
1 Hierarchical Pointer Analysis Amir Kamil

Hierarchical Pointer Analysis for
Distributed Programs

Amir Kamil

U.C. Berkeley
December 7, 2005

2 Amir Kamil Hierarchical Pointer Analysis

Background
• Titanium is a single program, multiple data

(SPMD) dialect of Java
• All threads execute the same program text

• Designed for distributed machines
• Global address space – all threads can access

all memory
• At runtime, threads are grouped into processes

• A thread shares a physical address space with some
other, but not all threads

3 Amir Kamil Hierarchical Pointer Analysis

Memory Hierarchy
• Global memory is composed of a hierarchy

• Locations can be thread-local (tlocal), process-
local (plocal), or in another process (global)

0 1 2 3

tlocal plocal

global
Threads

Program

Processes

4 Amir Kamil Hierarchical Pointer Analysis

Goal
• Our goal is to produce a (flow-insensitive)

pointer analysis that takes the memory hierarchy
into account

• We define a small SPMD language based on
Titanium

• We produce a type system that accounts for the
memory hierarchy

• We give an overview of the abstract pointer
analysis

5 Amir Kamil Hierarchical Pointer Analysis

Language Syntax
• Types
 τ ::= int | refq τ
• Qualifiers
 q ::= tlocal | plocal | global
 (tlocal @ plocal @ global)
• Expressions
 e ::= newl τ (allocation)
 | transmit e1 from e2 (communication)
 | e1 Ã e2 (dereferencing assignment)

6 Amir Kamil Hierarchical Pointer Analysis

Type Rules – Allocation

Γ ` newl τ : reftlocal τ

Thread 0

newl int

tlocal

• The expression newl τ allocates space of type τ
in local memory and returns a reference to the
location
• The label l is unique for each allocation site and will be

used by the pointer analysis
• The resulting reference is qualified with tlocal, since it

references thread-local memory

7 Amir Kamil Hierarchical Pointer Analysis

Type Rules – Communication

Γ ` e1 : τ Γ ` e2 : int

Γ ` transmit e1 from e2 :
expand(τ, global)

Thread 0 Thread 1

y

global
tlocal

transmit
y from 1

• The expression transmit e1 from e2 evaluates e1
on the thread given by e2 and retrieves the result

• If e1 has reference type, the result type must be
widened to global
• Statically do not know source thread, so must assume it

can be any thread

expand(refq τ, q’) ´ reft (q, q’) τ
expand(τ, q’) ´ τ otherwise

8 Amir Kamil Hierarchical Pointer Analysis

Type Rules – Dereferencing Assignment
• The expression e1 Ã e2 puts the value of e2 into

the location referenced by e
1
 (like *e1 = e2 in C)

• If e1 has type refplocal reftlocal τ, and e2 has type
reftlocal τ, the assignment could be unsound

Thread 0 Thread 1

y

z

plocal

tlocal tlocal plocal

Γ ` e1 : refq τ Γ ` e2 : τ robust(τ, q)

Γ ` e1 Ã e2 : refq τ

robust(refq τ, q’) ´ false if q @ q’

robust(τ, q’) ´ true otherwise

9 Amir Kamil Hierarchical Pointer Analysis

Pointer Analysis
• Since language is SPMD, analysis is only done

for a single thread (assume thread 0)
• Each expression has a points-to set of abstract

locations that it can reference
• Abstract locations also have points-to sets
• Abstract locations consist of label and qualifier

• A-loc (l, q) can refer to any concrete location allocated at
label l and with type qualifier v q from thread 0

Thread 0

newl int

tlocal

Thread 1

newl int

tlocal

(l, tlocal)

(l, plocal)

10 Amir Kamil Hierarchical Pointer Analysis

Pointer Analysis – Allocation and
Communication

• The abstract semantics for allocation and
communication are similar to the type rules

• An allocation newl τ produces a new abstract
location (l, tlocal)

• The result of the expression transmit e1 from e2
is the global versions of the a-locs resulting
from e1

e1 ! {(l1, tlocal), (l2, plocal), (l3, global)}

transmit e1 from e2 ! {(l1, global), (l2, global), (l3, global)}

11 Amir Kamil Hierarchical Pointer Analysis

Pointer Analysis – Dereferencing
Assignment

• For assignment, must take into account actions
of other threads

Thread 0
x

(l1, tlocal)

y

(l2, tlocal)

Thread 1
x

(l1, plocal)

y

(l2, plocal)

Thread 2
x

(l1, plocal)

y

(l2, plocal)

x ! {(l1, tlocal)},

y ! {(l2, plocal)}

x Ã y : (l1, tlocal) ! (l2, plocal),

 (l1, plocal) ! (l2, plocal),

 (l1, global) ! (l2, global)

12 Amir Kamil Hierarchical Pointer Analysis

Race Detection Results
• Static race detection in Titanium using pointer

analysis + concurrency analysis
• Most are false positives, so lower is better

Benchmark No Pointer
Analysis

One-Level
Analysis

Two-Level
Analysis

gas 2482 779 223
gsrb 512 187 18
lu-fact 490 177 1
pps 7026 1827 26
spmv 443 177 0

	Hierarchical Pointer Analysis for Distributed Programs
	Background
	Memory Hierarchy
	Goal
	Language Syntax
	Type Rules – Allocation
	Type Rules – Communication
	Type Rules – Dereferencing Assignment
	Pointer Analysis
	Pointer Analysis – Allocation and Communication
	Pointer Analysis – Dereferencing Assignment
	Race Detection Results

