
MIPS on FLEET

Amir Kamil

Goals
 Run most MIPS assembly code on FLEET
 Attempt to duplicate level of support in SPIM

interpreter
 MIPS assembly translated to FLEET assembly
 Small set of SHIPs used to implement MIPS

operations
 Register file abstraction provided

 Eventual goal: run C code on FLEET
 Compile C  MIPS  FLEET

MIPS Instructions
 Each instruction is implemented as a

codebag
 When an instruction is done, it sends the next

instruction codebag to the FetchShip
 The next instruction’s release is predicated

on notification from the previous instruction
that it is done

Instruction Example
 Example: AND $t0, $s0, $s1
PC0x400000: {
copy s0fifo.out  logic.A
copy s1fifo.out  logic.B
 “AND”  logic.cmd
move token.out  logic.out
move logic.out  t0fifo.in
move t0fifo.out  ()
accept+ack t0fifo.in  fetch.release
 PC0x400400  fetch.codebag
move fetch.done  ()

}

MIPS Registers
 Registers implemented using FIFOs
 Operations
 Initialization: add 0 to FIFO

 Read: copy output

 Write: move input to FIFO, send output to

bitbucket

0 0

x x x

y x y

MIPS ALU Operations
 ALU operations
 Addition (ADD, ADDI, ADDIU, ADDU)
 Subtraction (SUB, SUBU)
 Multiplication (MULT, MULTU)
 Division (DIV, DIVU)
 Shifts (SLL, SLLV, SRA, SRAV, SRL, SRLV)
 Logic (AND, ANDI, OR, ORI, XOR, XORI, NOR)

Arithmetic Implementation
 Addition and subtraction implemented directly

using ArithmeticShip
 Signed multiplication uses Dominic’s

MultiplierShip
 Unclear what to do for division and unsigned

multiplication
 Can build on top of ArithmeticShip, MultiplerShip,

and ShiftShip, but result complicated and slow
 Can also build into hardware, on top of MIPS

instructions, or a combination of the above

Logic Implementation
 Logical operations can be built either on top

of the BitwiseShip, or on a simpler LogicShip
 Since no one has built a BitwiseShip, I’m using a

LogicShip for now

 Commands: AND, OR, XOR, NOR

Logic Ship

DataAin::int Inbox

Inbox

Inbox

Outbox DataBin::int

Commandin::int

DataOut::int

Shift Implementation
 Shift operations can use the IES31 ShiftShip
 However, lots of operations required to perform a

shift of more than 1
 Also, complicated to implement variable shifts
 Can use new ship:

 Commands: SLL, SRA, SRL

Shift Ship

DataAin::int Inbox

Inbox

Inbox

Outbox DataBin::int

Commandin::int

DataOut::int

MIPS Control Flow Operations
 Control flow operations
 Branches (BEQ, BGEZ, BGTZ, BLEZ, BLTZ, BNE)
 Jumps (J, JAL, JALR, JR)

 Set operations
 Set on less than (SLT, SLTI, SLTIU, SLTU)

Comparisons
 Branches and sets compare values, so a

ComparatorShip needs to be defined
 Can use ArithmeticShip, but slower and more

complicated

 Commands: EQ, NEQ, GT, GEQ, LT, LEQ

Comparator
 Ship

DataAin::int Inbox

Inbox

Inbox

Outbox DataBin::int

Commandin::int

DataOut::boolean

Selections
 Branches and sets also select between two

values
 The SELECT command on the ArithmeticShip can

be used to do so
 Example: BEQ $s, $t, off

Comp
$s
$t

EQ

Arith SELECT
Fetch

PC+1
PC+off

MIPS Memory Access Operations
 Memory access operations
 Loads (LB, LBU, LUI, LH, LHU, LW)
 Stores (SB, SH, SW)

 Memory byte-addressed, so need new byte-
addressed memory ships
 Example: SW $t, off($s)

Byte
Mem
Write

0
1 Arith

$s

ADD
off

0 $t

Other MIPS Operations
 Register moves (MFHI, MTHI, MFLO, MTLO)
 Easy to implement

 System calls (SYSCALL)
 Only a few calls implemented

 Floating point instructions
 Not implemented

Future Work
 Add more complete support for system calls
 Need I/O specification for FLEET first

 Add floating point instructions
 Need floating point specification for FLEET first

 Optimize instruction sequencing logic
 Remove sequencing where it is unnecessary

 Add support for instruction-level parallelism
 Take advantage of duplicated SHIPs, or even

multiple FLEETs

	MIPS on FLEET
	Goals
	MIPS Instructions
	Instruction Example
	MIPS Registers
	MIPS ALU Operations
	Arithmetic Implementation
	Logic Implementation
	Shift Implementation
	MIPS Control Flow Operations
	Comparisons
	Selections
	MIPS Memory Access Operations
	Other MIPS Operations
	Future Work

