
Optimization and Evaluation of a Titanium Adaptive Mesh
Refinement Code

Amir Kamil Ben Schwarz Jimmy Su
kamil@cs.berkeley.edu bschwarz@cs.berkeley.edu jimmysu@cs.berkeley.edu

May 19, 2004

Abstract

Adaptive Mesh Refinement (AMR) is a grid-based ap-
proach to approximating the solutions to partial differ-
ential equations (PDEs). It is governed by the principle
that some portions of the grid require more computation
to solve than other regions. AMR uses an adaptive ap-
proach to adjust the resolution of the computational do-
main to reflect the varying computational needs. A high-
performance implementation of an AMR code is provided
by the Chombo framework—a set of tools for implement-
ing the finite difference method to solve PDEs. Chombo
provides a C++ implementation that uses the Message
Passing Interface (MPI) for communication.

Titanium is a Java-based language for parallel program-
ming that uses a shared memory space abstraction. It of-
fers many features to assist a developer in crafting parallel
programs. However, the ease of use can often come at the
cost of performance. In this paper, we evaluate an im-
plementation of AMR provided by the Applied Numeri-
cal Algorithms Group at the Lawrence Berkeley National
Laboratories. We explain several optimizations that we
have performed on the code to improve its performance.
Our contribution is an optimized implementation that runs
23% faster than the original Titanium code. It is either
comparable to or faster than the C++/MPI Chombo code
on all the platforms we have tested.

1 Introduction

This paper explores optimizations and analyses carried
out on an AMR code that is implemented using the Ti-

tanium programming language [4]. Titanium provides a
shared memory abstraction and many parallel program-
ming constructs to simplify programming scientific codes.
Unfortunately these features sometimes come at the price
of inefficiency. For example, Titanium allows a program
to have both local and remote pointers; remote pointers
point to objects residing on another machine. Pointer op-
erations, such as dereferencing, can be very expensive,
because at runtime a number of checks need to be per-
formed, and possibly communication needs to be done.
In order to write an efficient program, the software devel-
oper using this abstraction must be aware of the intricate
details of the underlying language framework. Our contri-
bution is to analyze a Titanium implementation of AMR
and optimize the constructs that are the sources of ineffi-
ciency.

The remainder of the paper is organized as follows.
Section 2 describes related work. Section 3 explains the
basic AMR algorithm along with some important data
structures. Section 4 discusses the analysis we have per-
formed on the initialization code—which accounts for a
large percentage of the overall running time—and several
optimizations performed to it. Section 5 lists our profiling
results. A load balancing study is explained in Section 6.
Our optimizations to the exchange method of the AMR
code is described in Section 7.2. The final performance
data is presented in Section 8, and conclusions are in Sec-
tion 9.
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Figure 1: Sources of Communication in AMR

2 Related Work

The Titanium programming language provides the basis
for many of our optimizations [4, 2]. Titanium is a dialect
of Java, an object-oriented language, however the AMR is
not written using an object oriented paradigm. AMR++,
on the other hand, provides an object-oriented design
for the problem [3]. Chombo is a high-performance
AMR code provided by the Applied Numerical Algo-
rithms Group at the Lawrence Berkeley National Labo-
ratory [1].

3 Synopsis of AMR

AMR is a grid-based approach to approximating the solu-
tions to PDEs. The grid is subdivided into smaller grids
when a finer resolution is needed. A grid level refers to
a set of regions with the same resolution; these regions
are rectangular, and may overlap slightly. When refine-
ment is done, we increase the resolution and divide the
region into a set of smaller region. The smaller regions
need not include all of the larger region. In particular,
areas of the larger region which need not be further re-
fined are not broken down. At any given level, the set of
regions are distributed among the processes. It is not a re-
quirement that a processor contain all the finer resolution
regions within a larger box. The AMR is carried out by
doing multigrid V-cycles on all the regions.

There are two sources of communication in the AMR
code, as shown in Figure 1. The first is when two regions
are near each other, and to perform the computation they

need to retrieve values from each other. We shall refer
to this type of communication as exchange of shared bor-
ders. In the figure, processor 2 and processor 3 share a
small region, and the overlapping part represents the ex-
change communication that will take place. The second
source of communication is when a finer resolution re-
gion is contained within a region with a larger resolution,
and they are owned by different processors. A basic op-
eration in the multigrid method is interpolation between
resolutions. More specifically, the region layout is con-
structed top down starting with the most coarse grid. If a
finer grid is needed, the coarse grid points are interpolated
to figure out the values for the smaller region. Vice-versa,
coming “up” on the multigrid v-cycle, interpolation needs
to be done to set the values of coarser grid points based on
the finer resolution points. This bidirection interpolation
results in communication between the processors contain-
ing those grids.

4 Initialization Tuning

In the initialization stage a distributed data structure is
built. The data structure consists of all the box layouts
and their distribution among processors. Figure 2 shows
a sample data structure for a simple two processor case.
Note that each processor has a pointer to the data on ev-
ery other processor. The intuitive way to implement this is
to have each processor broadcast its pointers to the other
processors. In practice, however, broadcasts must pro-
ceed serially so this can be a limiting factor. An alterna-
tive approach is to exchange pointers to the top level of
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Figure 2: Example of Data Structures Built During Initialization

pointers and then use Titanium’s array copy mechanism,
which can proceed in parallel. We have evaluated both
implementations and the results are presented in Table 1.
The experiment was run using different number of pro-
cessors on a single node. Surprisingly, the simpler broad-
cast is more efficient in practice. We speculate that using
multiple nodes would favor the exchange method, since
communication actually requires going over the network
in that case.

5 Profiling Analysis

Much of the AMR Titanium code scales well as the num-
ber of processors increases, such as GSRB as shown in
Figure 2. However, some pieces scale poorly or not at
all: the initialization and CFInterp in particular. We pro-
filed these two sections using timers and PAPI counters in
order to determine the cause of this slowdown.

We first identified the pieces of the code in
the initialization and CFInterp that ran slowly.
In the initialization, three lines of code (two in
QuadCFInterp.ti:define() and one in
LevelFluxRegister.ti:define() ) all con-
sisting of Domain -RectDomain subtractions were
the main culprits. In the first CFInterp (CFInterp1),
the slow piece of code was a loop in whichdouble
operations occur. The picture was not as clear for the
second CFInterp (CFInterp2); the slowdown appeared to
be spread out across a large loop.

Purely by chance, we stumbled on a few possible ex-
planations for the poor scaling in initialization and CFIn-
terp. The AMR code is intended to be run with multiple
Pthreads spawned from a single Unix process in order to
allow shared memory communication. By accident, we
initially ran the code with multiple Unix processes in-
stead, with a single Pthread per process. As would be
expected, the exchange operation slowed drastically as
shown in Figure 2 since it is a communication step. To
our surprise, however, the initialization and CFInterp op-
erations ran much faster with multiple processes; in fact,
the first CFInterp (CFInterp1) scaled perfectly with pro-
cesses, though it did not scale at all with Pthreads. Two
possible explanations came to mind: higher cost of static
accesses with Pthreads and false sharing.

5.1 Static Accesses

Static accesses with Pthreads are expensive for two rea-
sons. The first is that since Pthreads share the heap seg-
ment of memory, an expensive thread ID lookup must oc-
cur in order to determine which static variable belongs
to a particular thread. Secondly, the copies of a static
variable corresponding to each thread are stored contigu-
ously, i.e. thread one’s copy of the variable is stored next
to thread zero’s, and thread two’s next to thread one’s.
This results in false sharing when multiple threads simul-
taneously access a static variable. The results of a micro-
benchmark comparing instance and static variables with
processes and Pthreads are shown in Figure 3. Even with
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Processor Execution Time (seconds) Change
Exchange Broadcast

1 40.5 40.74 -0.24
2 52.06 51.93 -0.13
4 65.4 65.78 0.38
8 89.26 87.09 -2.17
16 138.5 105.0 -33.5

Geometric Mean: -4.07

Table 1: Broadcast and Exchange Comparison

Time in Seconds (processes/Pthreads per process)

Operation 1/1 2/1 1/2 4/1 1/4 8/1 1/8
SolveAMR 235.4 164.0 140.3 147.3 91.05 128.3 87.47
Exchange 84.16 84.68 48.1 97.46 31.64 99.05 41.63
GSRB 59.97 29.69 30.58 14.69 15.29 7.22 7.12
CFInterp 45.4 24.28 35.02 16.03 29.61 10.1 30.61
CFInterp1 25.78 12.74 20.65 5.73 18.5 3.23 18.85
CFInterp2 19.62 11.54 14.37 10.3 11.11 6.87 11.76

Initialization 41.68 31.6 53.82 27.04 67.61 29.91 92.17

Table 2: Running time for AMR operations using processes and Pthreads.

Time in Seconds (processes/Pthreads per process)

10M accesses 100M accesses
8/1 1/8 8/1 1/8

Instance 0.0342 0.0344 0.335 0.335
Static v2.405 1.68 11.6 16.8 115.4
Static v2.409 0.347 0.347 3.48 3.47
Indirect 0.241 0.241 2.41 2.42

Table 3: Static, instance, and indirect accesses using processes and Pthreads.

processes, a large slowdown over instance variables is ex-
perienced with static variables.

As Figure 3 indicates, one possible solution to the slow-
down of static accesses that still provides sharing among
objects is to use indirection. For example, if an integer
needs to be shared among the objects of a class, a static
final integer array of size one can be used instead, and
the content of the array modified at will. Since the com-

piler recognizes and optimizes static final accesses, they
don’t experience the slowdown of non-final static vari-
ables. The results in Figure 3 show that indirection is
much faster despite the extra memory reference on each
access.

Unfortunately, the slowdown of static accesses does not
appear to affect the AMR Titanium code significantly.
Static variables are only used for timing purposes, and
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replacing them with indirect accesses only marginally af-
fected performance.

5.2 False Sharing

The other possible explanation for the Pthreads slowdown
is false sharing. Since the Boehm-Weiser garbage collec-
tor is not thread-aware, it is possible that allocation re-
quests from different threads are serviced with contiguous
memory locations, resulting in false sharing. In order to
determine the likelihood of this scenario, we used PAPI
counters to measure cache misses for the slow pieces of
code under both processes and Pthreads.

As Figures 3, 4, and 5 show, the slowdown in initializa-
tion time between processes and Pthreads is accompanied
by a large increase in the number of L1 instruction and
data cache misses, lending credence to the false sharing
theory. However, in CFInterp, no increase in misses is de-
tected for fewer than eight processors, though there is still
a slowdown in running time. Coupled with the fact that
CFInterp allocates no new data structures, this seems to
indicate that false sharing may not be the culprit in CFIn-
terp. We have not yet determined, however, what an alter-
native cause could be.

5.3 Attempted Optimizations

Besides replacing static accesses with indirect accesses,
we attempted a few more optimizations in order to re-
duce the slowdown experienced by Pthreads. Specifically,
we attempted to combat false sharing using two schemes:
region-based memory allocation and padding allocations.

The Titanium language allows a user to explicitly
manage memory using regions. Since objects in re-
gions aren’t allocated by the garbage collector and dis-
tinct regions almost never share cache lines, false shar-
ing can be eliminated using regions. In the initial-
ization phase, we added region-based allocation of do-
mains for both the slow code inQuadCFInterp.ti
and LevelFluxRegister.ti , deleting the regions
on exit. This resulted in large gains and good scaling for
the former as shown in Figure 6, but inconsistent results
for the latter. Unfortunately, this optimization results in
subsequent segmentation faults since some domains al-
located in these regions need to persist after the initial-
ization. Allowing the entire regions to persist is not an

option, as it increases runtime many-fold due to memory
leakage. We believe, though, that with proper knowledge
of the AMR algorithm, such domains can be singled out
and allocated elsewhere.

The second optimization scheme we tried was to mod-
ify the compiler to pad every memory allocation by a pre-
determined number of bytes in order to prevent multiple
objects from sharing a cache line. Since a cache line on
Seaborg is 128 bytes, we tried padding by 32, 64, and 128
bytes. However, as shown in Figure 7, none of these re-
sulted in any improvement.

5.4 Work in Progress

We attempted a third optimization as well, involving the
actual implementation of Titanium domains. At the cur-
rent moment, general domains are represented by a list of
rectangular domains. This is spatially inefficient since a
list node must be allocated for each element, and may con-
tribute to false sharing due to the small size of such nodes.
We attempted to implement an array-based version of do-
mains, but due to time constraints, were not able to get it
to work as of this writing.

An additional optimization we considered, but did not
pursue due to time constraints, is to optimize the repre-
sentation of domains for difference operations. The three
slow lines in the AMR initialization all perform this oper-
ation, so optimizing it at the cost of other operations may
be worthwhile. One possibility is to introduce some or-
dering among rectangular domains, and force the list in
a general domain to be sorted. This reduces the cost of
a difference operation from quadratic to linear, though it
increases the cost of a union. Unfortunately, it would be
difficult to implement this in conjunction with the array-
based optimization above.

6 Load Balancing

There are several viable strategies for allocating the re-
gions among processors. We are not aware of the dis-
tribution algorithm used to create the sample AMR input
files, so we have attempted to blindly evaluate the load
balancing by gathering empirical evidence. We consider
two simple strategies for allocating the boxes:
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Figure 3: Time in initialization and CFInterp using processes and Pthreads.

1. [Minimize Communication.] Recall that when a
coarse grid contains finer grids, there is an interpo-
lation step in both directions of the V-cycle. If the
fine grid(s) and coarse grid happen to reside on dif-
ferent processors, there is communication. To mini-
mize communication, the distribution algorithm may
be tempted to favor allocation either spatially-close
regions, or regions with the containment relation to
a single processor. This of course must strike a
healthy balance with load-balancing. In the extreme,
all communication could be eliminated by putting all
boxes on one processor. In the other extreme, each
processor gets one box, and every interpolation re-
quires communication.

2. [Equal Work.] Alternatively, ignoring the above ob-
servations, a distribution algorithm could simply try
to allocate an equal workload to each processor; for
instance, an equal number of points, or an equal vol-
ume of space in the 3-dimensional AMR cube.

One simple way to measure the imbalance of work
is to look at the time each processor spends wait-

ing at the barrier. In particular, we are interested in
the maximum of all waiting times among all proces-
sor at any given barrier. This represents the case for
the processor that reached the barrier first, and hence
waited the longest. Figure 8 shows a graph of the
load balancing characteristics for 5 problem sizes on
5 processor configurations.

Figure 8 shows the percent of the total running time that
was spent waiting on barriers. The graph shows that when
the larger configurations are used, the time spent waiting
at barriers can account for over one third of the total exe-
cution time1. This suggests that the biggest source of im-
provement could come from choosing an algorithm that
favors equal distribution of work over less communica-
tion. As network speeds increase, this becomes increas-
ingly more important.

1To verify that the implementation of barriers in Titanium was not
the culprit, we constructed a microbenchmark. The time spent was neg-
ligible compared to the time in the AMR code.
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Figure 4: L1 instruction cache misses in initialization and CFInterp using processes and Pthreads.

7 Exchange

In the exchange method, elements in the intersection of
two boxes are copied. Depending on the box assignments,
the two boxes can be on two different processors. The
original implementation of the exchange method uses two
different methods for copying the elements in the intersec-
tion. If the two boxes live on the same processor, then the
copy is done using a foreach loop to do an element by el-
ement copy. If the two boxes live on different processors,
then a call to array copy is used.

Ideally, only the array copy implementation is needed.
The foreach version can be viewed as a user implementa-
tion of the array copy method. The reason for having two
implementations is performance. The copy using array
copy is about 50% slower than the foreach version. This
is due to the different number of intersection operations
in the two versions. The array copy version uses two in-
tersection operations, where the foreach version uses one.
For small intersections, the cost is dominated by the inter-
section operations.

7.1 Intersection Size Distribution

Figure 9 shows the distribution of the intersection sizes
for our input. About 20% of the intersections have size
one. More than 50% of the intersections have less than 10
elements.

7.2 Optimizations

Due to the large number of small intersections, we want
to reduce the number of intersection operations. 100% of
the single element intersections are due to the intersection
of the corners for two boxes. The corners are actually not
used for computation, so those copies are not necessary.
We reduce the amount of time spent in exchange from 74
seconds to 33 seconds by checking for this case.

The boxes are static during the execution of the pro-
gram. Therefore, the intersections do not change between
iterations. We decided to amortize the cost of the intersec-
tion operations by caching the results. This optimization
speeds up the exchange method by 10% on top of the pre-
vious optimization.
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7.3 Language Comparison

The exchange method code size for the Titanium version
and the C++/MPI version differs drastically. In terms of
lines of code, the Titanium version uses 47 lines of code,
and the C++/MPI version uses 337 lines of code. In the
C++/MPI version, only 9 out of the 337 lines of code are
not MPI related. About 50% of the MPI related code is for
buffer management. There is no explicit buffer manage-
ment in the Titanium version. Communication is implicit
through reads, writes, and array copies.

8 Performance Results

We run our experiments on Seaborg and Seberg. Seaborg
has 375 MHz POWER3 processors. Seberg is an unipro-
cessor machine with a 2.8 GHz Pentium 4 processor. The
size of the input grids is described in Table 4.

We have three versions of the code. There are two ver-
sions of the Titanium code, one for before the project, and
one for after the project. The before version is named

Titanium 1, and the after version is named Titanium 2.
We also have data for the C++/MPI Chombo code. First,
we compare the sequential performance in Table 5. The
optimizations done in the project speed up the Titanium
code by around 23% on both machines. On Seaborg, it is
2.25 times faster than the C++/MPI code in the sequen-
tial case. On Seberg, the optimized Titanium code is 7%
slower than the C++/MPI code. We have not tried ap-
plying the optimizations we did for the Titanium code on
the C++/MPI code, but we suspect that there is room for
improvement in the C++/MPI code. The large gap in per-
formance between the Titanium code and C++/MPI code
may be narrowed in the coming days. The Chombo group
in LBNL has found a performance bug for the code on
Seaborg.

Table 6 compares the performance of the two Titanium
codes on the smp backend on Seaborg. It uses a single
node with different number of processors.
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Level # of boxes # of points
0 1 32768
1 106 279552
2 1449 2944512

Table 4: Input grid size.

Seaborg Seberg
Titanium 1 208 secs 89 secs
Titanium 2 162 secs 68 secs

C++ Chombo 366 secs 62 secs

Table 5: AMR sequential running time.

1 proc 2 procs 4 procs 8 procs 16 procs
Titanium 1 222 secs 131 secs 83 secs 81 secs 86 secs
Titanium 2 169 secs 103 secs 70 secs 65 secs 78 secs

Table 6: AMR Titanium parallel running time (smp backend).

9 Conclusions

We have presented analysis and several optimizations for
a Titanium implementation of AMR. Our most effec-

tive optimization was the modification to the exchange
method as described in Section 7.3. Ultimately, it resulted
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Figure 9: Cumulative distribution of intersection sizes in exchange.

in a speedup of 23%. The Titanium implementation is
either comparable, or faster than the Chombo MPI/C++
implementation depending on the platform.

We also found that load balancing was playing a signif-
icant role in limiting the program from achieving a higher
peak performance. Additionally, we performed several
promising optimizations related to false sharing and pre-
sented the performance results.
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