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1 Introduction

As the limits of uniprocessor machines are being approached, application writers and system vendors alike have been turning
to multiprocessor machines for performance. The major CPU manufacturers all have recently or will shortly introduce chips
with multiple cores. Such systems, along with traditional multiprocessor machines, allow all processors to simultaneously
access shared memory. This requires amemory consistency modelto be defined, which determines in what order the memory
updates on one processor appear to the other processors.

The memory consistency model can be specified at the level of a programming language, which is crucial for languages
that can be used on a wide variety of hardware. Language designers have traditionally been very reluctant to use the simplest
model,sequential consistency, in which memory operations appear to occur in the order specified in the original program. This
reluctance is due to a perception that such a model incurs prohibitive performance penalties, since it prevents reordering of
operations and requires memory fences to be inserted in order to force the underlying hardware to respect ordering. Language
designers instead have used complicated models [15, 19] that aren’t well-understood by programmers, or worse, ill-defined
[8]. This is very problematic for programmers, since many common techniques such as spin-locks and presence bits depend
on the details of the memory consistency model in order to function correctly.

Various techniques have been proposed in order to decrease the cost of sequential consistency. In this paper, we present
an interprocedural concurrency analysis for the Titanium programming language that can increase the precision of one such
technique,cycle detection. We present both a basic algorithm and a modified one that only considers program execution paths
that can occur in practice and prove that both algorithms are correct. We then apply these algorithms to a set of benchmarks,
showing that they are effective in reducing the number of fences required to enforce sequential consistency in most of the
benchmarks.

2 Background

2.1 Sequential Consistency

For a sequential program, compiler and hardware transformations must not violate data dependencies: the order of all pairs of
conflicting accesses must be preserved. Two memory accessesconflict if they access the same memory location and at least
one of them is a write. The execution model for parallel programs is more complicated, since each thread executes its own
portion of the program asynchronously and there is no predetermined ordering among accesses issued by different threads to
shared memory locations. A memory consistency model defines the memory semantics and restricts the possible execution
order of memory operations.

Among the various models,sequential consistencyis the most intuitive for the programmer. The sequential consistency
model states that a parallel execution must behave as if it were an interleaving of the serial executions by individual threads,
with each individual execution sequence preserving the program order [17]. For example, for the accesses{x, y, a, b} in figure
1, the behavior in whichb reads the value 1 andy reads the value 0 is not sequentially consistent, since it does not reflect an
interleaving in which the order of the individual execution sequences is preserved.
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y sees effect ofx b sees effect ofa possible sequential order
yes yes a⇒ x⇒ y ⇒ b
yes no none
no yes a⇒ y ⇒ b⇒ x
no no y ⇒ b⇒ a⇒ x

Figure 1: A cycle consisting of four accesses in two threads. The solid edges correspond to order in the execution stream of
each thread, and the dashed edges are conflicts. Of the four possible results of thread 1 visible to thread 2, the second is illegal
since it does not correspond to an overall execution sequence in which operations are not reordered within a thread.

An easy way to enforce sequential consistency is to insert memory fences after each shared memory access. This forbids
all reordering of shared memory operations, which prevents optimizations such as prefetching and code motion, resulting in
an unacceptable performance penalty. Various techniques can be used to minimize the number of fences, ordelay set, required
to enforce sequential consistency [17, 7, 11].

2.1.1 Cycle Detection

Computing the minimal delay set for an arbitrary parallel program is an intractable NP-hard problem [7]. Krishnamurthy and
Yelick proposed a polynomial time algorithm based oncycle detectionfor analyzing SPMD programs [7] such as Titanium.
The analysis uses a graph where the nodes represent shared memory accesses. There are two types of edges in the graph:
program edgesandconflict edges. Program edges reflect the program order: there is a directed program edge fromu to v if
u can execute beforev. Conflict edges are undirected edges between accesses that conflict: there is a conflict edge betweenu
andv if u andv can access the same memory location and at least one of them is a write.

The goal of cycle detection is to check each program edge to see if it needs a fence to enforce its order. Given the program
edge(u, v), if there is no local dependency betweenu andv, v could execute beforeu. If this reordering is observable by
another thread, then sequential consistency is violated. In that case, a fence must be inserted betweenu andv to ensure that
u always executes beforev. Figure1 gives one example of this. There is no local dependency on T1, but if the two writes on
T1 were reordered, then the following execution order would be possible:x⇒ y ⇒ b⇒ a. This results in(y, b) reading the
values(1, 0), which means that the reordering on T1 is observable on T2. A fence must be placed betweena andx to prevent
such reordering.

Kirshnamurthy and Yelick [7] show that given a program edge(u, v), if there is a path fromv to u where the first and last
edge are conflict edges, and the intermediate edges are program edges, then the program edge(u, v) belongs to the minimal
delay set and a fence must be placed betweenu andv to prevent reordering. The path together with the program edge(u, v)
forms acritical cycle.

Concurrency information can be used to increase the precision of cycle detection. As shown in appendixA, a conflict edge
in which the corresponding memory accesses cannot run concurrently can be ignored.

2.2 Titanium

Titanium is a dialect of Java, but does not use the Java Virtual Machine model. Instead, the end target is assembly code. For
portability, Titanium is first translated into C and then compiled into an executable. In addition to generating C code to run
on each processor, the compiler generates calls to a runtime layer based on GASNet [1], a lightweight communication layer
that exploits hardware support for direct remote reads and writes when possible. Titanium runs on a wide range of platforms
including uniprocessors, shared memory machines, distributed-memory clusters of uniprocessors or SMPs (CLUMPS), and a
number of specific supercomputer architectures (Cray X1, Cray T3E, SGI Altix, IBM SP, Origin 2000, and NEC SX6).

Titanium is asingle program, multiple data(SPMD) language, which means that all threads execute the same code image.
In addition, Titanium has the following unique features that our analysis relies on:

1. A call to abarrier in Titanium causes the calling thread to wait until all other threads have executed the sametextual
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instance of the barrier call. The code in the example below is not allowed because not all the threads will hit the same
textual barrier. The Titanium compiler checks statically that all the barriers are lined up correctly [4].

if (Ti.thisProc() % 2 == 0)
Ti.barrier(); // even ID threads

else
Ti.barrier(); // odd ID threads

Since a barrier forces threads to wait until all threads have reached the barrier, it prevents code before and after the
barrier from running concurrently.

2. A single-valuedexpression evaluates to the same value for all threads. With programmer annotation and compiler
inference, the Titanium compiler statically determines which expressions are single. Single-valued expressions are used
to ensure that barriers line up: the above code is erroneous sinceTi.thisProc() % 2 == 0 is not single-valued.

Titanium’s memory consistency model is defined in the language specification [5]. Here are some informal properties of
the Titanium model.

1. Locally sequentially consistent:All reads and writes issued by a given thread must appear to that thread to occur in
exactly the order specified. Thus, dependencies within a thread must be observed.

2. Globally consistent at synchronization events:At a global synchronization event such as a barrier, all threads must
agree on the values of all the variables. At a non-global synchronization event, such as entry into a critical section, the
thread must see all previous updates made using that synchronization event.

Titanium’s memory consistency semantics are thus arelaxed model, providing few ordering guarantees. In order to
guarantee sequential consistency, memory fences must be inserted into a program to enforce order.

2.2.1 Intermediate Language

In this paper, we will operate on anintermediate languagethat allows the full semantics of Titanium but is simpler to analyze.
In particular, we rewrite dynamic dispatches as conditionals. A callx.foo() , wherex is of typeA in the hierarchy

class A {
void foo() { ... }

}

class B extends A {
void foo() { ... }

}

gets rewritten to

if ([type of x is A])
x.A$foo();

else if ([type of x is B])
x.B$foo();

We also rewriteswitch statements and conditional expressions (?/: ) as conditionalif ... else ... statements.

2.2.2 Control Flow Graphs

A control flow graphrepresents the flow of execution in a program. Nodes in the graph correspond to expressions in the
program, and a directed edge from one expression to another occurs when the target can execute immediately after the source.

The Titanium compiler produces an intraprocedural control flow graph for each method. We modify each of these graphs
to model transfer of control between methods by splitting each method call node into a call node and a return node. The
incoming edges of the original node are attached to the call node, and the outgoing edges to the return node. An edge is added
from the call node to the target method’s entry node, and from the target method’s exit node to the return node. Figure2
illustrates this procedure.
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Figure 2: Construction of the interprocedural control flow graph of a program from the individual method flow graphs.

2.3 Program Analysis Correctness

Program analyses generally approximate the set of events that can actually occur during an execution. The concurrency
analysis that we present is amay analysis, in that it finds events that may, but are not guaranteed to, occur in practice. Such an
analysis issoundif it finds all events that may occur, andpreciseif it only finds events that will actually occur. In general, an
analysis is considered correct if it is sound.

3 Concurrency Analysis

Concurrency information can be used to reduce the set of conflict edges for a program, and the resulting number of fences
required to enforce sequential consistency. We present an algorithm for computing pairs of memory accesses that can run
concurrently in a Titanium program, using barriers and single-valued expressions. Our algorithm makes use of the following
definitions:

Definition 3.1 (Single Conditional). A single conditionalis a conditional guarded by a single-valued expression.

Since a single-valued expression evaluates to the same result on all threads, every thread is guaranteed to take the same
branch of a single conditional. A single conditional thus may contain a barrier, since all threads are guaranteed to execute it,
while a non-single conditional may not.

Definition 3.2 (Cross Edge).A cross edgein a control flow graph connects the end of the first branch of a conditional to the
start of the second branch.

Cross edges do not provide any control flow information, since the second branch of a conditional does not execute
immediately after the first branch. They are, however, useful for determining concurrency information, as shown in theorem
3.4.

In order to determine the set of concurrent accesses in a program, we construct a graph representationG of the program
P as follows:

Algorithm 3.3 (P : program).
1. LetG be the interprocedural control flow graph ofP , as described in§2.2.2.
2. For each conditionalC in P {
3. If C is not a single conditional:
4. Add a cross edge forC in G.
5. } // End for (2).
6. ReturnG.

Algorithm 3.3 runs in time O(n), wheren is the number of statements and expressions inP , since it takes O(n) time to
construct the control flow graph of a program. The control flow graph is very sparse, containing only O(n) edges, since the
number of expressions that can execute immediately after a particular expressione is constant. Since at mostn cross edges
are added to the control flow graph, the resulting graphG is also of size O(n).

The graphG allows us to determine the set of concurrent accesses as follows:
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B1: Ti.barrier();
L1: int i = 0;
L2: int j = 1;
L3: if (Ti.thisProc() < 5)
L4: j += Ti.thisProc();
L5: if (Ti.numProcs() >= 1) {
L6: i = Ti.numProcs();
B2: Ti.barrier();
L7: j += i;
L8: } else { j += 1; }
L9: i = broadcast j from 0;
B3: Ti.barrier();
LA: j += i;

Code Phase Statements
B1 L1 , L2 , L3 , L4 , L5 , L6 , L8 , L9
B2 L7 , L9
B3 LA

Figure 3: The set of code phases for an example program.

Theorem 3.4. Two memory accessesa andb in P can run concurrently only if one is reachable from the other inG along a
path that does not pass through a barrier.

In order to prove theorem3.4, we require the following definition:

Definition 3.5 (Code Phase).For each barrier in a program, itscode phaseis the set of statements that can execute after the
barrier but before hitting another barrier, including itself1.

Figure 3 shows the code phases of an example program. Since each code phase is preceded by a barrier, and each
thread must execute the same sequence of barriers, each thread executes the same sequence of code phases. This implies the
following:

Lemma 3.6. Two memory accessesaandb in Pcan run concurrently only if they are in the same code phase.

Proof. Supposea andb are not in the same code phase. Then they are preceded by two different barriersBa andBb. Consider
arbitrary occurrences ofa andb in any program execution in which they both occur. (If one or both don’t occur, then they
trivially don’t run concurrently.) Since every thread executes the same set of barriers, eitherBa precedesBb or Bb precedes
Ba. Sincea occurs afterBa but before any other barrier, andb occurs afterBb but before any other barrier, this implies thata
andb are separated by a barrier. Thus,a andb cannot run concurrently, since a barrier prevents the code before it and after it
from executing concurrently.

Now we can prove theorem3.4:

Proof of Theorem3.4. Supposea andb can run concurrently. By lemma3.6, a andb must be in the same code phaseS. By
definition3.5, there must be program flows from the initial barrierBS to a andb that do not go through barriers. There are
three cases:

Case 1:There is a program flow froma to b in S. This means the control flow graph of the program must contain a path from
the node fora to the node forb that does not pass through a barrier. SinceG is a super-graph of the control flow graph, it also
contains such a path, sob is reachable froma without passing through a barrier.

Case 2:There is a program flow fromb to a in S. This case is analogous to the one above.

Case 3: There is no program flow from eithera to b or b to a in S. Since there is a flow fromBS to a and fromBS to
b, a andb must be in different branches of a conditionalC. Since only one branch of a single conditional can run,C must be
a non-single conditional in order fora andb to run concurrently. Without loss of generality, leta be in the first branch, andb

1A statement can be in multiple code phases, as is the case for a statement in a method called from multiple contexts.
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Figure 4: Interprocedural control flow graph for two calls to the same function. The dashed path is infeasible, sincefoo()
returns to a different context than the one from which it was called. The infeasible path corresponds to the unbalanced string
“ [}”.

be in the second. SinceC is non-single, it cannot contain a barrier, and the end of the first branch is reachable inG from a
without hitting a barrier. Similarly,b is reachable from the beginning of the second branch without executing a barrier. Since
G contains a cross edge from the first branch ofC to the second, this implies that there is a path froma to b in G that does not
pass through a barrier.

The following algorithm then determines the set of all concurrent accessesconcur:

Algorithm 3.7 (P : program).
1. Letconcur ← ∅.
2. LetG← Algorithm 3.3(P ).
3. For each barrierB in P :
4. DeleteB from G.
5. For each accessa in P {
6. Do a depth first search onG starting froma.
7. For each accessb reached in the search:
8. Insert(a, b) into concur.
9. } // End for (5).

10. Returnconcur.

By theorem3.4, algorithm3.7correctly computes the set of all concurrent accesses. The running time of algorithm3.7 is
dominated by the depth first searches, each of which takes O(n) time, sinceG has at mostn nodes and O(n) edges. At most
m searches occur, wherem is the number of memory accesses inP , so the algorithm runs in time O(mn).

4 Feasible Paths

Algorithm 3.7 computes an over-approximation of the set of concurrent accesses. In particular, due to the nature of the
interprocedural control flow graph constructed in§2.2.2, the depth first searches in algorithm3.7can follow infeasible paths,
paths that cannot actually occur in practice. Figure4 illustrates such a path, in which a method is entered from one context
and exits into another.

In order to prevent infeasible paths, we label each method call edge and corresponding return edge with matching paren-
theses, as shown in figure4. Each path then corresponds to a string of parentheses composed of the labels of the edges in the
path. The following determines if a path is feasible:

Theorem 4.1 ([16]). A path is infeasible if, in its corresponding string, an open parenthesis is closed by a non-matching
parenthesis.

It is not necessary that a path’s string be balanced in order for it to be feasible. In particular, two types of unbalanced
strings are allowed by theorem4.1:
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Figure 5: Feasible paths that correspond to unbalanced strings. The dashed path on the left corresponds to a method call that
has not yet returned, and the one on the right corresponds to a path that starts in a method call that returns.

• A path with unclosed parentheses. Such a path corresponds to method calls that have not yet finished, as shown in the
left side of figure5.

• A path with close parentheses that follow a balanced prefix. Such a string is allowed since a path may start in the middle
of a method call and corresponds to that method call returning, as shown in the right side of figure5.

Determining the set of nodes reachable2 using a feasible path is the equivalent of performing context-free language (CFL)
reachability on a graph using the grammar

S → L R

L → S M | S )α | ε

R → M R | (α R | ε

M → (α M )α | M M | ε,

for each pair of matching parentheses(α and)α. CFL reachability can be performed in cubic time for an arbitrary grammar
[16].

Instead of performing generic CFL reachability, we modify the input graphG and the standard depth first search to obtain
a fast algorithm for finding nodes reachable through a feasible path.

At first glance, it appears that a method must be revisited in every possible context in which it is called, since the context
determines which paths can be followed. However, the following implies that it is only necessary to visit the method in a
single context:

Theorem 4.2. Assuming nothing about the arguments, the set of expressions that can be executed in a call to a methodf is
the same regardless of the context in whichf is called.

Proof by Induction.
Base case:The execution off makes no method calls. Then the call tof can execute exactly those expressions that are
contained inf and reachable from its entry regardless of the calling context.
Inductive step:The execution off makes method calls. By the inductive hypothesis3, each method call inf can transitively
execute the same expressions independent of the context. In addition, the call tof can execute exactly those expressions
that are contained inf and reachable from its entry. The call tof thus can execute the same set of expressions regardless of
context.

Since the set of expressions that can be executed in a method call is the same regardless of context, the set of nodes
reachable along a feasible path in a program’s control flow graph is also independent of the context of a method call, with two
exceptions:

2In this section, we make no distinction betweenreachableandreachable without hitting a barrier. The latter reduces to the former if all barrier nodes
are removed from each control flow graph.

3In order for induction be be applicable, the function call depth inf must be finite. It is reasonable to assume that this is always the case, since in practice,
an infinite function call depth is impossible due to finite memory limits.
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• The nodes reachable following the method call. If the method call can complete, then the nodes after a method call are
reachable from a point before the method call.

• When no context exists, such as in a search that starts from a point within a methodf . Then all nodes that are reachable
following any method call tof are reachable.

The second case above can easily be handled by visiting a node twice: once insomecontext, and again in no context. The
first case, however, requires adding bypass edges to the control flow graph.

4.1 Bypass Edges

Recall that the interprocedural control flow graph was constructed by splitting a method call into a call node and a return node.
An edge was then added from the call node to the target method’s entry, and another from the target’s exit to the return node.
If the target’s exit is reachable from the target’s entry, then it is always safe to add abypass edgethat connects the call node
directly to the return node.

Computing whether or not a method’s exit is reachable from its entry is not trivial, since it requires knowing whether or
not the exits of each of the methods that it calls are reachable from their entries. The following algorithm does so, operating
over the intraprocedural control flow graphs of each method:

Algorithm 4.3 (P : program,G1, . . . , Gk : intraprocedural flow graph).
1. Letchange← true.
2. Letmarked← ∅.
3. Whilechange = true {
4. change← false.
5. Setvisited(u)← false for all nodesu in G1, . . . , Gk.
6. For each methodf in P {
7. If f 6∈ marked andCanReach(entry(f), exit(f), Gf , marked) {
8. marked← marked ∪ {f}.
9. change← true.

10. } // End if (7).
11. } // End for (6).
12. } // End while (3).
13. Returnmarked.

14. ProcedureCanReach(u, v : vertex,G : graph,marked : method set) : boolean:
15. Setvisited(u)← true.
16. If u = v:
17. Returntrue.
18. Else Ifu is a method call to functiong andg 6∈ marked:
19. Returnfalse.
20. For each edge(u, w) ∈ G {
21. If visited(w) = false andCanReach(w, v,G, marked):
22. Returntrue.
23. } // End for (20).
24. Returnfalse.

Algorithm 4.3continually iterates over all the method in a program, marking those that can complete through an execution
path that only calls previously marked methods, until no more methods can be marked. In the first iteration of loop 3, it only
marks those methods that can complete without making any calls, or equivalently, those methods that can complete using only
a single stack frame. In the second iteration, it only marks those that can complete by only calling methods that don’t need to
make any calls, or equivalently, those methods that can complete using only two stack frames. In general, a method is marked
in theith iteration if it can complete usingi, and no less thani, stack frames4.

4Note that just because a method only requires a fixed number of stack frames doesn’t mean that it can complete. A method may contain an infinite loop,
preventing it from ever completing. Algorithm4.3does not mark such methods.
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Theorem 4.4. Algorithm4.3marks all methods that can complete using any number of stack frames.

Proof. Suppose there are some methods that can complete but that algorithm4.3does not find. Out of these methods, letf be
the one that can complete with the minimum number of stack framesj. In order forf to requirej frames to complete, there
must be an execution path throughf that only calls methods that require at mostj − 1 frames to complete. These methods
must all be marked, sincef was the minimum method that wasn’t marked. Sincef requiresj frames, at least one of the
methods called must requirej − 1 frames and thus was marked in the(j − 1)th iteration of loop 3 above. Loop 3 will thus
iterate at least once more, and sincef now has a path in which it only calls marked methods,f will be marked, which is a
contradiction. Thus algorithm4.3marks all methods that can complete.

Algorithm 4.3requires quadratic time to complete in the worst case. Each iteration of loop 3 visits at mostn nodes. Only
k iterations are necessary, wherek is the number of methods in the program, since at least one method is marked in all but the
last iteration of the loop. The total running time is thus O(kn) in the worst case. In practice, much fewer thank iterations are
necessary5, and the running time is closer to O(n).

After computing the set of methods that can complete, it is straightforward to add bypass edges to the interprocedural
control flow graphG: for each method callc, it the target ofc can complete, add an edge fromc to its corresponding method
returnr. This can be done in time O(n).

4.2 Feasible Search

Now that bypass edges have been added to the graphG, a modified depth first search can be used to find feasible paths. The
algorithm is as follows:

Algorithm 4.5 (v : vertex,G : graph).
1. Lets← ∅.
2. CallFeasibleDFS(v, G, s).

3. ProcedureFeasibleDFS(v : vertex,G : graph,s : stack):
4. If s = ∅ {
5. If no context mark(v) return.
6. Setno context mark(v)← true.
7. } // End if (4).
8. Else{
9. If context mark(v) return.

10. Setcontext mark(v)← true.
11. } // End else (8).
12. For each edge(v, u) ∈ G {
13. Lets′ ← s.
14. If label(v, u) is a close symbol ands′ 6= ∅ {
15. Leto← pop(s′).
16. If label(v, u) does not matcho:
17. Skip to next iteration of 12.
18. } // End if (14).
19. Else iflabel(v, u) is an open symbol:
20. Pushlabel(v, u) ontos′.
21. CallFeasibleDFS(u, G, s).
22. } // End for (12).

Theorem 4.6. Algorithm4.5does not follow any infeasible paths.

Proof. Consider an arbitrary infeasible pathp. By theorem4.1, the labels alongp must form a string in which an open
parenthesis(α is closed by a non-matching parenthesis)β . Consider the execution of algorithm4.5 on this path. An open

5Even on the largest example we tried (>45,000 lines of user and library code, 1226 methods), algorithm4.3required only five iterations to converge.
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parenthesis is pushed onto the the stacks when it is encountered, so before any close parentheses are encountered, the top of
the stack is the most recently opened parenthesis. A close parenthesis causes the top of the stack to be popped, so in general,
the top of the stack is the most recently opened parenthesis that has not yet been closed. Now considers when the label)β is
reached. The symbol(α must be on the top ofs, since)β closes it. But algorithm4.5checks the top of the stack against the
newly encountered label, and since they don’t match, it does not proceed alongp.

SinceG contains bypass edges and algorithm4.5visits each node both in some context and in no context, it finds all nodes
that can be reachable in a feasible path from the source. Since it visits each node at most twice, it runs in time O(n).

4.3 Feasible Concurrent Accesses

We can now modify algorithm3.7to find only concurrent accesses that are feasible.

Algorithm 4.7 (P : program).
1. LetG← Algorithm 3.3(P ).
2. For each methodf in P {
3. Construct the intraprocedural flow graphGf of f .
4. For each barrierB in f {
5. DeleteB from Gf .
6. DeleteB from G.
7. } // End for (4).
8. } // End for (2).
9. Letbypass← Algorithm 4.3(P , G1, . . . , Gk).

10. For each method call and return pairc, r in P {
11. If the targetf of c, r is in bypass:
12. Add an edge(c, r) to G.
13. } // End for (10).
14. For each accessa in P {
15. Use Algorithm4.5to do a search onG starting froma.
16. For each accessb reached in the search:
17. Insert(a, b) into concur.
18. } // End for (14).
19. Returnconcur.

The setup of algorithm4.7calls algorithm4.3, so it takes O(kn) time. The searches each take time O(n), and at mostm
are done, so the total running time is O(kn + mn).

5 Evaluation

As discussed previously, enforcing sequential consistency can result in a large cost to performance. We evaluate the effective-
ness of our algorithm by measuring the number of fences generated at compile time and executed at runtime.

5.1 Benchmarks

We use the following benchmarks to evaluate our analysis:

• gas (8841 lines): Hyperbolic solver for a gas dynamics problem in computational fluid dynamics.

• gsrb (1090 lines): Nearest neighbor computation on a regular mesh using red-black Gauss-Seidel operator. This
computational kernel is often used within multigrid algorithms or other solvers.

• lu-fact (420 lines): Dense linear algebra.

• pps (3673 lines) : Poisson equation solver.
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• spmv (1493 lines): Sparse matrix-vector multiply.

The line counts for the above benchmarks underestimate the amount of code actually analyzed, since all reachable code in the
37,000 line Titanium and Java 1.0 libraries is also processed.

5.2 Fence Counts

In order to enforce sequential consistency, we insert memory fences where required in an input program. These fences can be
expensive to execute at runtime, potentially costing an entire roundtrip latency for a remote access. The fences also prevent
code motion, so they directly preclude many optimizations from being performed [10]. The static number of fences generated
provides a rough estimate for the amount of optimization prevented, but the affected code may actually be unreachable at
runtime or may not be significant to the running time of a program. We therefore additionally measure the dynamic number
of fences hit at runtime, which more closely estimates the performance impact of the inserted fences.

Figure6 shows the number of fences generated for each program using different levels of analysis:

• naive: fences are inserted around every heap access that has a conflict

• cycle: fences are inserted around every heap access that has a conflict edge that occurs in a cycle (§2.1.1)

• concur: same ascycle, but with only those conflict edges found by our basic concurrency analysis (§3)

• feasible: same ascycle, but with only those conflict edges found by our feasible paths concurrency analysis (§4)

Figure7 shows the resulting dynamic counts at runtime.
The results show that our analysis, at its highest precision, is very effective in reducing the numbers of both static and

dynamic fences. In three of the benchmarks, nearly all runtime fences are eliminated, and in another, the number of fences hit
is reduced by a large fraction. In only one benchmark,gas , is our analysis ineffective.

It is interesting to note that eliminating infeasible paths is effective in three of the four benchmarks for which our analysis
is useful, and that cycle detection on its own has very little effect on the number of fences in any benchmark. It should also
be noted that most of the remaining fences are due to imprecision in our supporting analyses, such as the inability of our alias
analysis to distinguish array indices. Even so, we believe our analysis reduces the number of fences enough to nearly match
the performance of Titanium’s relaxed model.

6 Related Work

There is an extensive literature on compiler and runtime optimizations for parallel machines, including automatically par-
allelized programs and optimization of data parallel programs, which in their pure form have a sequential semantics. The
memory consistency issue arises in a language with an explicitly parallel semantics and some type of shared address space.
The class of such languages includes Java, UPC, Titanium, and Co-Array Fortran, some of the languages proposed in the
recent HPCS effort, as well as shared memory language extensions such as POSIX Threads and OpenMP [2, 20, 13, 14].

Shasha and Snir provided some of the foundational work in enforcing sequential consistency from a compiler level when
they introduced the idea ofcycle detection[17]. However, that work was designed for general MIMD parallelism, limited to
straight-line code, and was not designed as a practical static analysis. Midkiff and Padua outlined some of the implementation
techniques that could violate sequential consistency and developed some static analysis ideas, including a concurrent static
single assignment form in a paper by Lee et al [9]. In more recent work as part of the Pensieve project, Lee and Padua
exploit properties of fences and synchronization to reduce the number of delays in cycle detection [10]. The project also
includes a Java compiler that takes a memory model as input [18]. Our work differs from theirs in two primary ways: 1)
we take advantage of some of the synchronization paradigms, such as barriers, that exist in SPMD programs, and 2) our
machine targets include distributed memory architectures where the cost of a memory fence is essentially that of a round-trip
communication across the network.

The earliest implementation work on cycle detection was by Krishnamurthy and Yelick for the restricted case of SPMD
programs [7]. That was done in a simplified subset of the Split-C language and introduced a polynomial time algorithm for
cycle detection in SPMD programs. They also used synchronization analysis to reduce the number of fences, but their source
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language did not have the restriction that barriers must match textually and they did not take advantage of single conditionals.
At compile time, they generate two versions of the code, one assuming the barriers line up and the other one not. At runtime,
they switch between the two versions depending on how the barriers are executed. Our approach does not suffer the same
runtime overhead and code bloat that exists in theirs.

Several other parallel analyses have been developed that do not directly address memory consistency issues. Jeremiassen
and Eggers develop a static analysis for barrier synchronization [6] for non-textual barriers. With textual barriers, our analysis
is more precise in finding memory accesses that cannot run concurrently. Duesterwald and Soffa use data flow analysis to
compute the happened-before and happened-after relation for program statements. The information is used in detecting data
races [3]. Masticola and Ryder develop non-concurrency analysis to identify pairs of statements in a parallel program that
cannot run concurrently. The results are used for debugging and optimization [12].

7 Conclusion

As shared memory multiprocessors have become more common, the issue of which memory consistency model to use has
gained importance. This paper provides evidence that, with the proper set of compiler analyses, the intuitive model of sequen-
tial consistency can be provided without sacrificing much performance.

The contribution of this paper is a concurrency analysis that can be used to increase the precision of the existing cycle
detection algorithm for the Titanium language. We presented both a basic analysis and a more complex one that only explores
those execution paths that can occur in practice. We experimented with several benchmark programs and showed that the
analyses were able to eliminate a large fraction, if not most, of the fences required to guarantee sequential consistency in all
but one example.

While the number of fences generated and executed in a program provides some measure of the cost of sequential consis-
tency, it remains to be seen to what extent these fences affect a program’s running time. In particular, the fences may prevent
certain optimizations that result in large performance gains. In the future, we plan to explore the effects of the remaining
fences on important communication optimizations to determine if the cost is indeed negligible.
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A Concurrency and Conflicts

Suppose two memory accessesa andb conflict. We show that ifa andb can never run concurrently, it is possible to remove
the resulting conflict edge since it can never take part in a cycle that violates sequential consistency.

Theorem A.1. Let a andb be two memory accesses in a program, andC a cycle containing the conflict edge(a,b). If a and
b cannot run concurrently, then reorderinga with another access6 does not violate sequential consistency with respect to the
accesses inC in any execution of the program.

Proof. We prove this for a cycle consisting of four accesses in two threads wherea is the first access in thread 1 andb is
the second access in thread 2, as in figure1 (the proof can be generalized to arbitrary cycles). Letx andy be the other two
conflicting accesses inC, in thread 1 and 2 respectively. Consider an arbitrary execution in which the accesses inC occur.
Sincea andb cannot run concurrently, eithera must complete beforeb or b must complete beforea.

Case 1: a occurs beforeb. Sequential consistency can only be violated ify sees the effect ofx, but b does not see the
effect ofa. In all other cases, execution corresponds to a valid sequentially consistent ordering, as shown in the table in figure
1. But sincea occurs beforeb, b always sees the effect ofa, so sequential consistency is preserved regardless of the order of
a andx.

Case 2: b occurs beforea. In order to enforce thatb occur beforea, there must be a synchronization point betweenb
anda in the execution stream of each thread. Since accesses aren’t moved across such points,y must occur before it andx
must occur after it. This means thaty must complete beforex and therefore does not see its effect. Sincey does not see the
effect ofx andb does not see the effect ofa, the execution is sequentially consistent independent of the order ofa andx.

6We assume that accesses are never moved across synchronization points.
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