
Hierarchical Pointer Analysis for Distributed Programs

Amir Kamil
Computer Science Division, University of California, Berkeley

kamil@cs.berkeley.edu

April 14, 2006

1 Introduction

Many distributed, parallel programming languages provide the programmer the illusion of a global, shared address space. In
such a language, a pointer on a thread can reference either memory located in the same physical address space as the thread
or memory located in a separate physical address space. In a distributed program, it is desirable for a pointer analysis to
distinguish pointers within a physical address space and pointers between distinct address space.

The Titanium programming language [7] is a high performance dialect of Java designed for distributed machines. It is
a single program, multiple data(SPMD) language, so all threads execute the same code image. In addition, Titanium has a
global address space abstraction, so that any thread can directly access memory on another thread. At runtime, two threads
may share the same physical address space, in which case such an access is done directly, or they may be in distinct address
spaces, in which case the global access must be translated into some form of communication. In the former case, the access
is much faster, so it is useful to know statically whether or not an access is within the same physical address space or across
distinct address spaces.

Since threads can share a physical address space, they are arranged in the following three-level hierarchy:

• Level 1: an individual thread

• Level 2: threads within the same physical address space

• Level 3: all threads

The Titanium type system distinguishes between levels 2 and 3 of the hierarchy in order to determine whether or not an access
crosses address spaces, but it does not separate levels 1 and 2. As we will see in Section5.1, the distinction between levels
1 and 2 is important for inter-thread alias analysis. Thus, we would like a pointer analysis that accounts for the hierarchical
distribution of Titanium threads.

In the rest of this paper, we first generalize the problem to a hierarchy with an arbitrary depth. We then present a small
language that incorporates such a hierarchy and provide both a type system and operational semantics for the language. We
proceed to define a pointer analysis on the language. Finally, we describe some example applications of the pointer analysis.

2 Background

Consider a set of machines arranged in an arbitrary hierarchy, such as that of Figure1. A machinecorresponds to a single
execution stream within a distributed program, and for the purposes of our analysis, we ignore physical address spaces. Each
machine has a correspondingmachine number. Thedepthof the hierarchy is the number of levels it contains. Thedistance
between machines is equal to the lowest level of the hierarchy in which they are in the same subtree. A pointer on a machinem
has a correspondingwidth, and it can only refer to locations on machines whose distance fromm is no more than the pointer’s
width.

1

Figure 1: A possible machine hierarchy with four levels. Labels on arrows indicate the hierarchy distance between the
endpoints.

n ::= integer literals

τ ::=int | refnτ (types)

e ::= n | x | newl τ | ∗ e | convert(e, n)
| transmit e1 from e2 | e1; e2

| x := e | e1 ← e2 (expressions)

Figure 2: The syntax of theTi language.

3 Language

Our analysis is formalized using a simple language, calledTi , that illustrates the key features of the analysis.Ti is a general-
ization of the language used by Liblit and Aiken in their work on locality inference [5]. Like Titanium,Ti uses a SPMD model
of parallelism, so that all machines execute the same program text. The height of the machine hierarchy is known statically,
and we will refer to it ash from here on out. References thus can have any width in the range[1, h].

3.1 Syntax

The syntax ofTi is summarized in Figure2. Types can be integers or reference types. The latter are parameterized by a width
n, in the range[1, h]. Expressions inTi consist of the following

• integer literals

• variables. We assume a fixed set of variables of predefined type. We also assume that variables are thread-private.

• reference allocations. The expressionnewl τ allocates a memory cell of typeτ and returns a reference to the cell. Each
allocation site has a unique labell.

• dereferencing

2

Γ ` n : int Γ ` newl τ : ref1 τ

Γ(x) = τ

Γ ` x : τ

Γ ` e : refn τ

Γ ` ∗ e : expand(τ, n)
Γ ` e : refn τ

Γ ` convert(e,m) : refm τ

Γ ` e1 : τ Γ ` e2 : int

Γ ` transmit e1 from e2 : expand(τ, h)
Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` e1; e2 : τ2

Γ ` e : τ Γ(x) = τ

Γ ` x := e : τ

Γ ` e1 : refn τ Γ ` e2 : τ robust(τ, n)
Γ ` e1 ← e2 : τ

Γ ` e : refn τ n < m

Γ ` e : refm τ

Figure 3: Type checking rules.

Figure 4: Dereferences may require width expansion. The labels correspond to pointer widths.

• type conversions. Only the width parameter of a reference type is subject to conversion.

• communication. The expressiontransmit e1 from e2 evaluatese1 on machinee2 and transmits the result to all other
machines.

• sequencing

• assignment to variables

• assignment through references. Ine1 ← e2, e2 is written into the location referred to bye1.

For simplicity,Ti does not have conditional statements, as they are not integral to the analysis.

3.2 Type System

The type checking rules forTi are summarized in Figure3, and are similar to those in [5].
The allocation expressionnewl τ produces a reference typeref1 τ with width 1, since the allocated memory is guaranteed

to be on the machine that is performing the allocation. Pointer dereferencing is more problematic, however. Consider the
situation in figure4, wherex on machine 0 refers to a location on machine 0 that refers to a location on machine 1. This

3

Figure 5: The assignmenty ← z is forbidden, since the location referred to byy can only hold pointers of width 1 but requires
a pointer of width 2 to refer toz.

expand(refmτ, n) ≡ refmax(m,n) τ

expand(τ, n) ≡ τ otherwise

robust(refmτ, n) ≡ false if m < n

robust(τ, n) ≡ true otherwise

Figure 6: Type manipulating functions.

implies thatx has typeref1 ref2 τ . The result of∗x should be a reference to the location on machine 1, so it must have type
ref2 τ . In general, a dereference of a value of typerefa refb τ produces a value of typerefmax(a,b) τ .

The transmit expression is another interesting case. If the value to be communicated is an integer, then the resulting
type is still an integer. If the value is a reference, however, the result must be promoted to the maximum widthh, since the
relationship between source and destination is not statically known.

The typing rule for the assignment through reference expression is also nontrivial. Consider the case wherey has type
ref2 ref1 τ , as in Figure5. Should it be possible to assign toy with a value of typeref1 τ? Such a value must be on machine
0, but the location referred to byx is on machine 1. Since that location holds a value of typeref1 τ , it must refer to a location
on machine 1. Thus, the assignment should be forbidden. In general, an assignment to a reference of typerefa refb τ should
only be allowed ifa ≤ b.

There is also a subtyping rule that allows for implicit widening of a reference. Subsumption is only allowed for the
top-level width of a reference.

As in [5], we define anexpand function and arobust predicate to facilitate type checking. Theexpand function widens
a type when necessary, and therobust predicate determines when it is legal to assign to a reference. They are shown in Figure
6.

3.3 Operational Semantics

In this section we present the operational semantics ofTi . We ignore concurrency in defining the semantics, since it is not
essential to our analysis.

4

We use the following semantic domains:

M (the set of machines)

A (the set of local addresses)

Id (the set of identifiers)

V ar = M × Id (the set of variables)

L (the set of labels)

T (the set of all types)

G = L×M ×A (the set of global addresses)

V = n + G (the set of values)

Store = (G + V ar)→ V (the contents of memory)

Exp (the set of all expressions)

We use the following conventions for naming elements of the above domains:

m ∈M (a machine)

v ∈ V (a value)

σ ∈ Store (a memory snapshot)

a ∈ A (a local address)

l ∈ L (a label)

g = (l, m, a) ∈ G (a global address)

e ∈ Exp (an expression)

Judgements in our operational semantics have the form< e,m, σ >⇓< v, σ′ >, which means that expressione executed
on machinem in a global stateσ evaluates to the valuev and results in the new stateσ′. We use the notationσ[g := v] to
denote the functionλx. if x = g then v else σ(x).

The rules for integer and variable expressions are trivial.

< n,m, σ >⇓< n, σ >

σ(x) = v

< x,m, σ >⇓< v, σ >

For allocations, we introduce a specialnull value to represent uninitialized pointers. The result on an allocation is an address
on the local machine that is guaranteed to not already be in use.

(l, m, a) is fresh σ′ = σ[(l,m, a) := null]
< newl τ,m, σ >⇓< (l,m, a), σ′ >

The rule for dereferencing is simple, except that it is illegal to dereference anull pointer.

< e, m, σ >⇓< g, σ′ > g 6= null v = σ′(g)
< ∗e,m, σ >⇓< v, σ′ >

The rule for variable assignment is also simple.

< e, m, σ >⇓< v, σ′ > σ′′ = σ′[x := v]
< x := e,m, σ >⇓< v, σ′′ >

The rule for assignment through a reference is the combination of a dereference and a normal assignment.

< e1,m, σ >⇓< g, σ1 > < e2,m, σ1 >⇓< v, σ2 > g 6= null σ′ = σ2[g := v]
< e1 ← e2,m, σ >⇓< v, σ′ >

The rule for sequencing is as expected.

5

< e1,m, σ >⇓< v1, σ1 > < e2,m, σ1 >⇓< v2, σ2 >

< e1; e2,m, σ >⇓< v2, σ2 >

The type conversion expression makes use of thehier function, which returns the hierarchical distance between two
machines. The conversion is only allowed if that distance is no more than the target type.

< e, m, σ >⇓< g = (l, m′, a), σ′ > hier(m,m′) ≤ n

< convert(e, n),m, σ >⇓< g, σ′ >

In thetransmit operation, the expression is evaluated on the given machine.

< e2,m, σ >⇓< n, σ2 > n ∈M < e1, n, σ2 >⇓< v, σ1 >

< transmit e1 from e2,m, σ >⇓< v, σ1 >

4 Pointer Analysis

Given a program, it is useful to know which variables and memory locations can refer to the same location. We would like to
produce a points-to analysis [1] for Ti in order to answer this question. So that we can ignore any issues of concurrency and
also for efficiency, our analysis is flow-insensitive. We only define the analysis on the single machinem – sinceTi is SPMD,
the results are the same for all machines.

4.1 Concrete Domain

Since our analysis is flow-insensitive, we need not determine the concrete state at each point in a program. Instead, we define
the concrete state over the whole program. Since we are doing pointer analysis, we are only interested in reference values, and
since a location can contain different values over the lifetime of the program, we must compute the set of all possible values
for each location on machinem. The concrete state is thus a member of the domainCS = (G + Id)→ P(G).

4.2 Abstract Domain

For our abstract semantics, we define anabstract locationto correspond to the abstraction of a concrete memory location.
Abstract locations are defined relative to a particular machinem. An abstract location relative to machinem is a member of
the domainAm = L × h – it is identified by both a hierarchy width and an allocation site. The elements ofAm are ordered
by the following relation:

(l, n1) v (l, n2)⇐⇒ n1 ≤ n2

The lattice thus has height inO(h).
We defineR ⊂ P(Am) to be the subset ofP(Am) that contains no redundant elements. An elementS is redundantif:

∃x ∈ S. ∃y ∈ S. x v y ∧ x 6= y

An elements ofS ∈ R can be represented by ann-digit vectoru, wheren = |Am| and the digits are in the range[0, h]. The
vector is defined as follows:

u(i) =j if ∃j. (li, j) ∈ S

0 otherwise

We define the following ordering on elements ofR:

S1 v S2 ⇐⇒ ∀x ∈ S1. ∃y ∈ S2. x v y

In the vector representation, the following is an equivalent ordering:

S1 v S2 ⇐⇒ ∀i ∈ [1, |Am|]. u1(i) ≤ u2(i)

6

The relation induces a lattice with minimal element corresponding tou⊥(i) = 0, and a maximal element corresponding to
u>(i) = h. The maximal chain between⊥ and> is derived by increasing a single vector digit at a time by 1, so the chain has
height(h + 1) · |Am|. The height of the lattice is thus inO(h · |Am|).

We now define a Galois connection betweenP(G) andR as follows:

βm((l,m′, a)) = {(l, hier(m,m′))}
γm(S) = {(l,m′, a) | (l, n) ∈ S ∧ hier(m,m′) ≤ n}

Finally, we abstract the concrete domainCS to the following abstract domain:

AS = (Am + Id)→ R

We define an ordering over elements ofAS as follows:

σA v σ′A ⇐⇒ ∀x ∈ (Am + Id). σA(x) v σ′A(x)

The resulting lattice has height inO(h · |Am| · (|Am|+ |Id|)). Since the number of abstract locations and identifiers is limited
by the size of the input programP , the height is inO(h · |P |2).

4.3 Abstract Inference Rules

For each expression inTi , we provide inference rules for how the expression updates the abstract stateσA. The judgements
are of the formσA ` e : S, σ′A, which means that expressione in abstract stateσA can refer to the abstract locationsS and
results in the modified abstract stateσ′A. Most of the rules are derived directly from the operational semantics of the language.

The rules for integer and variable expressions are straightforward. Neither updates the abstract state, and the latter returns
the abstract locations in the points-to set of the variable.

σA ` n : ∅, σA

σA(x) = S

σA ` x : S, σA

An allocation returns the abstract location corresponding to the allocation site, with width 1.

S = {(l, 1)}
σA ` newl τ : S, σA

The rule for dereferencing is similar to the operational semantics rule, except that all source abstract locations are simultane-
ously dereferenced.

σA ` e : S′, σ′A S = {a | ∃b ∈ S′. a ∈ σ′A(b)}
σA ` ∗ e : S, σ′A

The rule for sequencing is also analogous to its operational semantics rule.

σA ` e1 : S1, σ
′
A σ′A ` e2 : S2, σ

′′
A

σA ` e1; e2 : S2, σ
′′
A

The rule for variable assignment merely copies the source abstract locations into the points-to set of the target variable.

σA ` e : S, σ′A σ′′A = σ′A[x := σ′A(x) t S]
σA ` x := e : S, σ′′A

The type conversion expression can only succeed if the result is within the specified hierarchical distance, so it narrows all
abstract locations that are outside that distance.

σA ` e : S′, σ′A S = {a = (l,m) | ∃k. (l, k) ∈ S′ ∧ m = min(k, n)}
σA ` convert(e, n) : S, σ′A

7

Figure 7: The assignmentx← y on machine 0 results in the abstract location(l2, 2) being added to the points-to set of(l1, 1),
as shown by the first dashed arrow. The assignment on machine 1 results in the abstract location(l2, 2) being added to the
points-to set of(l1, 2), as shown by the second dashed arrow. The assignment must also be accounted for on the rest of the
machines. (Abstract locations in the figure are with respect to machine 0.)

The SPMD model of parallelism inTi implies that the source expression of thetransmit operation evaluates to the same
abstract locations on the source machine, relative to the source machine, as it would on the destination machine, relative to
the destination machine. These locations then need to be maximally widened to correspond to the result on the destination
machine.

σA ` e2 : S2, σ
′
A σ′A ` e1 : S1, σ

′′
A S = {(l, h) | ∃m. (l,m) ∈ S1}

σA ` transmit e1 from e2 : S, σ′′A

The rule for assignment through references is the most interesting. Suppose an abstract locationa2 = (l2, 2) is assigned into
an abstract locationa1 = (l1, 1), as in Figure7. Of course, we have to adda2 to the points-to set ofa1. In addition, sinceTi is
SPMD, we have to account for the effect of the same assignment on a different machine. Consider the assignment on machine
m′, wherehier(m,m′) = 2. The locationa1 relative tom corresponds to a locationa′1 = (l1, 2) relative tom′. The location
a2 can correspond to a concrete location onm′, so its abstraction can bea′2 = (l2, 1) relative tom′. But it can also correspond
to a concrete location onm′′ wherehier(m,m′′) = hier(m′,m′′) = 2, so its abstraction can also bea′′2 = (l2, 2). But since
a′2 v a′′2 , it is sufficient to assume thata2 corresponds toa′′2 on m′. From the point of view ofm′ then, the abstract location
(l2, 2) should be added to the points-to set of the location(l1, 2).

In general, whenever an assignment occurs from(l2, n2) to (l1, n1), we have to update not only the points-to set of
(l1, n1) but the sets of all locations corresponding to labell1 and of any width. The proper update is to add the location
(l2,max(n1, n2, w)) to the points-to set of each location(l1, w), as reflected in the assignment rule1.

σA ` e1 : S1, σ
′
A σ′A ` e2 : S2, σ

′′
A σ′′′A = update(σ′′A, S1, S2)

σA ` e1 ← e2 : S2, σ
′′′
A

The update function is defined as follows:

update(σ, S1, S2)(a1 = (l1, n1)) = σ(a1)
t {(l2, n2) | (l1, n′1) ∈ S1 ∧ (l2, n′2) ∈ S2 ∧ ¬(∃a′′1 = (l1, n′′1) ∈ S1. n′′1 > n′1)

∧ ¬(∃a′′2 = (l2, n′′2) ∈ S2. n′′2 > n′2) ∧ n2 = max(n1, n
′
1, n

′
2)}

4.4 Algorithm

The set of inference rules, instantiated over all the expressions in a program and applied in some arbitrary order2, composes a
functionF : AS → AS. Only the two assignment rules affect the input stateσA, and in both rules, the output consists of a

1The proof of this is omitted for brevity.
2Since the analysis is flow-insensitive, the order of application is not important.

8

Program Types Intra-Machine Inter-Machine
gas 2482 779 223
gsrb 512 187 18
lu-fact 490 177 1
pps 7026 1827 26
spmv 443 177 0

Table 1: Race detection results for some Titanium programs.

least upper bound operation involving the input state. As a result,F is an increasing function, and the least fixed point ofF ,
F0 = tnFn(λx. ∅), is the analysis result.

The functionF has a rule for each program expression, so it takes time inO(|P |) to apply it, whereP is the input program.
Since the lattice overAS has height inO(h · |P |2), it takes time inO(h · |P |3) to compute the fixed point ofF . The running
time of the analysis is thus cubic in the size of the input program and proportional to the height of the machine hierarchy.

5 Applications

The pointer information computed in Section4 can be applied to multiple analyses and optimizations for parallel programs.
In this section, we take a look at two clients: alias analysis and locality inference.

5.1 Alias Analysis

Pointer information can be used to determine which expressions alias each other in a program. Two expressionse1 ande2

can alias each other on machinem if, given the fixed point stateF0, abstract inference judgementsF0 ` e1 : S1, F0 and
F0 ` e2 : S2 exist, andS1 andS2 satisfy the following:

∃a1 = (l1, n1) ∈ S1. ∃a2 = (l2, n2) ∈ S2. l1 = l2

This is because the concretization of the abstract locations(l1, n1) and (l1, n2) both must contain the concrete locations
(l1,m, a) for anya.

The pointer information can also determine inter-machine aliasing of expressions. An expressione1 on machinem can
alias an expressione2 on some other machinem′ if the resulting abstract setsS1 andS2 satisfy the following:

∃a1 = (l1, n1) ∈ S1. ∃a2 = (l2, n2) ∈ S2. l1 = l2 ∧ (n1 > 1 ∨ n2 > 1)

In particular, onm′ such thathier(m,m′) = 2, if n1 > 1, then the concretizations ofa1 onm anda2 onm′ both contain the
concrete locations(l1,m′, a) for anya, but if n2 > 1, they both must contain the concrete locations(l1,m, a). In either case,
the expressions can alias across the two machines.

A prototype alias analysis has been built into the Titanium compiler, using a two-level hierarchy. The analysis can be used
in conjunction with concurrency analysis [4] to statically detect race conditions. Table1 shows the number of races detected
in some sample programs when only types are used to distinguish expressions, when intra-machine alias analysis is used, and
when inter-machine analysis is applied. Using inter-machine analysis reduces the number of false positives detected by a large
margin.

5.2 Reference Width Inference

Liblit and Aiken produced a constraint-based analysis for inferring the minimal width for the type of a variable or expression
[5]. Pointer information can be used instead of constraints. In particular, if an expressione of reference type evaluates to the
abstract setS, then its minimal width is:

wmin = max{n | ∃a = (l, n) ∈ S}

Work is under way to implement width inference in the Titanium compiler.

9

6 Related Work

The language and type system we presented here are generalizations of those described by Liblit and Aiken [5]. They defined
a two-level hierarchy and used it to to infer locality information about pointers.

The pointer analysis we presented here is a generalization and formalization of the analysis sketched in a previous paper
[3]. That analysis is similar to a two-level version of our hierarchical analysis, but the abstraction is quite different. Only the
abstraction of thetransmit operation was described in that paper, though a full implementation was done. For this paper,
we spent much effort in attempting to extend the implementation to a three-level version of the abstraction presented here.
However the amount of changes required were more extensive than we expected due to the differences in the abstraction used,
and we were unable to finish the implementation.

Others have also tackled the problem of parallel pointer analysis. Rugina and Rinard develop a thread-aware alias analysis
for the Cilk multithreaded programming language [6] that is both flow-sensitive and context-sensitive. Others such as Zhu
and Hendren [8] and Hicks [2] have developed flow-insensitive versions for multithreaded languages. However, none of these
analyses consider hierarchical, distributed machines.

7 Conclusion

The global address space abstraction over a distributed machine is quite powerful, allowing pointers to refer to locations in
separate physical address spaces. In this paper, we presented a simple language that encodes a hierarchical distribution in
its type system and a pointer analysis for that language. The analysis can be used for both intra-thread and inter-thread alias
analysis, as well as type inference on the pointers in a program.

In the future, we plan on completing the implementation of a three-level pointer analysis for the Titanium programming
language. The resulting pointer information will be used to increase the precision of existing analyses and effectiveness of
compiler optimizations. We expect the pointer information to be very useful, as suggested by the two-level race detection
results presented in this paper.

References
[1] L. O. Andersen.Program Analysis and Specialization for the C Programming Language. PhD thesis, DIKU, University of Copenhagen, May 1994.

[2] J. Hicks. Experiences with compiler-directed storage reclamation. InFPCA ’93: Proceedings of the conference on Functional programming languages
and computer architecture, pages 95–105, New York, NY, USA, 1993. ACM Press.

[3] A. Kamil, J. Su., and K. Yelick. Making sequential consistency practical in Titanium. InSupercomputing 2005, November 2005.

[4] A. Kamil and K. Yelick. Concurrency analysis for parallel programs with textually aligned barriers. In18th International Workshop on Languages and
Compilers for Parallel Computing, October 2005.

[5] B. Liblit and A. Aiken. Type systems for distributed data structures. InPrinciples of Programming Languages, Boston, Massachusetts, January 2000.

[6] R. Rugina and M. Rinard. Pointer analysis for multithreaded programs. InPLDI ’99: Proceedings of the ACM SIGPLAN 1999 conference on Program-
ming language design and implementation, pages 77–90, New York, NY, USA, 1999. ACM Press.

[7] K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krishnamurthy, P. Hilfinger, S. Graham, D. Gay, P. Colella, and A. Aiken. Titanium: A
high-performance Java dialect. InWorkshop on Java for High-Performance Network Computing, Stanford, California, February 1998.

[8] Y. Zhu and L. J. Hendren. Communication optimizations for parallel C programs. InPLDI ’98: Proceedings of the ACM SIGPLAN 1998 conference on
Programming language design and implementation, pages 199–211, New York, NY, USA, 1998. ACM Press.

10

	1 Introduction
	2 Background
	3 Language
	3.1 Syntax
	3.2 Type System
	3.3 Operational Semantics

	4 Pointer Analysis
	4.1 Concrete Domain
	4.2 Abstract Domain
	4.3 Abstract Inference Rules
	4.4 Algorithm

	5 Applications
	5.1 Alias Analysis
	5.2 Reference Width Inference

	6 Related Work
	7 Conclusion

