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Definition:  A parallel execution must behave as if it were an 
interleaving of the serial executions by individual threads, with 
each individual execution sequence preserving the program 
order. 

Legal execution: a x y b 

Illegal execution: x y b a 

Critical cycle 

Sequential Consistency 

a [set data = 1] 

x [set flag = 1] b [read data] 

y [read flag] 
T1 T2 

Initially, flag = data = 0 



• Reduce the cost of sequential consistency in 
Titanium programs 
– Fences are inserted for memory accesses that 

can run concurrently to specify order 
– Inserted fences can prevent optimizations such 

as code motion and communication aggregation 
• In order to reduce the number of fences, 

precisely find all pairs of heap accesses to 
the same location that can run 
concurrently 
 
 

Motivation 



• Barrier: the thread executing the barrier waits 
until all other threads have executed the same 
textual instance of the barrier call. 
– Example:  
 work1(); Ti.barrier(); work2(); 

• A single value expression has the same value on 
all threads. 
– Example:  
 Ti.numProcs() == 2 

– For a branch guarded by a single value expression, all 
threads are guaranteed to take the same branch. 

 

Titanium Features 



Concurrency Analysis (I) 
• Graph generated from program as follows: 

– Node added for each code segment between 
barriers and single conditionals 

– Edges added to represent control flow between 
segments 

// code segment 1 

if ([single]) 

  // code segment 2 

else 

  // code segment 3 

// code segment 4 

Ti.barrier() 

// code segment 5 
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Concurrency Analysis (II) 
• Two accesses can run concurrently if: 

– They are in the same node, or 
– One access’s node is reachable from the other 

access’s node without hitting a barrier 
• Algorithm: remove barrier edges, do DFS 
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Conflicts 

1 2 3 4 5 
1 X X X X 
2 X X X 
3 X X X 
4 X X X X 
5 X 



Thread-Aware Alias Analysis 
• Two types of abstract locations: local and 

remote 
• Remote locations created on demand when 

necessary 
– points-to set of remote location is remote 

analog of points-to set of corresponding local 
location 

• Two locations A and B may alias across 
threads if: 

 ∃ x∈pointsTo(A). R(x)∈pointsTo(B), 
 (where R(x) is the remote counterpart of x) 



Thread-Aware AA Example 
class phase20 { 
    public static void main(String[] args) { 
L1:   phase20 a = new phase20(); 
      phase20 b = broadcast a from 0; 
L2:   a.z = new Object(); 
L3:   b.z = new Object(); 
    } 
L4: Object z = new Object(); 
} 

 
Points-to Sets 

a  {1} 
b  {1,1r} 
1.z  {4,2,3,3r} 
1r.z  {4r,2r,3r,3} 



Benchmarks 
Benchmark Lines1 Description 
pi 56 Monte Carlo integration 
demv 122 Dense matrix-vector multiply 
sample-sort 321 Parallel sort 
lu-fact 420 Dense linear algebra 
3d-fft 614 Fourier transform 
gsrb 1090 Computational fluid dynamics kernel 
gsrb* 1099 Slightly modified version of gsrb 
spmv 1493 Sparse matrix-vector multiply 
gas 8841 Hyperbolic solver for gas dynamics 

1 Line counts do not include the reachable portion of the 
1 37,000 line Titanium/Java 1.0 libraries 



naïve All heap accesses 
sharing All shared accesses 
concur/taa/cycle Concurrency analysis + thread-aware AA + cycle 

detection 

Percentages are for number of dynamic fences reduced over naive 

Dynamic Fence Removal
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• Overlap bulk memory copies 
• Communication aggregation for irregular 

array accesses (ie a[b[i]]) 
• Both optimizations reorder accesses, so 

sequential consistency can prevent them 

Optimizations 



Sparse Matrix Vector Multiply
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Performance Results 
 
 
 
 
 
 
 

 Conclusion: sequential consistency can be 
provided with little or no performance cost 
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