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Goals 
 Run most MIPS assembly code on FLEET 
 Attempt to duplicate level of support in SPIM 

interpreter 
 MIPS assembly translated to FLEET assembly 
 Small set of SHIPs used to implement MIPS 

operations 
 Register file abstraction provided 

 Eventual goal: run C code on FLEET 
 Compile C  MIPS  FLEET 



MIPS Instructions 
 Each instruction is implemented as a 

codebag 
 When an instruction is done, it sends the next 

instruction codebag to the FetchShip 
 The next instruction’s release is predicated 

on notification from the previous instruction 
that it is done 



Instruction Example 
 Example: AND $t0, $s0, $s1 
PC0x400000: { 
copy       s0fifo.out  logic.A 
copy       s1fifo.out  logic.B 
           “AND”       logic.cmd 
move       token.out   logic.out 
move       logic.out   t0fifo.in 
move       t0fifo.out  () 
accept+ack t0fifo.in   fetch.release 
           PC0x400400  fetch.codebag 
move       fetch.done  () 

} 



MIPS Registers 
 Registers implemented using FIFOs 
 Operations 
 Initialization: add 0 to FIFO 

 
 Read: copy output 

 
 Write: move input to FIFO, send output to 

bitbucket 

0 0 

x x x 

y x y 



MIPS ALU Operations 
 ALU operations 
 Addition (ADD, ADDI, ADDIU, ADDU) 
 Subtraction (SUB, SUBU) 
 Multiplication (MULT, MULTU) 
 Division (DIV, DIVU) 
 Shifts (SLL, SLLV, SRA, SRAV, SRL, SRLV) 
 Logic (AND, ANDI, OR, ORI, XOR, XORI, NOR) 



Arithmetic Implementation 
 Addition and subtraction implemented directly 

using ArithmeticShip 
 Signed multiplication uses Dominic’s 

MultiplierShip 
 Unclear what to do for division and unsigned 

multiplication 
 Can build on top of ArithmeticShip, MultiplerShip, 

and ShiftShip, but result complicated and slow 
 Can also build into hardware, on top of MIPS 

instructions, or a combination of the above 



Logic Implementation 
 Logical operations can be built either on top 

of the BitwiseShip, or on a simpler LogicShip 
 Since no one has built a BitwiseShip, I’m using a 

LogicShip for now 
 
 
 
 
 

 Commands: AND, OR, XOR, NOR 

Logic Ship 

DataAin::int Inbox 

Inbox 

Inbox 

Outbox DataBin::int 

Commandin::int 

DataOut::int 



Shift Implementation 
 Shift operations can use the IES31 ShiftShip 
 However, lots of operations required to perform a 

shift of more than 1 
 Also, complicated to implement variable shifts 
 Can use new ship: 

 
 
 
 

 Commands: SLL, SRA, SRL 

Shift Ship 

DataAin::int Inbox 

Inbox 

Inbox 

Outbox DataBin::int 

Commandin::int 

DataOut::int 



MIPS Control Flow Operations 
 Control flow operations 
 Branches (BEQ, BGEZ, BGTZ, BLEZ, BLTZ, BNE) 
 Jumps (J, JAL, JALR, JR) 

 Set operations 
  Set on less than (SLT, SLTI, SLTIU, SLTU) 



Comparisons 
 Branches and sets compare values, so a 

ComparatorShip needs to be defined 
 Can use ArithmeticShip, but slower and more 

complicated 
 
 
 

 
 Commands: EQ, NEQ, GT, GEQ, LT, LEQ 

 

Comparator 
 Ship 

DataAin::int Inbox 

Inbox 

Inbox 

Outbox DataBin::int 

Commandin::int 

DataOut::boolean 



Selections 
 Branches and sets also select between two 

values 
 The SELECT command on the ArithmeticShip can 

be used to do so 
 Example: BEQ $s, $t, off 

Comp 
$s 
$t 

EQ 

Arith SELECT 
Fetch 

PC+1 
PC+off 



MIPS Memory Access Operations 
 Memory access operations 
 Loads (LB, LBU, LUI, LH, LHU, LW) 
 Stores (SB, SH, SW) 

 Memory byte-addressed, so need new byte-
addressed memory ships 
 Example: SW $t, off($s) 

Byte 
Mem 
Write 

0 
1 Arith 

$s 

ADD 
off 

0 $t 



Other MIPS Operations 
 Register moves (MFHI, MTHI, MFLO, MTLO) 
 Easy to implement 

 System calls (SYSCALL) 
 Only a few calls implemented 

 Floating point instructions 
 Not implemented 



Future Work 
 Add more complete support for system calls 
 Need I/O specification for FLEET first 

 Add floating point instructions 
 Need floating point specification for FLEET first 

 Optimize instruction sequencing logic 
 Remove sequencing where it is unnecessary 

 Add support for instruction-level parallelism 
 Take advantage of duplicated SHIPs, or even 

multiple FLEETs 
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