
MIPS on FLEET Update

Amir Kamil
Computer Science Division, University of California, Berkeley

kamil@cs.berkeley.edu

May 18, 2007

1 Introduction

The FLEET computer [1] is a new architecture designed from the ground up with parallelism in mind,
providing the programmer with direct control over data movement and concurrency. Since FLEET is a
completely new architecture, programming for it can be quite challenging. The machine is inherently
parallel, so sequential programming techniques do not directly translate to it. The MIPS to FLEET
translator [2] addresses this issue by providing a mechanism for running sequential code on FLEET.

Since the MIPS translator was written, FLEET has undergone many revisions, so the translator is not
compatible with the current version of FLEET, which is very close to the eventual FLEET 3 hardware
implementation. In this report, I discuss the changes necessary to achieve this compatibility. Though the
new translator design is close to complete, the implementation still needs significant work before it is
finished.

While the MIPS translator allows sequential code to be run on FLEET, it takes little advantage of
FLEET’s parallelism. In this report, I also discuss one possible scheme for parallelizing the output of the
translator.

2 Translator Changes

Since the last semester, both the FLEET architecture itself and the set of SHIPs it is likely to provide
have undergone revision. The MIPS translator must be modified to account for both sets of changes.

2.1 FLEET Modifications

FLEET has changed considerably since last semester [7]. BenkoBoxeswere introduced to replace the
data and token inboxes and outboxes [6]. The syntax of FLEET assembly has changed [5], and new
instruction forms have been added [4] as well.

Since the MIPS translator does not use many of the features of FLEET, such as counting or standing
moves, most changes required by the FLEET updates are relatively straightforward to implement. As a

1



result, I have not really concerned myself this semester with updating the translator to match the new
version of FLEET.

One important complication, however, is the word size of FLEET. This will be handled by either
ignoring the extra bits that FLEET provides, or enforcing the invariant that they are always zero. Which
option to use depends on the implementation of specific SHIPs such as the Adder SHIP.

2.2 SHIP Modifications

We now have a better idea of what SHIPs will be going into the FLEET 3 implementation. As such, the
MIPS translator needs to be modified to target only the SHIPs that will actually be available.

2.2.1 Unsupported Instructions

It is very likely that certain operations such as multiplication, division, and byte-addressed memory will
not be provided by the SHIPs in FLEET. Instead of trying to implement these operations in the MIPS
translator, I’ve decided to decrease the compatibility of the translator to MIPS R1000, which does not
support these operations either. Thus, it will be the job of the MIPS assembly programmer or compiler to
simulate such operations. There is a GCC compiler for MIPS R1000 that implements them in software.

2.2.2 Registers

A BenkoBox without an associated SHIP can be used to implement a register, called aregbox[6]. How-
ever, it is not clear the FLEET 3 will have regboxes. If it won’t, then registers can be implemented as
before with FIFOs.

2.2.3 Arithmetic and Logical Operations

The Adder SHIP can be used to provide addition and subtraction, as before. There is now a Lut3 SHIP
that can perform bitwise operations on its inputs. This SHIP can be used instead of a separate Logic
SHIP to perform basic logical operations such asand , or , andxor .

2.2.4 Shift Operations

During the semester, a BitFifo SHIP proposal was discussed that could be used for performing shift
operations, among other things. I have actually implemented such a SHIP.

The purpose of the BitFifo SHIP is to treat a sequence of words as a stream of bits. It accepts whole
words as input and contains at least two words worth of storage to keep track of the queued bits. In
the current implementation, the BitFifo treats words as little-endian, though it could be modified to treat
different input or output words as little or big-endian.

The BitFifo provides commands to extractN bits from the queue, whereN is at most the word size,
and either drop them or place them at the output. The output is always an entire word, so the rest of
the bits need to be filled in. The BitFifo provides separate command forms for filling the extra bits with
zeros, ones, or the last bit taken.

2



In order to use the BitFifo to shift a word rightN bits, the following sequence of operations need to
be performed:

1. Send the original word to the BitFifo as input.

2. DropN bits.

3. TakeW − N bits, whereW is the word size, and fill with zeros for a logical shift or the last bit
taken for an arithmetic shift.

In order to use the BitFifo to shift a word leftN bits, the following sequence of operations need to be
performed:

1. Send 0 to the BitFifo as input.

2. Send the original word to the BitFifo as input.

3. DropW −N bits.

4. TakeW bits.

5. DropN bits.

In order to avoid using the Adder SHIP to computeW − N , the BitFifo SHIP actually provides a
separate command form that usesW −N when givenN .

2.2.5 Branches and Sets

Branch and set instructions can now be implemented using a combination of the Adder SHIP and a
Choice SHIP [3]. The general strategy is to use the Adder to compute the branch or set condition and
send the result to the command input of the Choice SHIP. The codebag IDs corresponding to the two
branches are sent to the Choice data inputs, and depending on the branch condition, one is routed to the
dispatch input of the Memory SHIP while the other is destroyed.

2.2.6 Jumps

The absolute jump instruction requires no modification from last semester. The jump to an address in a
register, however, still poses a problem since it depends on the relationship between an instruction address
and its associated codebag ID. Most such jumps are used for returning from a function call, which are
implemented using either a jump and link (jal ) or a branch and link. They can thus be handled by
constructing a static table mapping the address following each link instruction to its associated codebag,
and then performing a lookup at runtime when executing the return instruction. This does not, however,
handle target addresses computed by the program that are not from link instructions.

It may actually be preferable to rewrite linked addresses, such as replacing them with their corre-
sponding table index. This would make address lookup simpler and faster.

3



2.2.7 Memory Access Operations

Since FLEET will not likely provide byte-addressable memory, the MIPS translator will no longer im-
plement the corresponding MIPS instructions. Even the word-addressed instructions in MIPS pose a
problem, since word addresses are multiples of the word size in bytes, while they are not in FLEET.
Before performing a memory operation, then, the translator must shift the target address by sending it
through the BitFifo SHIP.

2.2.8 System Calls

The system calls that can be provided by the translator depend on the input/output specification of FLEET,
which has not been worked out yet.

3 Parallelization

During the semester, I have given some thought on how to support instruction-level parallelism (ILP) in
the MIPS translator. Since each MIPS instruction is implemented by a sequence of FLEET instructions,
it is crucial that parallel MIPS instructions not interfere with each other. This gives rise to a tradeoff
between translator complexity and the amount of parallelization that can be achieved.

One simple strategy for parallelization is as follows. Introduce the concept of acycle, as in syn-
chronous machines. The operations in each cycle correspond to a codebag, so they are implicitly parallel,
and a cycle is not allowed to begin until the previous one has completed. In each cycle, a SHIP may only
be used by a single MIPS instruction. A SHIP is considered to be in use if any of its inputs is occupied
by data at the end of a cycle. A cycle is considered to be finished when all data in flight during the cycle
have arrived at their respective destinations.

Of course, this description leaves out a lot of details. For example, how should the translator choose
which MIPS instructions to run in parallel? How should it decide which SHIPs to allocate to each
instruction? How many cycles should it wait before using the output from a particular SHIP? (If the
output of a SHIP is used in a particular cycle, then the cycle may have to wait for the SHIP to produce
its output, potentially delaying completion of the cycle. So it may be better to wait until a later cycle to
use the SHIP’s output.) These are all interesting questions to explore, as well as the tradeoffs between
different answers.

4 Conclusion

The MIPS translator provides a means of running sequential code on FLEET. With revisions to FLEET
and its SHIPs, the translator needs to be updated to continue to provide this service. Much work has been
done to this end, but a significant amount still remains.

Though the translator allows an easy way to write code for FLEET, it doesn’t provide a way to
easily take advantage of FLEET’s parallelism. Implementing MIPS instruction-level parallelism in the
translator can achieve some degree of parallelism. However, it is likely that in order to truly leverage

4



FLEET’s asynchrony and parallelism, a new programming model needs to be used instead of trying to
map synchronous code onto FLEET.

References
[1] The FLEET project. Website:http://research.cs.berkeley.edu/class/fleet .

[2] A. Kamil. MIPS on FLEET.http://www.cs.berkeley.edu/˜kamil/cs294-11/mips.pdf .

[3] A. Megacz. The choice ship.http://research.cs.berkeley.edu/class/fleet/docs/people/adam.
megacz/am17-The.Choice.Ship.pdf .

[4] A. Megacz. Killing and recycling instructions.http://research.cs.berkeley.edu/class/fleet/docs/
people/adam.megacz/am15-Decommissioning.and.Recycling.pdf .

[5] A. Megacz. Syntax. http://research.cs.berkeley.edu/class/fleet/docs/people/adam.
megacz/am14-Syntax.pdf .

[6] A. Megacz. Unified boxes.http://research.cs.berkeley.edu/class/fleet/docs/people/adam.
megacz/am13-Unified.Boxes.pdf .

[7] I. Sutherland, A. Megacz, and I. Benko. Fleet definition.http://research.cs.berkeley.edu/class/
fleet/docs/people/ivan.e.sutherland/ies44-Fleet.Definition.pdf .

5

http://research.cs.berkeley.edu/class/fleet
http://www.cs.berkeley.edu/~kamil/cs294-11/mips.pdf
http://research.cs.berkeley.edu/class/fleet/docs/people/adam.megacz/am17-The.Choice.Ship.pdf
http://research.cs.berkeley.edu/class/fleet/docs/people/adam.megacz/am17-The.Choice.Ship.pdf
http://research.cs.berkeley.edu/class/fleet/docs/people/adam.megacz/am15-Decommissioning.and.Recycling.pdf
http://research.cs.berkeley.edu/class/fleet/docs/people/adam.megacz/am15-Decommissioning.and.Recycling.pdf
http://research.cs.berkeley.edu/class/fleet/docs/people/adam.megacz/am14-Syntax.pdf
http://research.cs.berkeley.edu/class/fleet/docs/people/adam.megacz/am14-Syntax.pdf
http://research.cs.berkeley.edu/class/fleet/docs/people/adam.megacz/am13-Unified.Boxes.pdf
http://research.cs.berkeley.edu/class/fleet/docs/people/adam.megacz/am13-Unified.Boxes.pdf
http://research.cs.berkeley.edu/class/fleet/docs/people/ivan.e.sutherland/ies44-Fleet.Definition.pdf
http://research.cs.berkeley.edu/class/fleet/docs/people/ivan.e.sutherland/ies44-Fleet.Definition.pdf

	1 Introduction
	2 Translator Changes
	2.1 FLEET Modifications
	2.2 SHIP Modifications
	2.2.1 Unsupported Instructions
	2.2.2 Registers
	2.2.3 Arithmetic and Logical Operations
	2.2.4 Shift Operations
	2.2.5 Branches and Sets
	2.2.6 Jumps
	2.2.7 Memory Access Operations
	2.2.8 System Calls


	3 Parallelization
	4 Conclusion

