Making Sequential Consistency
Practical Iin Titanium

Amir Kamil and Jimmy Su

Sequential Consistency

Definition: A parallel execution must behave as if it were an
Interleaving of the serial executions by individual threads, with
each individual execution sequence preserving the program
order.

Initially, Flag = data = 0O

e T2 Legal execution: axy b
a[setdata = 1] x_ ,{ y [read Flag]
h ' Illegal execution: Xy b a
x[setflag = 1]}° “{b[read data]

Critical cycle

Motivation

* Reduce the cost of sequential consistency In

Titanium programs
— Fences are inserted for memory accesses that
can run concurrently to specify order

— Inserted fences can prevent optimizations such
as code motion and communication aggregation

e In order to reduce the number of fences,
precisely find all pairs of heap accesses to
the same location that can run

concurrently

Titanium Features

« Barrier: the thread executing the barrier walits
until all other threads have executed the same
textual instance of the barrier call.

— Example:
work1l(); Ti.barrier(); work2();
* A single value expression has the same value on
all threads.

— Example:
Ti.numProcs() ==

— For a branch guarded by a single value expression, all
threads are guaranteed to take the same branch.

Concurrency Analysis (1)
o Graph generated from program as follows:
— Node added for each code segment between

barriers and single conditionals

— Edges added to represent control flow between

segments

// code segment 1
iIT ([single])

// code segment 2
else

// code segment 3
// code segment 4

Ti.barrier()

// code segment 5

barrier

:

Concurrency Analysis (11)
e Two accesses can run concurrently If:

— They are in the same node, or

— One access’s node Is reachable from the other
access’s node without hitting a barrier

 Algorithm: remove barrier edges, do DFS

Conflicts
112 |3]|4
1 [X | X | X | X
2 | X | X X
3| X X | X
barrier 4 1 X | X | X | X
5] 5

Thread-Aware Alias Analysis

* Two types of abstract locations: local and
remote

e Remote locations created on demand when
necessary

— points-to set of remote location Is remote

analog of points-to set of corresponding local
location

* Two locations A and B may alias across
threads If:

3 XepointsTo(A). R(x)<pointsTo(B),
(where R(X) Is the remote counterpart of X)

Thread-Aware AA Example

class phase20 {
public static v0|d main(String[] args) {
L1: phase20 a = new phase20();
phaseZO b = broadcast a from O;
L2: a.z = new Object();
L3: b.z = new Object();

L4: gbject z = new Object();
by
Points-to Sets
a—-> {1}
b->{1,1}
1.z > {4,2,3,3,}

1.z 2> {4,2,3,3}

Benchmarks

Benchmark Linest | Description

ol 56 Monte Carlo integration

demv 122 Dense matrix-vector multiply
sample-sort | 321 Parallel sort

lu-fact 420 Dense linear algebra

3d-fft 614 Fourier transform

gsrb 1090 | Computational fluid dynamics kernel
gsrb* 1099 | Slightly modified version of gsrb
spmv 1493 | Sparse matrix-vector multiply

gas 8841 | Hyperbolic solver for gas dynamics

1 Line counts do not include the reachable portion of the
37,000 line Titanium/Java 1.0 libraries

Fence Counts

Dynamic Fence Removal

120 -

" / %

80
)
o
E /
T 60
o
)
Q4 A

O bl T = T
naive sharing concur/taa/cycle
‘ ——pi —=—demv sample sort lufact ——3d fft —e—gsrb ——gsrb* ——spmv gas ‘

Percentages are for number of dynamic fences reduced over naive

narve All heap accesses

sharing All shared accesses

concur/taa/cycle Concurrency analysis + thread-aware AA + cycle
detection

Optimizations

e Overlap bulk memory copies

« Communication aggregation for irregular
array accesses (ie afb[1]])

* Both optimizations reorder accesses, SO
sequential consistency can prevent them

Performance Results

speedup

100
80
60
40
20

Sparse Matrix Vector Multiply Dense Matrix Vector Multiply
2
1T T a 15 —
|| =]
_ i 8 1
(o
— —| | | | » 0.5 1 .
= = - L] T T T O T T T T
1 2 4 8 16 1 2 4 8 16
of processors # of processors
O relaxed @ naive B sharing O concur/taa/cycle Orelaxed O naive M sharing O concur/taa/cycle

Linux cluster with Itanium/Myrinet

Conclusion: sequential consistency can be
provided with little or no performance cost

	Making Sequential Consistency Practical in Titanium
	Sequential Consistency
	Motivation
	Titanium Features
	Concurrency Analysis (I)
	Concurrency Analysis (II)
	Thread-Aware Alias Analysis
	Thread-Aware AA Example
	Benchmarks
	Slide Number 10
	Optimizations
	Performance Results

