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1 Introduction

As the limits of uniprocessor machines are being approached, application writers and system vendors alike have been turning
to multiprocessor machines for performance. The major CPU manufacturers all have recently or will shortly introduce chips
with multiple cores. Such systems, along with traditional multiprocessor machines, allow all processors to simultaneously
access shared memory. This requireseanory consistency modelbe defined, which determines in what order the memory
updates on one processor appear to the other processors.

The memory consistency model can be specified at the level of a programming language, which is crucial for languages
that can be used on a wide variety of hardware. Language designers have traditionally been very reluctant to use the simplest
model,sequential consistenciy which memory operations appear to occur in the order specified in the original program. This
reluctance is due to a perception that such a model incurs prohibitive performance penalties, since it prevents reordering of
operations and requires memory fences to be inserted in order to force the underlying hardware to respect ordering. Language
designers instead have used complicated modéisip] that aren’t well-understood by programmers, or worse, ill-defined
[8]. This is very problematic for programmers, since many common techniques such as spin-locks and presence bits depend
on the details of the memory consistency model in order to function correctly.

Various techniques have been proposed in order to decrease the cost of sequential consistency. In this paper, we present
an interprocedural concurrency analysis for the Titanium programming language that can increase the precision of one such
techniguecycle detectionWe present both a basic algorithm and a modified one that only considers program execution paths
that can occur in practice and prove that both algorithms are correct. We then apply these algorithms to a set of benchmarks,
showing that they are effective in reducing the number of fences required to enforce sequential consistency in most of the
benchmarks.

2 Background

2.1 Sequential Consistency

For a sequential program, compiler and hardware transformations must not violate data dependencies: the order of all pairs of
conflicting accesses must be preserved. Two memory acoesstist if they access the same memory location and at least

one of them is a write. The execution model for parallel programs is more complicated, since each thread executes its own
portion of the program asynchronously and there is no predetermined ordering among accesses issued by different threads to
shared memory locations. A memory consistency model defines the memory semantics and restricts the possible execution
order of memory operations.

Among the various modelsequential consistengy the most intuitive for the programmer. The sequential consistency
model states that a parallel execution must behave as if it were an interleaving of the serial executions by individual threads,
with each individual execution sequence preserving the program drdefFor example, for the accessgs, y, a, b} in figure
1, the behavior in whiclb reads the value 1 angdreads the value 0 is not sequentially consistent, since it does not reflect an
interleaving in which the order of the individual execution sequences is preserved.
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Figure 1: A cycle consisting of four accesses in two threads. The solid edges correspond to order in the execution stream of
each thread, and the dashed edges are conflicts. Of the four possible results of thread 1 visible to thread 2, the second is illegal
since it does not correspond to an overall execution sequence in which operations are not reordered within a thread.

An easy way to enforce sequential consistency is to insert memory fences after each shared memory access. This forbids
all reordering of shared memory operations, which prevents optimizations such as prefetching and code motion, resulting in
an unacceptable performance penalty. Various techniques can be used to minimize the number of fizlegseirequired
to enforce sequential consistendy’[7, 11].

2.1.1 Cycle Detection

Computing the minimal delay set for an arbitrary parallel program is an intractable NP-hard pr@hl&mghnamurthy and

Yelick proposed a polynomial time algorithm basedaycle detectiorior analyzing SPMD program&] such as Titanium.

The analysis uses a graph where the nodes represent shared memory accesses. There are two types of edges in the graph
program edgesndconflict edgesProgram edges reflect the program order: there is a directed program edge tivanif

u can execute before Conflict edges are undirected edges between accesses that conflict: there is a conflict edgesbetween
andv if « andv can access the same memory location and at least one of them is a write.

The goal of cycle detection is to check each program edge to see if it needs a fence to enforce its order. Given the program
edge(u,v), if there is no local dependency betweemndv, v could execute before. If this reordering is observable by
another thread, then sequential consistency is violated. In that case, a fence must be insertedutmteleen ensure that
u always executes before Figurel gives one example of this. There is no local dependency on T1, but if the two writes on
T1 were reordered, then the following execution order would be possibte:y = b = a. This results iny, b) reading the
values(1, 0), which means that the reordering on T1 is observable on T2. A fence must be placed heameerto prevent
such reordering.

Kirshnamurthy and Yelick] show that given a program edge, v), if there is a path fromv to v where the first and last
edge are conflict edges, and the intermediate edges are program edges, then the progftam ebglngs to the minimal
delay set and a fence must be placed betweandv to prevent reordering. The path together with the program édge
forms acritical cycle

Concurrency information can be used to increase the precision of cycle detection. As shown in afparudixflict edge
in which the corresponding memory accesses cannot run concurrently can be ignored.

2.2 Titanium

Titanium is a dialect of Java, but does not use the Java Virtual Machine model. Instead, the end target is assembly code. For

portability, Titanium is first translated into C and then compiled into an executable. In addition to generating C code to run

on each processor, the compiler generates calls to a runtime layer based on GHSalkghtweight communication layer

that exploits hardware support for direct remote reads and writes when possible. Titanium runs on a wide range of platforms

including uniprocessors, shared memory machines, distributed-memory clusters of uniprocessors or SMPs (CLUMPS), and a

number of specific supercomputer architectures (Cray X1, Cray T3E, SGI Altix, IBM SP, Origin 2000, and NEC SX®6).
Titanium is asingle program, multiple datéSPMD) language, which means that all threads execute the same code image.

In addition, Titanium has the following unique features that our analysis relies on:

1. A call to abarrier in Titanium causes the calling thread to wait until all other threads have executed théestumé



instance of the barrier call. The code in the example below is not allowed because not all the threads will hit the same
textual barrier. The Titanium compiler checks statically that all the barriers are lined up cordgctly [

if (Ti.thisProc() % 2 == 0)
Ti.barrier(); // even ID threads
else
Ti.barrier(); // odd ID threads

Since a barrier forces threads to wait until all threads have reached the barrier, it prevents code before and after the
barrier from running concurrently.

2. A single-valuedexpression evaluates to the same value for all threads. With programmer annotation and compiler
inference, the Titanium compiler statically determines which expressions are single. Single-valued expressions are used
to ensure that barriers line up: the above code is erroneousT ititisProc() % 2 == is not single-valued.

Titanium’s memory consistency model is defined in the language specificalioHgre are some informal properties of
the Titanium model.

1. Locally sequentially consistent:All reads and writes issued by a given thread must appear to that thread to occur in
exactly the order specified. Thus, dependencies within a thread must be observed.

2. Globally consistent at synchronization eventsAt a global synchronization event such as a barrier, all threads must
agree on the values of all the variables. At a non-global synchronization event, such as entry into a critical section, the
thread must see all previous updates made using that synchronization event.

Titanium’s memory consistency semantics are thuslaxed model providing few ordering guarantees. In order to
guarantee sequential consistency, memory fences must be inserted into a program to enforce order.

2.2.1 Intermediate Language

In this paper, we will operate on amtermediate languagthat allows the full semantics of Titanium but is simpler to analyze.
In particular, we rewrite dynamic dispatches as conditionals. Axcllb() , wherex is of typeA in the hierarchy

class A {
void foo() { ... }
}

class B extends A {
void foo() { ... }

}

gets rewritten to

if ([type of x is A])
x.A$foo();

else if (ftype of x is B])
x.B$foo();

We also rewriteswitch  statements and conditional expressiols ] as conditionalf ... else ... statements.

2.2.2 Control Flow Graphs

A control flow graphrepresents the flow of execution in a program. Nodes in the graph correspond to expressions in the
program, and a directed edge from one expression to another occurs when the target can execute immediately after the source.
The Titanium compiler produces an intraprocedural control flow graph for each method. We modify each of these graphs

to model transfer of control between methods by splitting each method call node into a call node and a return node. The
incoming edges of the original node are attached to the call node, and the outgoing edges to the return node. An edge is added
from the call node to the target method’s entry node, and from the target method’s exit node to the return node2 Figure
illustrates this procedure.
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Figure 2: Construction of the interprocedural control flow graph of a program from the individual method flow graphs.

2.3 Program Analysis Correctness

Program analyses generally approximate the set of events that can actually occur during an execution. The concurrency
analysis that we present isyeay analysisin that it finds events that may, but are not guaranteed to, occur in practice. Such an
analysis issoundif it finds all events that may occur, ampdeciseif it only finds events that will actually occur. In general, an
analysis is considered correct if it is sound.

3 Concurrency Analysis

Concurrency information can be used to reduce the set of conflict edges for a program, and the resulting number of fences
required to enforce sequential consistency. We present an algorithm for computing pairs of memory accesses that can run
concurrently in a Titanium program, using barriers and single-valued expressions. Our algorithm makes use of the following
definitions:

Definition 3.1 (Single Conditional). A single conditionals a conditional guarded by a single-valued expression.

Since a single-valued expression evaluates to the same result on all threads, every thread is guaranteed to take the same
branch of a single conditional. A single conditional thus may contain a barrier, since all threads are guaranteed to execute it,
while a non-single conditional may not.

Definition 3.2 (Cross Edge).A cross edgén a control flow graph connects the end of the first branch of a conditional to the
start of the second branch.

Cross edges do not provide any control flow information, since the second branch of a conditional does not execute
immediately after the first branch. They are, however, useful for determining concurrency information, as shown in theorem
3.4

In order to determine the set of concurrent accesses in a program, we construct a graph repreSeotatierprogram
P as follows:

Algorithm 3.3 (P : progran).
1. LetG be the interprocedural control flow graph®Bf as described i§2.2.2
2. For each conditional in P {
3. If Cis not a single conditional:
4. Add a cross edge far' in G.
5. } // End for (2).
6. ReturnG.

Algorithm 3.3runs in time Gn), wheren is the number of statements and expressionB,isince it takes Q) time to
construct the control flow graph of a program. The control flow graph is very sparse, containing(enlgdges, since the
number of expressions that can execute immediately after a particular expressioonstant. Since at mostcross edges
are added to the control flow graph, the resulting gré&gh also of size Qn).

The graph allows us to determine the set of concurrent accesses as follows:



B1: Ti.barrier();

L1: int i = O;

L2: int j = 1;

L3: if (Ti.thisProc() < 5)

L4: | += Ti.thisProc();

L5: i (Ti.numProcs() >= 1) { COdglphase 1,12 Lssﬁer[]: nlt_% L8, L9
L6: i = Ti.numProcs(); 8o L7’L9, e
B2: Ti.barrier(); B3 C A’

L7: j += 1

L8: } else {j += 1; }

L9: i = broadcast j from O;

B3: Ti.barrier();

LA: j += 1i;

Figure 3: The set of code phases for an example program.

Theorem 3.4. Two memory accessasndb in P can run concurrently only if one is reachable from the otheGialong a
path that does not pass through a barrier.

In order to prove theorer®.4, we require the following definition:

Definition 3.5 (Code Phase).For each barrier in a program, itede phasés the set of statements that can execute after the
barrier but before hitting another barrier, including itself

Figure 3 shows the code phases of an example program. Since each code phase is preceded by a barrier, and each
thread must execute the same sequence of barriers, each thread executes the same sequence of code phases. This implies tf
following:

Lemma 3.6. Two memory accessasndb in P can run concurrently only if they are in the same code phase.

Proof. Suppose: andb are not in the same code phase. Then they are preceded by two different gy r@erd5,. Consider
arbitrary occurrences af andb in any program execution in which they both occur. (If one or both don't occur, then they
trivially don’t run concurrently.) Since every thread executes the same set of barriers &jthezceded3, or B, precedes
B,. Sincea occurs afteB, but before any other barrier, ahaccurs after3;, but before any other barrier, this implies that
andb are separated by a barrier. Thusgndb cannot run concurrently, since a barrier prevents the code before it and after it
from executing concurrently.

O

Now we can prove theoref4:

Proof of Theoren3.4. Suppose: andb can run concurrently. By lemnt&6, « andb must be in the same code ph&aseBy
definition 3.5, there must be program flows from the initial barrigg to a andb that do not go through barriers. There are
three cases:

Case 1:There is a program flow fromto b in S. This means the control flow graph of the program must contain a path from
the node fom to the node fob that does not pass through a barrier. SiGcis a super-graph of the control flow graph, it also
contains such a path, $as reachable frona without passing through a barrier.

Case 2:There is a program flow frortito « in S. This case is analogous to the one above.
Case 3: There is no program flow from eitherto b or b to a in .S. Since there is a flow fronBg to a« and from Bs to

b, a andb must be in different branches of a conditiodal Since only one branch of a single conditional can imust be
a non-single conditional in order farandb to run concurrently. Without loss of generality, tebe in the first branch, and

1A statement can be in multiple code phases, as is the case for a statement in a method called from multiple contexts.
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Figure 4: Interprocedural control flow graph for two calls to the same function. The dashed path is infeasiblepg)nce
returns to a different context than the one from which it was called. The infeasible path corresponds to the unbalanced string

g

be in the second. Sing€ is non-single, it cannot contain a barrier, and the end of the first branch is reachébfeoim «
without hitting a barrier. Similarlyb is reachable from the beginning of the second branch without executing a barrier. Since
G contains a cross edge from the first brancld’db the second, this implies that there is a path feota b in G that does not

pass through a barrier. O

The following algorithm then determines the set of all concurrent accessesr :

Algorithm 3.7 (P : progran).
1. Letconcur « 0.
2. LetG « Algorithm 3.3(P).
3. For each barrieB in P:
4. DeleteB from G.
5. For each accessin P {
6. Do adepth first search d@r starting froma.
7. For each accesgreached in the search:
8. Insert(a, b) into concur.
9. } // End for (5).

10. Returrconcur.

By theorem3.4, algorithm3.7 correctly computes the set of all concurrent accesses. The running time of algdritiem
dominated by the depth first searches, each of which takes tne, sinceGG has at most nodes and @) edges. At most
m searches occur, where is the number of memory accessedAnso the algorithm runs in time @n).

4 Feasible Paths

Algorithm 3.7 computes an over-approximation of the set of concurrent accesses. In particular, due to the nature of the
interprocedural control flow graph constructed 2.2 the depth first searches in algoritt81¥ can followinfeasible paths
paths that cannot actually occur in practice. Fighiiustrates such a path, in which a method is entered from one context
and exits into another.

In order to prevent infeasible paths, we label each method call edge and corresponding return edge with matching paren-
theses, as shown in figude Each path then corresponds to a string of parentheses composed of the labels of the edges in the
path. The following determines if a path is feasible:

Theorem 4.1 ([L6]). A path is infeasible if, in its corresponding string, an open parenthesis is closed by a non-matching
parenthesis.

It is not necessary that a path’s string be balanced in order for it to be feasible. In particular, two types of unbalanced
strings are allowed by theorenl:
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Figure 5: Feasible paths that correspond to unbalanced strings. The dashed path on the left corresponds to a method call that
has not yet returned, and the one on the right corresponds to a path that starts in a method call that returns.

e A path with unclosed parentheses. Such a path corresponds to method calls that have not yet finished, as shown in the
left side of figureb.

¢ A path with close parentheses that follow a balanced prefix. Such a string is allowed since a path may start in the middle
of a method call and corresponds to that method call returning, as shown in the right side db.figure

Determining the set of nodes reach&hlsing a feasible path is the equivalent of performing context-free language (CFL)
reachability on a graph using the grammar

S — LR

L - SM|S)]|ce
R— MR| (o«R | €
M — (WMo | MM | e

for each pair of matching parentheggsand),. CFL reachability can be performed in cubic time for an arbitrary grammar
[16].

Instead of performing generic CFL reachability, we modify the input g@@ind the standard depth first search to obtain
a fast algorithm for finding nodes reachable through a feasible path.

At first glance, it appears that a method must be revisited in every possible context in which it is called, since the context
determines which paths can be followed. However, the following implies that it is only necessary to visit the method in a
single context:

Theorem 4.2. Assuming nothing about the arguments, the set of expressions that can be executed in a call to & imethod
the same regardless of the context in wHich called.

Proof by Induction.

Base caseThe execution off makes no method calls. Then the call tacan execute exactly those expressions that are
contained inf and reachable from its entry regardless of the calling context.

Inductive stepThe execution off makes method calls. By the inductive hypoth&sesch method call irf can transitively
execute the same expressions independent of the context. In addition, the £alhmoexecute exactly those expressions
that are contained i and reachable from its entry. The call fahus can execute the same set of expressions regardless of
context. O

Since the set of expressions that can be executed in a method call is the same regardless of context, the set of nodes
reachable along a feasible path in a program’s control flow graph is also independent of the context of a method call, with two
exceptions:

2In this section, we make no distinction betwaeachableandreachable without hitting a barrierThe latter reduces to the former if all barrier nodes
are removed from each control flow graph.

3In order for induction be be applicable, the function call deptli inust be finite. It is reasonable to assume that this is always the case, since in practice,
an infinite function call depth is impossible due to finite memory limits.



e The nodes reachable following the method call. If the method call can complete, then the nodes after a method call are
reachable from a point before the method call.

e When no context exists, such as in a search that starts from a point within a nfeffiben all nodes that are reachable
following any method call tg are reachable.

The second case above can easily be handled by visiting a node twice: @wadoontext, and again in no context. The
first case, however, requires adding bypass edges to the control flow graph.

4.1 Bypass Edges

Recall that the interprocedural control flow graph was constructed by splitting a method call into a call node and a return node.
An edge was then added from the call node to the target method'’s entry, and another from the target’s exit to the return node.
If the target’s exit is reachable from the target’s entry, then it is always safe to lgobas edgéhat connects the call node
directly to the return node.

Computing whether or not a method’s exit is reachable from its entry is not trivial, since it requires knowing whether or
not the exits of each of the methods that it calls are reachable from their entries. The following algorithm does so, operating
over the intraprocedural control flow graphs of each method:

Algorithm 4.3 (P : program,G+, . .., Gy : intraprocedural flow graph

1. Letchange « true.
2. Letmarked « 0.
3. Whilechange = true {
4. change «— false.
5. Setvisited(u) < false for all nodesuin Gy, ..., G.
6. For each method in P {
7 If f & marked andCanReach(entry(f), exit(f), Gy, marked) {
8 marked «— marked U {f}.
9. change «— true.

10. } I ENd if (7).

11. }// End for (6).

12. } // End while (3).

13. Returnmarked.

14. Procedur€anReach(u,v : vertex,G : graph,marked : method set: boolean:
15. Setwisited(u) « true.

16. Ifu=wv:

17. Returnérue.

18. Else Ifu is a method call to functiop andg ¢ marked:

19. Returnfalse.

20. Foreach edge:, w) € G {

21. If visited(w) = false andCanReach(w, v, G, marked):
22. Returnirue.

23. } /I End for (20).

24. Returnfalse.

Algorithm 4.3 continually iterates over all the method in a program, marking those that can complete through an execution
path that only calls previously marked methods, until no more methods can be marked. In the first iteration of loop 3, it only
marks those methods that can complete without making any calls, or equivalently, those methods that can complete using only
a single stack frame. In the second iteration, it only marks those that can complete by only calling methods that don’t need to
make any calls, or equivalently, those methods that can complete using only two stack frames. In general, a method is marked
in thesth iteration if it can complete using and no less thai) stack frames

“Note that just because a method only requires a fixed number of stack frames doesn’t mean that it can complete. A method may contain an infinite loop,
preventing it from ever completing. Algorithth3does not mark such methods.



Theorem 4.4. Algorithm4.3marks all methods that can complete using any number of stack frames.

Proof. Suppose there are some methods that can complete but that algb:&tioes not find. Out of these methods, faie
the one that can complete with the minimum number of stack frgmbésorder for f to requirej frames to complete, there
must be an execution path througitthat only calls methods that require at mgst 1 frames to complete. These methods
must all be marked, sincé was the minimum method that wasn't marked. Sirfceequires; frames, at least one of the
methods called must requife— 1 frames and thus was marked in tfje— 1)th iteration of loop 3 above. Loop 3 will thus
iterate at least once more, and sinftaow has a path in which it only calls marked methofisyill be marked, which is a
contradiction. Thus algorithm.3 marks all methods that can complete. O

Algorithm 4.3requires quadratic time to complete in the worst case. Each iteration of loop 3 visits at muts. Only
k iterations are necessary, whére the number of methods in the program, since at least one method is marked in all but the
last iteration of the loop. The total running time is thug:®@) in the worst case. In practice, much fewer thaiterations are
necessafy and the running time is closer to(@).

After computing the set of methods that can complete, it is straightforward to add bypass edges to the interprocedural
control flow graphG: for each method cal, it the target oi- can complete, add an edge frefto its corresponding method
returnr. This can be done in time@).

4.2 Feasible Search

Now that bypass edges have been added to the graplmodified depth first search can be used to find feasible paths. The
algorithm is as follows:

Algorithm 4.5 (v : vertex,G : graph).
1. Lets « 0.
2. Call FeasibleDFS(v, G, s).

3. Proceduré’easible DFS(v : vertex,G : graph,s : stack:
4. Ifs=0{
5. If no_context_mark(v) return.
6 Setno_context_mark(v) «— true.
7. } I Endif (4).
8. Else{
9. If context_mark(v) return.
10. Setcontext_mark(v) — true.
11. } // End else (8).
12. Foreachedg@,u) € G {
13. Lets’ « s.
14, If label(v,u) is a close symbol and # 0 {

15. Leto < pop(s’).

16. If label (v, u) does not match:

17. Skip to next iteration of 12.

18.  }//Endif (14).

19. Else iflabel (v, u) is an open symbol:
20. Pushabel(v, u) ontos’.

21. CallFeasible DFS(u, G, s).
22. } I/ End for (12).

Theorem 4.6. Algorithm4.5does not follow any infeasible paths.

Proof. Consider an arbitrary infeasible path By theorem4.1, the labels along must form a string in which an open
parenthesig,, is closed by a non-matching parenthegjs Consider the execution of algorithi5 on this path. An open

5Even on the largest example we trieg45,000 lines of user and library code, 1226 methods), algorti@required only five iterations to converge.



parenthesis is pushed onto the the stawken it is encountered, so before any close parentheses are encountered, the top of

the stack is the most recently opened parenthesis. A close parenthesis causes the top of the stack to be popped, so in general,
the top of the stack is the most recently opened parenthesis that has not yet been closed. Nowscahsidéine labe) s is

reached. The symbdgl, must be on the top of, since)g closes it. But algorithna.5 checks the top of the stack against the

newly encountered label, and since they don’t match, it does not proceedpalong O

SinceG contains bypass edges and algori#Bivisits each node both in some context and in no context, it finds all nodes
that can be reachable in a feasible path from the source. Since it visits each node at most twice, it runs(n)time O

4.3 Feasible Concurrent Accesses
We can now modify algorithr8.7to find only concurrent accesses that are feasible.

Algorithm 4.7 (P : progran).
1. LetG « Algorithm 3.3(P).

2. For each method in P {
3. Construct the intraprocedural flow gra@gh of f.
4. For each barrieB in f {
5. DeleteB from G.
6 DeleteB from G.
7. }//End for (4).
8. } // End for (2).

9. Letbypass « Algorithm 4.3(P, Gy, ..., Gy).
10. For each method call and return pair in P {
11. Ifthetargetf of ¢, r is in bypass:
12. Add an edgéc, r) to G.
13. } // End for (10).
14. For each accessin P {
15. Use Algorithm4.5to do a search o6 starting froma.
16. For each accesgeached in the search:
17. Insert(a, b) into concur.
18. } // End for (14).
19. Returrconcur.

The setup of algorithm.7 calls algorithm4.3, so it takes Qkn) time. The searches each take timg:Q) and at mostn
are done, so the total running time i$4@ + mn).

5 Evaluation

As discussed previously, enforcing sequential consistency can result in a large cost to performance. We evaluate the effective-
ness of our algorithm by measuring the number of fences generated at compile time and executed at runtime.

5.1 Benchmarks

We use the following benchmarks to evaluate our analysis:
e gas (8841 lines): Hyperbolic solver for a gas dynamics problem in computational fluid dynamics.

e gsrb (1090 lines): Nearest neighbor computation on a regular mesh using red-black Gauss-Seidel operator. This
computational kernel is often used within multigrid algorithms or other solvers.

e |lu-fact (420 lines): Dense linear algebra.

e pps (3673 lines) : Poisson equation solver.

10
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e spmv (1493 lines): Sparse matrix-vector multiply.

The line counts for the above benchmarks underestimate the amount of code actually analyzed, since all reachable code in the
37,000 line Titanium and Java 1.0 libraries is also processed.

5.2 Fence Counts

In order to enforce sequential consistency, we insert memory fences where required in an input program. These fences can be
expensive to execute at runtime, potentially costing an entire roundtrip latency for a remote access. The fences also prevent
code motion, so they directly preclude many optimizations from being perforb@difhe static number of fences generated
provides a rough estimate for the amount of optimization prevented, but the affected code may actually be unreachable at
runtime or may not be significant to the running time of a program. We therefore additionally measure the dynamic number
of fences hit at runtime, which more closely estimates the performance impact of the inserted fences.

Figure6 shows the number of fences generated for each program using different levels of analysis:

e naive: fences are inserted around every heap access that has a conflict

cycle fences are inserted around every heap access that has a conflict edge that occurs ig2a tyile (

concur: same agycle, but with only those conflict edges found by our basic concurrency ana@Bis (

feasible same agycle but with only those conflict edges found by our feasible paths concurrency ang#)sis (

Figure7 shows the resulting dynamic counts at runtime.

The results show that our analysis, at its highest precision, is very effective in reducing the numbers of both static and
dynamic fences. In three of the benchmarks, nearly all runtime fences are eliminated, and in another, the number of fences hit
is reduced by a large fraction. In only one benchmgds , is our analysis ineffective.

It is interesting to note that eliminating infeasible paths is effective in three of the four benchmarks for which our analysis
is useful, and that cycle detection on its own has very little effect on the number of fences in any benchmark. It should also
be noted that most of the remaining fences are due to imprecision in our supporting analyses, such as the inability of our alias
analysis to distinguish array indices. Even so, we believe our analysis reduces the number of fences enough to nearly match
the performance of Titanium'’s relaxed model.

6 Related Work

There is an extensive literature on compiler and runtime optimizations for parallel machines, including automatically par-
allelized programs and optimization of data parallel programs, which in their pure form have a sequential semantics. The
memory consistency issue arises in a language with an explicitly parallel semantics and some type of shared address space.
The class of such languages includes Java, UPC, Titanium, and Co-Array Fortran, some of the languages proposed in the
recent HPCS effort, as well as shared memory language extensions such as POSIX Threads and Denla>14].

Shasha and Snir provided some of the foundational work in enforcing sequential consistency from a compiler level when
they introduced the idea a@fycle detectior17]. However, that work was designed for general MIMD parallelism, limited to
straight-line code, and was not designed as a practical static analysis. Midkiff and Padua outlined some of the implementation
techniques that could violate sequential consistency and developed some static analysis ideas, including a concurrent static
single assignment form in a paper by Lee et@l [In more recent work as part of the Pensieve project, Lee and Padua
exploit properties of fences and synchronization to reduce the number of delays in cycle detEdtiofhe project also
includes a Java compiler that takes a memory model as id@it Pur work differs from theirs in two primary ways: 1)
we take advantage of some of the synchronization paradigms, such as barriers, that exist in SPMD programs, and 2) our
machine targets include distributed memory architectures where the cost of a memory fence is essentially that of a round-trip
communication across the network.

The earliest implementation work on cycle detection was by Krishnamurthy and Yelick for the restricted case of SPMD
programs T]. That was done in a simplified subset of the Split-C language and introduced a polynomial time algorithm for
cycle detection in SPMD programs. They also used synchronization analysis to reduce the number of fences, but their source
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language did not have the restriction that barriers must match textually and they did not take advantage of single conditionals.
At compile time, they generate two versions of the code, one assuming the barriers line up and the other one not. At runtime,
they switch between the two versions depending on how the barriers are executed. Our approach does not suffer the same
runtime overhead and code bloat that exists in theirs.

Several other parallel analyses have been developed that do not directly address memory consistency issues. Jeremiassen
and Eggers develop a static analysis for barrier synchroniza]dar[non-textual barriers. With textual barriers, our analysis
is more precise in finding memory accesses that cannot run concurrently. Duesterwald and Soffa use data flow analysis to
compute the happened-before and happened-after relation for program statements. The information is used in detecting data
races B]. Masticola and Ryder develop non-concurrency analysis to identify pairs of statements in a parallel program that
cannot run concurrently. The results are used for debugging and optimizb®on [

7 Conclusion

As shared memory multiprocessors have become more common, the issue of which memory consistency model to use has
gained importance. This paper provides evidence that, with the proper set of compiler analyses, the intuitive model of sequen-
tial consistency can be provided without sacrificing much performance.

The contribution of this paper is a concurrency analysis that can be used to increase the precision of the existing cycle
detection algorithm for the Titanium language. We presented both a basic analysis and a more complex one that only explores
those execution paths that can occur in practice. We experimented with several benchmark programs and showed that the
analyses were able to eliminate a large fraction, if not most, of the fences required to guarantee sequential consistency in all
but one example.

While the number of fences generated and executed in a program provides some measure of the cost of sequential consis-
tency, it remains to be seen to what extent these fences affect a program’s running time. In particular, the fences may prevent
certain optimizations that result in large performance gains. In the future, we plan to explore the effects of the remaining
fences on important communication optimizations to determine if the cost is indeed negligible.
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A Concurrency and Conflicts

Suppose two memory accesseandb conflict. We show that ift: andb can never run concurrently, it is possible to remove
the resulting conflict edge since it can never take part in a cycle that violates sequential consistency.

Theorem A.1. Letaandb be two memory accesses in a program, &d cycle containing the conflict edga,b) If aand
b cannot run concurrently, then reorderirsgwith another acce§sdoes not violate sequential consistency with respect to the
accesses i in any execution of the program.

Proof. We prove this for a cycle consisting of four accesses in two threads whisréhe first access in thread 1 ahds

the second access in thread 2, as in figu(ghe proof can be generalized to arbitrary cycles). tendy be the other two
conflicting accesses i@¥, in thread 1 and 2 respectively. Consider an arbitrary execution in which the accegésesdnr.

Sincea andb cannot run concurrently, eithermust complete beforeor b must complete before.

Case 1:a occurs beforeh. Sequential consistency can only be violated ifees the effect af, but b does not see the

effect ofa. In all other cases, execution corresponds to a valid sequentially consistent ordering, as shown in the table in figure
1. But sincea occurs beforé, b always sees the effect af so sequential consistency is preserved regardless of the order of

a andz.

Case 2: b occurs beforea. In order to enforce that occur beforea, there must be a synchronization point betwéen
anda in the execution stream of each thread. Since accesses aren’t moved across such puistsyccur before it and
must occur after it. This means thamust complete before and therefore does not see its effect. Sipaoes not see the
effect of x andb does not see the effect of the execution is sequentially consistent independent of the ordeardz. O

6We assume that accesses are never moved across synchronization points.
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