Synthesis of Distributed Arrays in Titanium

Amir Kamil

U.C. Berkeley May 9, 2006

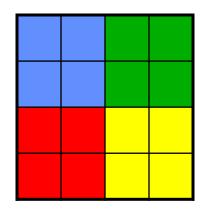

Background

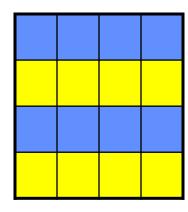
- Titanium is a single program, multiple data (SPMD) dialect of Java
 - All threads execute the same program text
- Designed for distributed machines
- Global address space all threads can access all memory
 - But much slower to access remote memory than local memory

Grids - The Abstract View

- Grids used extensively in scientific codes
- Ideally, programmer specifies:
 - Size of grid
 - Operations on each cell

```
grid[2d] g = new grid[[0,0] : [100,100]];
setup(g);
for (int i = 0; i < iterations; i++) {
  foreach (p in g.domain()) {
    g[p] = (g[p+[0,-1]] +
        g[p+[0,1]] +
        g[p+[1,0]] +
        g[p+[-1,0]]) / 4;
  }
}</pre>
```

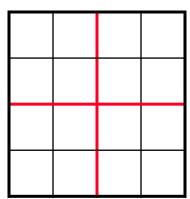

Grids – The Reality

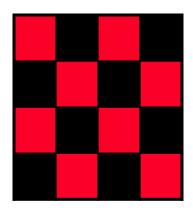
- Grids must be distributed across processors
 - Global accesses are slow, local accesses are fast
 - Load balancing is difficult
- Some problems require multiple levels of refinement
- Access patterns must be tailored for problem and machine

Grid Distribution


- Regular partitioning
 - Blocked, Cyclic distributions

- Can also partition irregularly
- Ghost cells at boundaries used to cache data

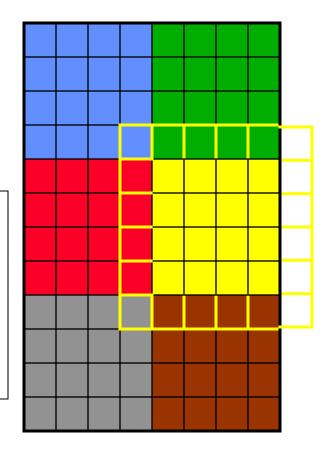

Multi-level Grids



- Parts of the grid may require higher resolution
- Each level distributed separately
- Lower levels are refinements of upper levels
- Some notion of consistency between levels

Access Patterns

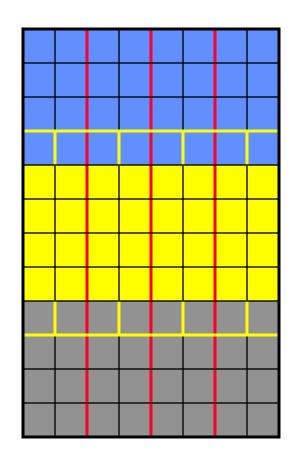
- Different problems require different access patterns
 - Data dependency
 - Cache effects
- Examples:
 - Blocked accesses (linear algebra)
 - Red/black (multigrid)



Problem #1 – Game of Life

2D grid

- Blocked in both dimensions
- Ghost cells of width 1 at boundaries



Problem #2 – Knapsack

2D grid

- Blocked in one dimension
- Blocked access pattern in other dimension
- Ghost cells of width 1 at boundaries

Grid Usage

- Generated grids mostly used as if they're normal, global grids
 - Array access ([], []=) to any cell supported
- Ghost cells automatically updated by calling synchronize() method
- Methods provided to restrict access to local elements, specified pattern
 - e.g. myDomain(), myBlocks()

Future Work

- Optimize certain access patterns in compiler
 - e.g. can remove owner computation when iterating over local domain

```
foreach (p in grid.myDomain())
grid[p] = ...
```

Add basic support for multiple levels of refinement

Future Future Work

- Add more distribution types
 - e.g. Blocked-Cyclic
 - Irregular partitioning
- Add load balancing
- Support irregular grids
 - e.g. AMR
- Add other boundary conditions
 - · e.g. shared cells
- Improve compiler support by adding optimizations, analysis