
1 Synthesis of Distributed Arrays Amir Kamil

Synthesis of Distributed Arrays in
Titanium

Amir Kamil

U.C. Berkeley
May 9, 2006

2 Amir Kamil Synthesis of Distributed Arrays

Background
• Titanium is a single program, multiple data

(SPMD) dialect of Java
• All threads execute the same program text

• Designed for distributed machines
• Global address space – all threads can access

all memory
• But much slower to access remote memory than local

memory

3 Amir Kamil Synthesis of Distributed Arrays

Grids – The Abstract View
• Grids used extensively in scientific codes
• Ideally, programmer specifies:

• Size of grid
• Operations on each cell

grid[2d] g = new grid[[0,0] : [100,100]];
setup(g);
for (int i = 0; i < iterations; i++) {
 foreach (p in g.domain()) {
 g[p] = (g[p+[0,-1]] +
 g[p+[0,1]] +
 g[p+[1,0]] +
 g[p+[-1,0]]) / 4;
 }
}

4 Amir Kamil Synthesis of Distributed Arrays

Grids – The Reality

• Grids must be distributed across processors
• Global accesses are slow, local accesses are fast
• Load balancing is difficult

• Some problems require multiple levels of
refinement

• Access patterns must be tailored for problem
and machine

5 Amir Kamil Synthesis of Distributed Arrays

Grid Distribution

• Regular partitioning
• Blocked, Cyclic distributions

• Can also partition irregularly
• Ghost cells at boundaries used to cache data

6 Amir Kamil Synthesis of Distributed Arrays

Multi-level Grids

Level 1

Level 2

• Parts of the grid may
require higher resolution

• Each level distributed
separately

• Lower levels are
refinements of upper
levels

• Some notion of
consistency between
levels

7 Amir Kamil Synthesis of Distributed Arrays

Access Patterns

• Different problems require different access
patterns
• Data dependency
• Cache effects

• Examples:
• Blocked accesses (linear algebra)
• Red/black (multigrid)

8 Amir Kamil Synthesis of Distributed Arrays

Problem #1 – Game of Life

• 2D grid
• Blocked in both dimensions
• Ghost cells of width 1 at boundaries

array data {
 dimension[2];
 distribution[BLOCKED(length[1] / 3),
 BLOCKED(3 * length[2] /
 Ti.numProcs())];
 boundary[GHOST(1), GHOST(1)];
}

9 Amir Kamil Synthesis of Distributed Arrays

Problem #2 – Knapsack

• 2D grid
• Blocked in one dimension
• Blocked access pattern in other

dimension
• Ghost cells of width 1 at boundaries

array data {
 dimension[2];
 distribution[BLOCKED(length[1] /
 Ti.numProcs()),
 NONE];
 access[NONE, BLOCKED(2)];
 boundary[GHOST(1), NONE];
}

10 Amir Kamil Synthesis of Distributed Arrays

Grid Usage

• Generated grids mostly used as if they’re
normal, global grids
• Array access ([], []=) to any cell supported

• Ghost cells automatically updated by calling
synchronize() method

• Methods provided to restrict access to local
elements, specified pattern
• e.g. myDomain(), myBlocks()

11 Amir Kamil Synthesis of Distributed Arrays

Future Work

• Optimize certain access patterns in compiler
• e.g. can remove owner computation when iterating over

local domain
 foreach (p in grid.myDomain())
 grid[p] = …

• Add basic support for multiple levels of
refinement

12 Amir Kamil Synthesis of Distributed Arrays

Future Future Work

• Add more distribution types
• e.g. Blocked-Cyclic
• Irregular partitioning

• Add load balancing
• Support irregular grids

• e.g. AMR
• Add other boundary conditions

• e.g. shared cells
• Improve compiler support by adding

optimizations, analysis

	Synthesis of Distributed Arrays in Titanium
	Background
	Grids – The Abstract View
	Grids – The Reality
	Grid Distribution
	Multi-level Grids
	Access Patterns
	Problem #1 – Game of Life
	Problem #2 – Knapsack
	Grid Usage
	Future Work
	Future Future Work

