adder to constantly feed them the numbers 7 and 13, respectively. With these standing instructions in place, the
program can consider the combination of the multiplier and adder to be a virtual ship with a single input and a single
output and use it accordingly. Figure 6 shows an example of this, with the flow control omitted.

There are two modes in which programmers generally use the docks in a virtual ship. The first is the active mode,
where data is continually transferred from a set of outside docks to the virtual inputs or from the virtual outputs to a set
of outside docks. The second is the passive mode, in which the programmer manually sends data to the virtual inputs
and retrieves data from the virtual outputs.

Admiral provides a facility for defining virtual ships that can be in active or passive mode, or a combination of the
two. Figure 7 contains an example virtual ship, with the syntax is as follows:

ship ship-name imports ( exports) { declarations init_block repeat_block end_block }

Here, imports is an optional set of names enclosed by angular brackets, and exports is also an optional set of names.
The imports correspond to a ship in active mode, while the exports correspond to a ship in passive mode. Both imports
and exports are specified as two comma-separated lists of user-provided names, with the lists separated by the move
symbol — >. The names to the left of this symbol correspond to inputs, while those to the right correspond to outputs.
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ship Foo<a -> b>(in -> out) {
Adder addl;
Adder add2;
in = addl.inl;
out = add2.out;
init {
1 > Db ;;
2 —> b
}
repeat {
{
a —> addl.in2 ||
addl.out -> b
}oa

a —> addl.inl, addl.in2

}

Figure 7: A virtual ship definition.

The declarations consist of ship variable declarations and assignments indicating which real docks the exported
virtual docks correspond to. All component ships must be declared here, and variable declarations are illegal in the rest
of the virtual ship definition. In addition, all exported docks must be assigned here. The syntax for an assignment is as
follows:

dockl = dock2 ;

One side of the assignment must be an imported dock or a dock of an internally declared ship, and the other side must
be an exported dock.

The init_block is a block of code to be run when the virtual ship is allocated.

The repeat_block is the steady-state behavior of the virtual ship. It executes repeatedly until the virtual ship is
deallocated. Only one iteration of this block can be active at any time. At the moment, it is not clear whether or not an
iteration should begin immediately after the previous one or until all inputs are available. The former is more efficient
but can result in an incomplete final iteration.

The end_block executes when the virtual ship is deallocated.

A virtual ship to compute 7x + 13 is shown in Figure 8. No flow control or teardown code needs to be provided,
since the Admiral compiler will generate it automatically.

A virtual ship variable can be declared like a real ship, except that if the virtual ship specifies imports, then the
imports must be specified as existing docks at the time of declaration. The virtual ship can then actively retrieve data
from and send data to these docks. In addition, the programmer can send data to or retrieve data from the exports of
a virtual ship as if they were real docks, thus using the virtual ship in passive mode. Figure 9 shows an example of
declaring and using virtual ships.

In general, it appears that standing instructions are primarily used by programmers to create virtual ships. As
discussed in §3, setting up and tearing down standing instructions can be quite difficult. Thus, Admiral provides virtual
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ship Poly(in -> out) {

Multiplier mul;

Adder add;

in = mul.inl;

out = add.out;

repeat {
7 => mul.in2 ||
mul.out —-> add.inl ||
13 -> add.in2?

}

Figure 8: A passive virtual ship that computes 72 + 13.

Adder a; // real ship

Foo<a.inl -> a.out> f; // virtual ship with imports
Poly p; // virtual ship without imports

13 —> p.in;

p.out -> f.in;

Figure 9: Declaration and use of virtual ship variables.

ships instead of standing instructions, so that setup can be done automatically by the compiler when a virtual ship is
declared and teardown when it is no longer in use. Admiral, however, does not reset ships with internal state, so the
code to do so must be provided by the programmer in the end_block.

5 Compilation Strategy

Admiral relieves programmers of the difficulties discussed in §3 by moving the responsibility to deal with them to the
Admiral compiler.

5.1 Move Statements

Instead of exposing dock operations, Admiral only has move statements, which the compiler then translates into the
appropriate dock operations at the source and destinations, as demonstrated in Figure 10. Simple moves will be
translated into one or more dock instructions at each end, while counting moves will be translated into either repeating
or requeuing instructions at each end. Counts that are higher than provided by the Fleet hardware will be implemented
by dividing the count among multiple instructions. Counting moves with multiple destinations will be implemented
using instruction loops.

The Admiral compiler will avoid deadlock in the switch fabric by computing a conservative estimate of the amount
of data traffic through each stage of the network and introducing flow control when the amount of queue space is
exceeded. Instruction management in the switch fabric is more complicated, and the compiler will need to make use of
data FIFOs to temporarily store instructions. This is necessary if the amount of space in an instruction FIFO runs out,
to prevent other instructions from interfering with an instruction loop, to implement instruction loops that are larger
than the size of an instruction FIFO, and possible for sequencing as well. Fleet provides a mechanism for transferring
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a.outl:
take, sendto c.inl; // I1
foo: | a.out2:
oo ) [2] take, sendto e.inl; // I2
// declarations
/) 11, 15 b.out:
. ti s einl || take, sendto c.in2; // I3
{' u : sendto e.in2; // 14
c.inl:
// 12, I8
) accept; // I5
a.out2 —-[2]-> e.inl ;; c.in2:
// 13, I4, 16, 19 ’ )
, , accept; // 16
b.out -> c.in2, e.in2 ;;
ur c.out:
/17, 110 Fake, sendto e.in2; // 17
t -> e.in2 e.inl:
} c.ou : [2] accept; // I8
e.in2:
accept; // 19
accept; // 110

Figure 10: An admiral block and its basic translation to dock instructions, before flow control or sequencing is added.

an instruction stored as data to its proper instruction FIFO, which allows Admiral to store instructions in data FIFOs or
in memory.

5.2  Control Flow Graph

After translating the move statements in an Admiral program into Fleet dock instructions, the compiler builds a control
flow graph representation of each named block in the program. The control flow graph contains a node for each dock
instruction. For each sequencing operator in the named block, the graph contains a directed edge from each of the dock
instructions corresponding to the statement to the left of the operator to each of the dock instructions corresponding to
the statement to its right. Figure 11 shows the control flow graph for the program in Figure 10.

The control flow graph of a named block represents the sequencing requirements in the block. For every pair of
instructions, if their is a path in the graph from the first to the second, then the first instruction must complete before
the second can execute. If no such path exists, then the two instructions may run in parallel.

5.3 Instruction Dependency Graph

The compiler also builds an instruction dependency graph representation of each named block in the program. The
instruction dependecny graph contains a node for each dock instruction. The graph contains a directed edge from one
instruction to another if the latter depends on the former in some way, such that the latter can execute only after the
former completes. For example, if an instruction depends on data produced by a second instruction, an edge would
connect the second to the first. Another example of a dependency is if two instructions are to the same dock, and one
is dispatched before the other. As discussed in §2.5, the first would arrive at the dock’s instruction FIFO and therefor
execute before the second. Figure 12 shows the control flow graph for the program in Figure 10.

The instruction dependency graph of a named block represents the actual sequence in which its instructions execute.
As in the control flow graph, for each pair of instructions, if their is a path in the graph from the first to the second,
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Figure 11: The control flow graph for the program in Figure 10.
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Figure 12: The instruction dependency graph for the program in Figure 10.
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then the first instruction must complete before the second can execute. If no such path exists, then the two instructions
can run in parallel. Thus, in order to implement the sequencing requirements in the control flow graph, the set of
nodes reachable from each instruction in the control flow graph must be a subset of the nodes reachable from the
same instruction in the instruction dependency graph. The compiler ensures this is the case by inserting new edges
and nodes into the instruction dependency graph until the requirement is met. It is not yet clear what algorithm the
compiler should use in doing this.

6 Discussion

There are a few open issues that the Admiral proposal does not address.

6.1 Functions

Most conventional programming languages include functions or subroutines in order to provide a clean interface be-
tween different parts of a program and to raise the level of abstraction. Virtual ships do accomplish this in Admiral,
but the implicit setup and tear-down of pipelines when creating or destroying virtual ships make them ineffecient for
infrequent operations. Thus, it may be necessary to add a function mechanism to Admiral. Since Admiral does not
have an implicit stack, it is unclear how data would be passed between the function caller and the function itself.

6.2 Architecture Independence

In order for Admiral to be to Fleet as C is to sequential machines, it must provide an abstraction from the actual
implementation of a Fleet architecture. In particular, an Admiral program should compile and run on any Fleet imple-
mentation, and the compiled program should take full advantage of the target Fleet.

Admiral attempts to provide some independence from implementation details discussed in §3. In particular, it is
the job of the Admiral compiler to deal with various arbitrary limits and the topology of the switch fabric. However,
Admiral does not achieve independence from the actual set of ships in a Fleet implementation.

It is possible for Admiral to provide independence from the type of ships in a Fleet implementation through a
standard library of virtual ships. For example, if a Fleet implementation has no multiplier ship, a virtual multiplier
can be provided that uses an adder ship. Considerale thought must be given to the details of the ships included in the
standard library so that they can be efficiently emulated by many different Fleet implementations.

Unfortunately, Admiral does not have a mechanism for virtualizing the number of ships in a Fleet implementation.
If a program is written to use a specific number of each type of ship, then it will not run on Fleet hardware with a fewer
number of any type of ship. On the other hand, the program will not run any faster if the hardware has more ships than
the program uses. Thus, Admiral programs are not scalable to the number of ships included in a Fleet implementation.

7 Conclusion

The Admiral language is a first attempt to design language around the features of the Fleet architecture. Admiral should
simplify Fleet programming, is it removes the burden of dealing with many of Fleet’s details from the programmer. At
the same time, its proximity to the Fleet machine model should allow Admiral programs to perform nearly as well as
Fleet assembly programs.

Admiral, however, is not the end-all of Fleet programming. As discussed in §6, Admiral programmers still need
to know some details of a Fleet implementation in order to write code for it. Admiral may also be too low-level for
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widespread use, as it requires the programmer to explicitly handle concurrency and communication. A higher-level,
implicitly-parallel language with Admiral as its compilation target may end up being the ideal way to program Fleet.
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