
Adiabatic Quantum Computation on a 2D Grid

Amir Kamil
Computer Science Division, University of California, Berkeley

kamil@cs.berkeley.edu

May 20, 2007

When adiabatic quantum computation [2] was first proposed, it was unclear how powerful it was. Aharanov, van Dam,
Kempe, Landau, Lloyd, and Regev eventually showed that it could simulate an arbitrary quantum circuit in polynomial
time, and furthermore, that the simulation could be done on a two-dimensional grid of six-state particles [1]. In this
report, we outline their procedure for adiabatically simulating quantum circuits on a grid.

1 Setup
We assume we are given an input quantum circuit onn qubits consisting ofO(poly(n)) single-qubit and two-qubit
gates.

We start by rewriting the circuit so that it consists ofR rounds, each of which has the form in Figure1. A round has
a downward stage and an upward stage. In thedownwardstage, there aren gates, the first of which applies only to
the first qubit, and theith of which applies to qubitsi and i + 1. Theupwardstage hasn identity gates, applied in
succession from the last qubit to the first.

Each round can simulate at least one gate from the original circuit, so at mostO(poly(n)) rounds are necessary. Since
each round contains 2n gates, the rewritten circuit hasO(poly(n)) total gates.

We now construct a two-dimensional grid of six-state quantum particles, withn rows andR+ 1 columns, as in each
side of Figure2.

I

n n

I

I

…

I

I

…

Figure 1: One round of the rewritten circuit.

1

2 The State of the System
The six states of a particle consist of the following:

• unborn: This is denoted by a blank (). A particle in this state has not been used yet.

• first phase: This is denoted by either an up arrow (↑) or a down arrow (↓), corresponding to logical states 0 and
1. A bidirectional arrow (l) represents a particle in an arbitrary superposition of the two states.

• second phase: This is denoted by either a double up arrow (⇑) or a double down arrow (⇓), corresponding to
logical states 0 and 1. A bidirectional double arrow (m) represents a particle in an arbitrary superposition of the
two states.

• dead: This is denoted by a cross (×) and corresponds to a particle that has been but is no longer in use.

At any point in time, only one particle in each row can beactive, meaning either in the first or second phase, and the
rest must be unborn or dead.

The state of the system consists of two pieces, the computational state and the clock. Thecomputational stateis the
state of then qubits in the rewritten circuit, and it is represented by the directionality of then active particles. Theclock
denotes how many gates of the circuit have been applied. The positions and phases of the active particles represent the
clock, as follows:

• In the downward stage of a roundr, the clock must bel = 2nr +k, where 0≤ k < n. At this step, all particles in
ther leftmost columns are dead, all particles in columnr +1 are active, and the rest of the particles are unborn.
The topk particles in the active column are in the second phase, while the bottomn−k are in the first phase.

• In the upward stage of a roundr, the clock must bel = 2nr +n+k, where 0≤ k < n. At this step, all particles
in the r leftmost columns are dead. The topn− k particles in columnr + 1 are in the second phase, while the
rest are dead. The bottomk particles in columnr +2 are in the first phase, and the rest are unborn. All particles
in the remaining columns are unborn.

Both sides of Figure2 are in the downward stage, and both sides of Figure3 are in the upward stage.

The initial state of the system has the particles in the first column in the first phase, with their logical state correspond-
ing to the input to the circuit, and the rest of the particles unborn. This corresponds to a clock ofl = 0. In the final
state of the system, all but the particles in the last column are dead, and the last column is in the first phase. The logical
state of the last column is the output of the the circuit. The final state corresponds to a clock ofl = 2nR.

3 Performing a Computational Step
In order to perform a computational step on the particle grid, both the computational state and the clock must be
changed. This is done as follows:

• In the downward stage of a roundr, where the clock isl = 2nr+k for 0≤ k < n, the next gateUl+1 to be applied
acts on the qubitsk andk+1 from the top. (For the special casek = 0, it applies only on the first qubit.) The
clock advances by transferring particlek+ 1 in columnr + 1 from the first phase to the second phase. Thus,
to perform the next computational step, we must apply a two-local transformation that simultaneously applies
Ul+1 to the logical state of particlesk andk+1 in columnr +1 and moves particlek+1 into the second phase,
as shown in Figure2.

CS 294-2, Spring 2007, 2

R R

… … ……

…
… …

…
… …

…

r

k

…

R-r

… … ……

…
… …

…
… …

…

r

k 1

…

R-r

U…
…

…

…
…

…
…

… … …… … …… …

n-k

…

…
…

…
…
…

…
…

… … …… … …… …

k+1

n-k-1
…

Ul+1

… …… … …… n-k-1

l = 2nr+k l = 2nr+k+1

Figure 2: Application of a gate in the downward stage of a round.

R R

… … ……

…
… …

…
… …

…

r

n-k

…

R-r

… … ……

…
… …

…
… …

…

r

n-k-1…

R-r

U…
…

…

…
…

…
…

… … …… … …… …

k

…

…
…

…

…
…

…
…

… … …… … …… … k+1…

Ul+1

… …… … ……
l = 2nr+n+k l = 2nr+n+k+1

Figure 3: Application of a gate in the upward stage of a round.

• In the upward stage of a roundr, where the clock isl = 2nr + n+ k for 0≤ k < n, the next gateUl+1 to be
applied is the identity gate on qubitk+1 from the bottom. The clock advances by transferring particlek+1 in
columnr +1 from the second phase to the dead phase, and particlek+1 in columnr +2 from the unborn phase
to the first phase. Thus, to perform the next computational step, we must apply a two-local transformation that
simultaneously updates the phases of particlek+1 in columnsr +1 andr +2 while moving the logical state of
the first particle to the second, as shown in Figure3.

In both cases, updating the computational state and clock can be done by a single two-local operation.

4 The Adiabatic Simulation
Adiabatically simulating the above computation requires defining an initial and final Hamiltonian, where the initial
Hamiltonian has a simple ground state and the output of the original circuit can be extracted from the ground state of
the final Hamiltonian. This can be done by using a modified form of Kitaev’s Hamiltonian for QMA-completeness [3]
as the final Hamiltonian.

Without loss of generality, we assume that the input to the original quantum circuit is|0n〉. Then we need an initial
Hamiltonian that has as its sole ground state a grid configuration with|0n〉 as its computational state and 0 as its clock.

CS 294-2, Spring 2007, 3

We can do so by writing the initial Hamiltonian as the sum of three simpler Hamiltonians,

Hinit = Hclockinit +Hinput +J ·Hclock.

Hclock assigns an energy penalty to a grid state that does not correspond to a legal clock state. For example, it is illegal
to have an unborn particle to the left of a particle that is not unborn, or an unborn particle above a dead particle.
Any illegal clock state violates some two-local rule of this nature, andHclock assigns an energy penalty for any such
violation.

Hclockinit andHinput check that the initial clock is 0 and that the computational input is|0n〉, respectively. Both checks
can be done locally on the individual particles in the first column, so these terms are one-local. Thus,Hinit as a whole
is two-local.

The final Hamiltonian is also the sum of simpler Hamiltonians,

H f inal =
1
2

2nR

∑
l=1

Hl +Hinput +J ·Hclock.

The termHl checks that the propagation from stepl −1 to l is correct by making sure that the logical states and the
phases of the (at most) two particles involved in the step are correctly updated. This check is two-local, so the final
Hamiltonian is also two-local.

The final Hamiltonian differs from Kitaev’s Hamiltonian in theHl terms and the multiplicative factorJ on Hclock. In
Kitaev’s Hamiltonian, the term corresponding toHl also checks to make sure that thel th operation occurs in the proper
sequence, afterl −1 but beforel +1. However, this cannot be done by a two-local check, so it is omitted fromHl . In
order to compensate, a much higher penaltyJ must be assigned to a state with an illegal clock.

The ground state of the final Hamiltonian is a uniform superposition over all computational steps,

|η〉=
1√

2nR+1

2nR

∑
l=0

|γ(l)〉,

whereγ(l) is the state of the grid after stepl . The output of the original circuit can thus be obtained by measuring
the clock of the system, and if it isl = 2nR, examining the computational state. SinceR∈ O(poly(n)), the entire
procedure need only be repeatedO(poly(n)) times to ensure success with high probability1. Since the procedure itself
takes time inO(poly(n)), the total amount of time is inO(poly(n)).

References
[1] D. Aharonov, W. van Dam, J. Kempe, Z. Landau, S. Lloyd, and O. Regev. Adiabatic quantum computation is equivalent to standard quantum

computation. InFOCS ’04: Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science (FOCS’04), pages 42–51,
Washington, DC, USA, 2004. IEEE Computer Society.

[2] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser. Quantum computation by adiabatic evolution, 2000. arXiv:quant-ph/0001106v1.

[3] A. Kitaev, A. Shen, and M. Vyalyi.Classical and Quantum Computation. Number 47 in Graduate Series in Mathematics. AMS, Providence,
RI, 2002.

1It is actually more efficient to pad the original circuit with identity gates at the end, as this increases the number of clock steps at which the
computational state is equal to the output of the circuit.

CS 294-2, Spring 2007, 4

	1 Setup
	2 The State of the System
	3 Performing a Computational Step
	4 The Adiabatic Simulation

