
pobj
“objects that last”

Course Project, CS262a, Fall ‘04
Amir Kamil and Gilad Arnold

overview
• Persistent dynamic memory management library

– memory manager independent
– support for garbage collector

• Implemented over ARIES storage management (lladd)
– but is generally storage independent

• Atomicity through transaction semantics
– logical consistency in the presence of failure

• Automatic reconstruction and crash recovery
– physical / binary compatibility of memory blocks (intra-object)
– topological reconstruction of references (inter-object)

• Emphasis on flexibility and usability
– support for legacy code / library processing
– mixed persistent / transient object management
– logical consistency factored out

programming with pobj
Don’t mess with…
• files and I/O
• representation

conversions
• reconstruction
• atomicity and crash

recovery
• storage management and

garbage collection
• dumping recursive data

structures

Node *list = NULL;
void add_line (char *line) {
 int len = strlen (line);
 pobj_start ();

 Node *node = (Node *)
 pobj_malloc (sizeof (Node));

 char *str = (char *)
 pobj_malloc (sizeof (char) * (len + 1));
 pobj_ref_typify (node, node_ref_fields);

 strcpy (str, line);

 pobj_update (str);

 POBJ_SET_REF (node, str, str);

 POBJ_SET_REF (node, next, list);

 pobj_static_set_ref (&list, node);

 pobj_end ();

}

int main (int argc, char **argv) {
 pobj_init ();

 while (get_line (line, sizeof (line)))
 add_line (line);

 print_list ();

}

persistent memory objects

str

next

persistency header

•link to repository

•object size

str

next

static references repository static variables

list

ref

non-ref

object data

•native layout

type info (optional)

•reference fields

•transient fields

persistent objects repository

str

next

memory backing store

architecture

application

pobj

libc

lladd

VM I/O

C program

pobj

libc

lladd

VM I/O

MM/GC

compiler

Persistent
Titanium

The obvious case (below) but also
more interesting ones (right)…

language supported persistency
• Persistent objects implemented in Titanium, an SPMD Java dialect
• Persistency statically known through separate type hierarchy

• Persistent operations compiled to use pobj functions
 Persistent p = new PersistentString();

 temp_6 = (T11nc_2R74ac *)
 pobj_calloc(1, sizeof (T11nc_2R74ac));

• Safe operation aggregation through transaction blocks
• Support for persistent arrays through qualifiers
 int[] persistent x = new int[4] persistent;
• pobj integrated with Titanium’s Boehm-Weiser garbage collector

tcbuild

java.lang.Object

java.lang.String

user.Foo

ti.lang.Persistent

user.PersistentString

user.Bar

Use…
• persistent objects that

extend Persistent
• static variables to point

to roots of data
structures

• transaction blocks to
maintain consistency

static class Node extends Persistent { ... }
static Node head, tail;
static void addLine (String s) {
 transaction {
 Node node = new Node(s);
 if (head == null)
 head = tail = node;

 else {
 tail.next = node;

 // Crash in the middle of a transaction.

 if (node.num == 4) throw new Error();
 tail = node;

 }

 }

}

// List only built on first run.
public static void main (String[] args) {
 String line;
 if (head == null) // Check if first run.
 while ((line = getLine ()) != null)
 addLine (line);

 printList ();

}

Persistent Titanium

Program execution results

input run #1
output

run #2+
output

line1

line2

line3

line4

(crash) line1

line2

line3

evaluation
• Different approach than RDS/RVM

– topological storage and reconstruction
• nice abstraction for objects
• recursive operations: update, mark-and-sweep

– independent of memory and store managers
– persistent / transient allocated on a single region

• possibly improves spatial cache locality
– but probably not as efficient (benchmarks are future work!)

• Some numbers…

future work
Short term
• dynamic persistency
• type descriptors
• generalized statics
• transient fields
• fast checksum comparison
Long term
• flexible pointers
• on-the-fly rollback
• delayed recovery (static initializers)
Sci-Fi
• object synchronization
• automatic lock management (deadlock resolution)
• persistency semantics for Titanium/Java

– persistify predefined types through qualifiers
– runtime detection of persistent operations
– transaction block optimization (reduce number of updates)

	pobj�“objects that last”
	overview
	programming with pobj
	persistent memory objects
	architecture
	language supported persistency
	Slide Number 7
	evaluation
	future work

