
Evaluation and Optimization of
a Titanium Adaptive Mesh Refinement

Amir Kamil
Ben Schwarz
Jimmy Su

Adaptive Mesh Refinement

• Grid-based V-cycle code written in Titanium
• Severely limited by communication overheads

Communication is between levels on the V-cycle: Interpolation
Communication within levels of a V-cycle: Boundary Exchange

• AMR uses hierarchy of
grids, with fine grids
nested inside coarse ones.

• Grids are refined only
where extra resolution is
needed.

Unix Processes vs. Pthreads
• Pthreads expected to perform better, due to

shared memory communication.
• However, some parts of the code perform

worse with Pthreads.

1/1 2/1 1/2 4/1 1/4 8/1 1/8
SolveAMR 235.4 164.0 140.3 147.3 91.05 128.3 87.47
 Exchange 84.16 84.68 48.10 97.46 31.64 99.05 41.63
 GSRB 59.97 29.69 30.58 14.69 15.29 7.22 7.12
 CFInterp 45.4 24.28 35.02 16.03 29.61 10.10 30.61
Initialization 41.68 31.60 53.82 27.04 67.61 29.91 92.17

Time in seconds (processes/Pthreads per process)

Static vs. Instance Accesses
• Static variable accesses are slow in Titanium.
• This slowdown is much greater with Pthreads (~7

times slower than with processes).
• Indirect accesses using wrappers can eliminate

much of the cost.

10M accesses 100M accesses
8/1 1/8 8/1 1/8

Instance 0.0342 0.0344 0.335 0.335
Static 1.68 11.6 16.8 115.4

Indirect 0.241 0.242 2.41 2.42

Time in seconds (processes/Pthreads per process)

• This only accounts for a small fraction of the
slowdown in AMR.

Cache Misses
• Since Pthreads share the heap segment of memory,

false sharing can occur, resulting in many more
cache misses.

• Slowest two lines of code in initialization show
many more data cache misses with Pthreads.

Time (seconds) Cache misses
(millions)

8/1 1/8 8/1 1/8
Line 1 5.67 16.72 7.54 48.6
Line 2 6.49 21.54 8.41 54.1

Time and cache misses (processes/Pthreads per process)

Load Balancing

• Conflicts with optimizing to reduce communication
 - Communication between coarse grids and fine grids
 for interpolation. Favors allocation of overlapping grids
 to a single processor so interpolation requires no communication.

• Rough estimate: Time spent waiting at barriers

0

5

10

15

20

25

30

35

%

1 2 4 8 16
Number of Processors

Different data sets for each configuration

Optimizing with Communication Primitives
• Titanium exchange over broadcast during initialization

P1 P2

D1 D3

P1 P2

PROCESSOR 1 PROCESSOR 2

Distributed Data Structure

 Broadcast
Broadcast each data
block (D) to everyone
else. Broadcasts execute
serially.

D2 D4

Exchange
Exchanges can happen in
parallel.

* Results Pending

Exchange

• The exchange operation copies the elements
in the overlap sections between boxes.

• The operation accounts for 30% of total
running time for the sequential backend.

• The original code has two implementations
of the exchange operations.
– Array copy
– Foreach loop over the intersection domain

Exchange Optimizations

• Domain intersection calculation accounts for 46%
of the running time of exchange.

• Amortize the intersection cost by caching the
calculation

• About 20% of the intersections only has a single
element in it.
– Most resulted from the intersections of corners of two

boxes, which are not needed in the calculation.
– 44% speedup in exchange by checking for this case

Box Overlap Representation

• Both the boxes and box intersections are static
throughout the execution of the program.

• Box overlaps are currently represented as
intersections of Titanium arrays.

• Even with caching of intersection calculations,
some overheads are unavoidable.
– Loop overhead for small intersections
– Translation of points in a domain to virtual addresses

Experimental Representation

• Represent all intersections as an array of
source/dest C pointer pairs

• 40% speedup over the intersection caching
version

• Improving on the initial version to reduce
the size of the representation
– Represent small intersections pointer pairs
– Represent large intersections as a base pointer

and strides

Conclusion

• Faster than C++/MPI implementation of
Chombo

• More speedups pending due to work in
progress

	Evaluation and Optimization of�a Titanium Adaptive Mesh Refinement
	Adaptive Mesh Refinement
	Unix Processes vs. Pthreads
	Static vs. Instance Accesses
	Cache Misses
	Load Balancing
	Optimizing with Communication Primitives
	Exchange
	Exchange Optimizations
	Box Overlap Representation
	Experimental Representation
	Conclusion

