
Making Sequential Consistency
Practical in Titanium

Amir Kamil and Jimmy Su

Definition: A parallel execution must behave as if it were an
interleaving of the serial executions by individual threads, with
each individual execution sequence preserving the program
order.

Legal execution: a x y b

Illegal execution: x y b a

Critical cycle

Sequential Consistency

a [set data = 1]

x [set flag = 1] b [read data]

y [read flag]
T1 T2

Initially, flag = data = 0

• Reduce the cost of sequential consistency in
Titanium programs
– Fences are inserted for memory accesses that

can run concurrently to specify order
– Inserted fences can prevent optimizations such

as code motion and communication aggregation
• In order to reduce the number of fences,

precisely find all pairs of heap accesses to
the same location that can run
concurrently

Motivation

• Barrier: the thread executing the barrier waits
until all other threads have executed the same
textual instance of the barrier call.
– Example:
 work1(); Ti.barrier(); work2();

• A single value expression has the same value on
all threads.
– Example:
 Ti.numProcs() == 2

– For a branch guarded by a single value expression, all
threads are guaranteed to take the same branch.

Titanium Features

Concurrency Analysis (I)
• Graph generated from program as follows:

– Node added for each code segment between
barriers and single conditionals

– Edges added to represent control flow between
segments

// code segment 1

if ([single])

 // code segment 2

else

 // code segment 3

// code segment 4

Ti.barrier()

// code segment 5

1

2 3

4

5

barrier

Concurrency Analysis (II)
• Two accesses can run concurrently if:

– They are in the same node, or
– One access’s node is reachable from the other

access’s node without hitting a barrier
• Algorithm: remove barrier edges, do DFS

1

2 3

4

5

barrier

Conflicts

1 2 3 4 5
1 X X X X
2 X X X
3 X X X
4 X X X X
5 X

Thread-Aware Alias Analysis
• Two types of abstract locations: local and

remote
• Remote locations created on demand when

necessary
– points-to set of remote location is remote

analog of points-to set of corresponding local
location

• Two locations A and B may alias across
threads if:

 ∃ x∈pointsTo(A). R(x)∈pointsTo(B),
 (where R(x) is the remote counterpart of x)

Thread-Aware AA Example
class phase20 {
 public static void main(String[] args) {
L1: phase20 a = new phase20();
 phase20 b = broadcast a from 0;
L2: a.z = new Object();
L3: b.z = new Object();
 }
L4: Object z = new Object();
}

Points-to Sets

a  {1}
b  {1,1r}
1.z  {4,2,3,3r}
1r.z  {4r,2r,3r,3}

Benchmarks
Benchmark Lines1 Description
pi 56 Monte Carlo integration
demv 122 Dense matrix-vector multiply
sample-sort 321 Parallel sort
lu-fact 420 Dense linear algebra
3d-fft 614 Fourier transform
gsrb 1090 Computational fluid dynamics kernel
gsrb* 1099 Slightly modified version of gsrb
spmv 1493 Sparse matrix-vector multiply
gas 8841 Hyperbolic solver for gas dynamics

1 Line counts do not include the reachable portion of the
1 37,000 line Titanium/Java 1.0 libraries

naïve All heap accesses
sharing All shared accesses
concur/taa/cycle Concurrency analysis + thread-aware AA + cycle

detection

Percentages are for number of dynamic fences reduced over naive

Dynamic Fence Removal

0

20

40

60

80

100

120

naïve sharing concur/taa/cycle

Pe
rc

en
ta

ge

pi demv sample sort lu fact 3d fft gsrb gsrb* spmv gas

Fence Counts

• Overlap bulk memory copies
• Communication aggregation for irregular

array accesses (ie a[b[i]])
• Both optimizations reorder accesses, so

sequential consistency can prevent them

Optimizations

Sparse Matrix Vector Multiply

0
20
40
60
80

100

1 2 4 8 16

of processors

sp
ee

du
p

relaxed naive sharing concur/taa/cycle

Dense Matrix Vector Multiply

0

0.5

1

1.5

2

1 2 4 8 16

of processors

sp
ee

du
p

relaxed naive sharing concur/taa/cycle

Linux cluster with Itanium/Myrinet

Performance Results

 Conclusion: sequential consistency can be
provided with little or no performance cost

	Making Sequential Consistency Practical in Titanium
	Sequential Consistency
	Motivation
	Titanium Features
	Concurrency Analysis (I)
	Concurrency Analysis (II)
	Thread-Aware Alias Analysis
	Thread-Aware AA Example
	Benchmarks
	Slide Number 10
	Optimizations
	Performance Results

