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Adaptive Mesh Refinement 

• Grid-based V-cycle code written in Titanium 
• Severely limited by communication overheads 

Communication is between levels on the V-cycle: Interpolation 
Communication within levels of a V-cycle: Boundary Exchange 
 

• AMR uses hierarchy of 
grids, with fine grids 
nested inside coarse ones. 

• Grids are refined only 
where extra resolution is 
needed. 



Unix Processes vs. Pthreads 
• Pthreads expected to perform better, due to 

shared memory communication. 
• However, some parts of the code perform 

worse with Pthreads. 

1/1 2/1 1/2 4/1 1/4 8/1 1/8 
SolveAMR 235.4 164.0 140.3 147.3 91.05 128.3 87.47 
  Exchange 84.16 84.68 48.10 97.46 31.64 99.05 41.63 
  GSRB 59.97 29.69 30.58 14.69 15.29 7.22 7.12 
  CFInterp 45.4 24.28 35.02 16.03 29.61 10.10 30.61 
Initialization 41.68 31.60 53.82 27.04 67.61 29.91 92.17 

Time in seconds (processes/Pthreads per process) 



Static vs. Instance Accesses 
• Static variable accesses are slow in Titanium. 
• This slowdown is much greater with Pthreads (~7 

times slower than with processes). 
• Indirect accesses using wrappers can eliminate 

much of the cost. 

10M accesses 100M accesses 
8/1 1/8 8/1 1/8 

Instance 0.0342 0.0344 0.335 0.335 
Static 1.68 11.6 16.8 115.4 

Indirect 0.241 0.242 2.41 2.42 

Time in seconds (processes/Pthreads per process) 

• This only accounts for a small fraction of the 
slowdown in AMR. 



Cache Misses 
• Since Pthreads share the heap segment of memory, 

false sharing can occur, resulting in many more 
cache misses. 

• Slowest two lines of code in initialization show 
many more data cache misses with Pthreads. 

Time (seconds) Cache misses 
(millions) 

8/1 1/8 8/1 1/8 
Line 1 5.67 16.72 7.54 48.6 
Line 2 6.49 21.54 8.41 54.1 

Time and cache misses (processes/Pthreads per process) 



Load Balancing 

• Conflicts with optimizing to reduce communication 
     - Communication between coarse grids and fine grids 
        for interpolation. Favors allocation of overlapping grids 
        to a single processor so interpolation requires no communication.   

• Rough estimate: Time spent waiting at barriers 
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Optimizing with Communication Primitives 
• Titanium exchange over broadcast during initialization 

P1 P2 

D1 D3 

P1 P2 

PROCESSOR 1 PROCESSOR 2 

Distributed Data Structure 
 

 Broadcast 
Broadcast each data  
block (D) to everyone 
else. Broadcasts execute 
serially. 

D2 D4 

Exchange 
Exchanges can happen in 
parallel. 

* Results Pending 



Exchange 

• The exchange operation copies the elements 
in the overlap sections between boxes. 

• The operation accounts for 30% of total 
running time for the sequential backend. 

• The original code has two implementations 
of the exchange operations. 
– Array copy 
– Foreach loop over the intersection domain 



Exchange Optimizations 

• Domain intersection calculation accounts for 46% 
of the running time of exchange. 

• Amortize the intersection cost by caching the 
calculation 

• About 20% of the intersections only has a single 
element in it. 
– Most resulted from the intersections of corners of two 

boxes, which are not needed in the calculation. 
– 44% speedup in exchange by checking for this case  



Box Overlap Representation 

• Both the boxes and box intersections are static 
throughout the execution of the program. 

• Box overlaps are currently represented as 
intersections of Titanium arrays. 

• Even with caching of intersection calculations, 
some overheads are unavoidable. 
– Loop overhead for small intersections 
– Translation of points in a domain to virtual addresses 



Experimental Representation 

• Represent all intersections as an array of 
source/dest C pointer pairs 

• 40% speedup over the intersection caching 
version 

• Improving on the initial version to reduce 
the size of the representation 
– Represent small intersections pointer pairs 
– Represent large intersections as a base pointer 

and strides 



Conclusion 

• Faster than C++/MPI implementation of 
Chombo 

• More speedups pending due to work in 
progress 
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