pobj: A Lightweight Persistent Objects Library and Its Application to

Persistency in Titanium/Java

Gilad Arnold

Amir Kamil

December 17, 2004

Abstract

Persistent objects are useful for applications that
require data structures to be maintained across
multiple executions. This paper describes pobj, a
lightweight facility for providing persistent objects.
The library offloads the actual backing store man-
agement to 1ladd, an open-source implementation
of the ARIES recovery algorithm, and memory man-
agement to external libraries. This layered approach
allows pobj to be used to implement transparent
persistency in Titanium, a language based on Java.
pobj’s combination of ease of use and flexibility
make it ideal for a wide range of programmers and
applications, even though it does not perform as
well as other persistency tools.

1 Introduction

Persistent memory objects provide a useful ab-
straction for many application programmers. Ide-
ally, they can offer transparent backup of object
data, automatic reconstruction of dynamic memory,
atomicity with respect to complex update proce-
dures, and other properties associated with trans-
actional systems.

Transactional facilities for storing virtual memory
data in persistent backing stores have been com-
monplace for a decade. Most facilities in use, how-
ever, either suffer from limitations with respect to
ease of use and flexibility or rely on a heavyweight
implementation to provide persistency. Facilities
in higher-level languages generally require a signifi-
cant amount of programmer involvement despite the

static analysis tools and runtime checks available to
such languages and rely on low performance, heavy-
weight backing stores to achieve persistency..

In this paper, we describe the architecture and
implementation of pobj, a lightweight library for
persistency that is both easy to program and flex-
ible enough to allow fine-grained control over its
operation and integration with other libraries. In
addition, we leverage the pobj library to provide
transparent persistency in the Titanium program-
ming language [11], a high-performance dialect of
Java.

2 Background

2.1 Design Goals

The main focus of the design of the pobj layer was
usability and flexibility, with performance only a
secondary concern. In particular, the pobj layer
was designed to provide the following:

e Fine-grained persistency at the granularity of
objects.

e Lightweight and flexible library that can serve
as a building block for persistency in a higher-
level language.

e General purpose interface that is easy to inte-
grate with other libraries such as garbage col-
lectors.

e Ease of use, requiring minimal programmer in-
tervention to obtain persistency.

e Flexibility, allowing fine-grained programmer
control over persistent operations.

The Titanium persistency extension was designed
with transparency as its main feature without sac-
rificing flexibility. The goals for the extension were
as follows:

e Provide a simple mechanism for specifying per-
sistent objects.

e Automatically reflect operations on persistent
objects to the backing store with no program-
mer intervention.

e Integrate with prior Titanium language fea-
tures such as garbage collection and threading.

e Support the basic functionality required to al-
low persistency to be useful, including persis-
tent arrays.

2.2 Related Work

Persistent memory and objects have been popular
areas of research over the past decade. Here, we
review some of the related work that has been done
on persistency.

One of the classic works in the area of persis-
tent virtual memory was Recoverable Virtual Mem-
ory (RVM) [10], developed as part of the Coda file
system at Carnegie Mellon University. RVM allows
users to map regions of memory to backing files and
supports transactional operations on such regions.
Unlike pobj, RVM is completely oblivious to the
contents of the actual memory and does no pointer
swizzling, so regions that contain pointers are not
relocatable. In addition, RVM forces the program-
mer to manually manage mapping of regions and
allocation of memory within regions.

Persistent object stores are widespread, with
many available implementations. One example is
the Thor [6] object store developed at the Mas-
sachusetts Institute of Technology. Thor enforces
type-safety on objects in its store by treating them
as black boxes accessible only through their meth-
ods. Other object stores generally also maintain
some form of type information concerning objects

and their members. pobj, on the other hand, main-
tains only the minimal information necessary to re-
store the topology of a set of objects on recovery.

Multiple mechanisms for persistency exist in Java.
The simplest is the Serializable interface [1] that
allows a program to write objects to permanent stor-
age. This method, however, creates ordering de-
pendencies between saving objects and recovering
them and provides no transactional support. An al-
ternative persistency mechanism is Java Data Ob-
jects (JDO) [9]. JDO stores objects in relational
databases through SQL queries, potentially intro-
ducing a large performance overhead over directly
interfacing with a persistent backing store. Also
unlike the Titanium persistency extension, object
and transaction manipulation are not transparent

in JDO.

3 Architecture

The pobj library is a customizable intermediate
layer between the user application and an un-
derlying memory manager and implements persis-
tency of dynamic memory objects by linking to a
transaction-capable storage back-end. Thus, pobj
is completely memory manager independent and
reuses the underlying memory facilities for any dy-
namic allocation operations. Though pobj uses the
well-known 1ibc memory calls (malloc, free, etc.)
in the default settings, we have been able to run it
on top of a sophisticated garbage collecting mem-
ory manager (see §5.3.3). This key feature is unique
compared to previous approaches such as RVM [10],
in which memory layout (and therefore memory
management) is strictly integrated with persistency
management. Our current implementation uses the
1ladd [2] library, an experimental open-source im-
plementation of the ARIES algorithm for recover-
able storage management [7], a WAL-based trans-
actional backing store system with automatic crash
recovery. Nonetheless, pobj could equally link with
any generic backing store API that supports trans-
actions and automatic recovery.

application
i
pobj || lladd
libc
VM 110 4@

Persistent
Titanium

compiler
JL

C program

'
pobj

=
MM/GC

lladd

libe

VM I/O

4@

(b)

Figure 1: Software block diagrams showing the integration of the pobj component with (a) ordinary
dynamic memory management of libc, as well as (b) garbage collecting memory manager of the Titanium

runtime.

3.1 High-Level Design

Figure 1 depicts two schemes in which pobj is used
to provide a persistent objects abstraction. In Fig-
ure 1(a), pobj is used directly on top of standard
libc memory management calls, propagating simi-
lar allocation semantics to the user application (i.e.,
allocation and explicit deallocation). Figure 1(b)
demonstrates the use of pobj as a persistent object
facility for compiled Titanium programs, reusing the
Titanium runtime allocator and garbage collector as
its underlying memory manager. pobj provides up-
call hooks for the memory manager, thus permitting
garbage collection to work with both persistent and
non-persistent objects.

3.2 Object Images

In the design of pobj, we have chosen to decouple
the in-memory image of a dynamically allocated ob-
ject from its persistent, on-disk counterpart. This
choice was guided by our desire to allow ordinary
random memory accesses (either read or write) to

still be applicable to persistent objects. It also al-
lows zero read latency in the presence of heavy con-
currency, and is in line with some further simpli-
fying assumptions and design choices. Hence, we
maintain a mapping function between in-memory,
volatile images of objects and their on-disk, persis-
tent counterparts. This enables flexible persistent
image update operations to take place and supports
on-the-fly adjustment of the persistency property
of each allocated object. An important outcome
of this approach is that the pobj layer can handle
both persistent and non-persistent objects within
the same memory region and dynamically switch
between the two modes. This is opposed to the
strict, region-oriented distinction between persistent
and non-persistent memory blocks is implemented
in RVM [10].

3.3 Simplifying Assumptions

Aiming at a cost-effective, flexible, and portable
software component, we have made several simplify-

ing assumptions that have influenced the functional-
ity, semantics, and interface of the resulting library.
While some of these were inherent to our approach
for persistency abstraction, others were induced by
our short-handed implementation process and could
otherwise be avoided given more rigorous require-
ments. One such assumption is factoring out logical
consistency, isolation, and locking policies on man-
aged memory objects. While these issues could be
addressed at several possible levels of strictness, we
found that resolving them would impose numerous
limitations on usage patterns (e.g. enforcing an in-
adequate locking policy as per application concur-
rency model) and performance (due to locking over-
head). In addition, the resulting component would
be much more complex, having to deal with fine-
grained locking schemes and deadlock resolution.
Instead, we preferred to pass that responsibility to
the application and only protect the integrity of the
library’s own internal structures. Similar assump-
tions were also made (and similarly motivated) in
previous work [10]. This approach implies that an
in-memory object image and its persistent counter-
part are never assumed to be compatible, nor is it
assumed that their contents satisfy any consistency
invariants. Such properties must be enforced by the
user application as required.

Another restrictive decision we’ve made is the
requirement for an authentic object handle to be
passed with each call for persistent memory object
manipulation. Although this requirement could be
eliminated by using a more extensive memory block
resolution scheme (via radix tree lookup, for exam-
ple) we found it to be a fairly acceptable limitation
for all usage cases that we’ve considered, and it is no
different than similar policies taken by well-known

memory manager interfaces .

1One example of this is the interface for realloc and free
within the 1ibc memory manager, which require an authen-
tic, malloc returned object handle to be passed as an argu-
ment.

3.4 Topological Memory Image Recon-
struction

A major outcome of our object-based persistency
scheme is the topological nature of pobj’s persis-
tent memory image. Specifically, though we stick
to binary intra-object compatibility of in-memory
and persistent images, it is often the case that re-
constructed memory would yield a completely dif-
ferent layout of objects in the virtual address space,
since a restored persistent object is allocated as if
it is being created for the first time. This implies
a logical inter-object compatibility scheme, and re-
quires some form of pointer swizzling [8] to take
place when objects are reconstructed from the back-
ing store. Since we must provide a pointer reso-
lution mechanism that is sound and complete, as
opposed to other scenarios in which conservative
schemes can be deployed (e.g. the dead object detec-
tion of garbage collectors [3]), we require a shallow
but strict object typing to be carried out by the user
application. Such typing allows pobj to distinguish
reference fields from other fields that do not require
any adjustment upon recovery and must be carried
out for every allocated persistent object in order to
guarantee the completeness of our recovery mecha-
nism.

A key property of the topological reconstruction
scheme is the preservation of transitive object reach-
ability. In order for reconstructed memory to be
meaningful for subsequent executions of an appli-
cation, persistent dynamic memory structures must
be reachable through some anchor references. These
are found in the form of statically allocated refer-
ence variables such as global variables and static
local variables in C or static object fields in Java.
By providing a means for tying such references to
memory objects, pobj is capable of reconstructing
a complete memory image whose reachability edges
are isomorphic with those of the memory image
from the previous execution. This approach gives
rise to further potential procedures that can take
place during memory reconstruction such as auto-
matic deallocation of objects that are not reachable
from any anchor reference using simple mark-and-
sweep.

3.5 Interface

The interface methods that are exported by pobj
can be split into six basic categories based on their
associated functionality.

3.5.1 Initialization

This includes pobj_init() to initialize the library
before use, either upon first-time execution (con-
struction of the backing store) or subsequent execu-
tions (recovery and reconstruction). Initialization
can be parameterized with non-default sets of mem-
ory manager calls that are used for external (persis-
tent objects) and internal (pobj control structures)
memory allocation.

3.5.2 Memory Allocation

This includes pobj_malloc() and its variants for
transient (i.e. non-persistent) object allocation and
for use of ad-hoc memory manager calls, and
pobj_free() and pobj_finalize() for use in ex-
plicit object deallocations and deallocations by an
external garbage collector. Allocation returns a
handle to a (persistent or transient) object, which
can then be treated as any other memory object,
conforming to the ANSI-C standard with respect to
object bounds.

3.5.3 Persistency Control

This pobj_persistify()
pobj_unpersistify() to switch back and forth
between persistent and transient modes of an
object.

set includes and

3.5.4 Object Typing and Persistent Image
Updates

This large set includes explicit methods
for object typification (pobj_ref_typify(),
pobj_ref_flag() and pobj_ref_unflag()),
methods for dumping the in-memory object
images onto their persistent on-disk counterparts
(pobj_update_range () and its overloaded macros),
numerous methods that bundle setting of object

fields and typing of primitive fields (pobj_memcpy ()

and pobj_memset (), pobj_set_int() and respec-
tive variants for other types). This class also
contains more sophisticated update mechanisms
such as pobj_update_recursive(), which per-
forms a BFS-like traversal of a recursive data
structure and dums all changed objects to the
backing store. The latter can also be called
with a special flag that allows persistification of
transitively reachable non-persistent objects.

3.5.5 Static (Anchor) Reference Manipula-

tion
This includes setting and dumping
(with implicit typing) of static point-
ers with pobj_static_set_ref () and

pobj_static_update_ref ().

3.5.6 Transactional Contexts

This set includes pobj_start () and pobj_end() to
begin and commit a (possibly nested) backing store
transaction. The current implementation delivers a
conservative nesting scheme by which only a single
true level of nesting is propagated to the backing
store and all others are interpreted as depth coun-
ters.

The above set of methods allows great flexibil-
ity for applications using pobj for their persistency
needs. In particular, it supports various trade-offs
between fine-grained atomicity and recoverability
and runtime performance. These are further dis-
cussed in §6.1.2. Figure 2 demonstrates a simple al-
location of a list of persistent strings using deferred
update methods. The allocation is transparently
mediated to the backing store and automatically re-
covered upon subsequent executions.

4 Implementation

In this section, we describe the major implementa-
tion choices that were made in pobj and their con-
formance to the architectural guidelines in §3.

Node *1list NULL;
void add_line (char *1line) {
int len = strlen (line);

pobj_start ();

Node #*node = (Node *)

pobj_malloc (sizeof (Node));
char *str = (char *)

pobj_malloc (sizeof (char) * (len + 1));
pobj_ref_typify (node, node_ref_fields);

strcpy (str, line);
node->str str;
node->next list;

pobj_update (str);
pobj_update (node);
pobj_static_set_ref (&list, node);

pobj_end O ;

int main (int argc, char **argv) {
char line[256];

pobj_init O;
while (get_line (line, sizeof (line)))
add_line (line);
print_list O;
}

Figure 2: Example C program that utilizes pobj to
construct a continuously growing list of strings from
standard input, using deferred update methods.

4.1 Object Wrappers

Each object allocated with pobj is wrapped with a
pobj-specific header and a trailer consisting of refer-
ence field type flags. The per-object header carries
a minimal data set just enough to allow transient
objects to be understood by pobj methods: the ob-
ject’s size and a pointer to the object’s repository
entry or a null value if such an entry does not ex-
ist. This information is also sufficient to access the
trailing, variable length type flags. For the latter,
we safely assume that reference fields are both word-
sized and word-aligned so that reference type flags
only cost less than 3.2% additional space per object.
The two words used in the object header induce only
a constant space overhead per object.

The use of per-object type flags is only a tem-
porary solution and is soon to be replaced with a
single-word type descriptor in the object header that
points to a predefined type inside a type repository.
This way we hope to eliminate the current linear
space and time overheads associated with object al-
location and typification, respectively (see §7).

4.2 Repositories

The pobj library initializes and maintains two
global repositories per each application process.
Both repositories are implemented as extensible ar-
rays to allow quick access in constant time and are
stored to the backing store segment-by-segment.

Persistent objects repository. An item in this
repository maps a persistent memory object to
its on-disk counterpart. It also contains per-
object information that is sufficient to allow
object reconstruction upon subsequent execu-
tions, namely the object’s size and ID (the
pointer value of the object handle returned by
its latest allocation). This list is dumped to
the backing store at the resolution of a single
item, inducing a small overhead during object
allocation, deallocation, and persistification.

Static (anchor) references repository. An
item in this repository records the absolute
location of a static reference variable along

with its last known pointer value held. The use
of absolute pointers for this case is guaranteed
to be satisfactory for C as static variables are
known to reside at fixed offsets within the
data segment of the program’s binary image.
This is not necessarily the case, however, for
abstractions in other languages (e.g. main-
stream Java, where dynamic class loading is
often used). Therefore some further extensions
may be required to support these special case
conventions.

Both repositories are exclusively locked for write
access but are open for concurrent reads. This way,
they are guaranteed to be consistent at all times and
correspond to the current state of allocated persis-
tent objects and tied static references. It is possi-
ble, however, to read dirty (either stale or unstable)
repository data, causing severe malfunctions of the
library and possibly harming the coherency of the
backing store. We rely on the user to take care of
this problem, as it is analagous to dangling pointer
dereferencing with plain dynamic virtual memory.

It is interesting to note that a transient object
differs from a persistent object only by not having a
repository item associated with it. Hence, the pro-
cess of persistification corresponds to the allocation
of a new repository item, along with a mapping to
a newly allocated backing store record, and its as-
sociation with an already existing memory object.
Similarly, it is easy to unpersistify an object by ap-
plying the reverse procedure.

4.3 Reconstruction

The following is a description of the actions that are
carried out during the reconstruction of an applica-
tion’s persistent dynamic memory upon subsequent
executions of the program. These actions are trig-
gered by invoking pobj_init (), which automati-
cally determines whether a previous storage for the
program already exists.

Recover storage. This part is carried out auto-
matically by the underlying transactional stor-
age management library (11ladd).

Bootstrap. This reads the storage boot record, al-
lowing subsequent loading of the repositories.

Restore repositories. This loads the persistent
objects repository and the static references
repository into memory, segment-by-segment.

Reconstruct heap objects. This involves the al-
location of space and loading of persistent ob-
ject images while constructing a temporary
conversion table between old object IDs (han-
dles) and new ones returned by recent alloca-
tion.

Adjust object reference fields. Using the tem-
porary conversion table, adjust any reference
field within any restored object to the new ob-
ject handle.

Tie static (anchor) references. Again using the
conversion table, tie any known static reference
to the new object handle returned by the recent
allocation.

For the last two parts it is assumed that pointers
to persistent objects satisfy the authentic handle in-
variant (see §3.3). Otherwise, pointers may be nul-
lified during adjustments, resulting in partial loss of
topological properties. Further improvements can
be made to override this behavior (see §7).

By the end of this procedure, the heap is fully
reconstructed with reference fields adjusted to new
object handles that were returned by the recent ob-
ject allocation session.
resumed from that point without any manual inter-
vention.

Normal execution can be

4.4 Recursive Updates

Having reference-wise semi-typed objects in pobj al-
lows us to implement procedures that are useful for
recursive data structures manipulation. In partic-
ular, we provide an iterative method for dumping
all of a recursive data structure’s objects to their
persistent images, using a BFS-like coloring to de-
tect topology cycles. For each processed object, the
procedure reads its current contents, compares it
with its current in-memory version (possibly using

fast checksum calculation to reduce CPU and I/O
overhead), and dumps the memory image if it has
changed since the last update.

In its default behavior, the procedure does not
process transient objects encountered during its re-
cursive traversal, as these objects will not be recon-
structed on subsequent runs. However, by passing
in a flag to this procedure, it is possible to replace
this step with a persistification of such encountered
objects, resulting a fully persistent data structure
when the call terminates.

5 Transparent Persistency in Ti-
tanium/Java

One of our main design goals for the pobj layer
was to facilitate the integration of persistency into
a higher-level language. In order to drive the design
of the layer and as a proof of concept, we imple-
mented language-based persistency in the Titanium
programming language.

The Titanium persistency extension differs from
other persistency schemes in Java in its emphasis
on transparency. The extension was designed to re-
quire minimal programmer intervention in order to
obtain persistency, automatically determining when
persistent operations occur and issuing the required
backing store operations. Also unlike the Java per-
sistency mechanisms, the Titanium persistency ex-
tension is tightly integrated in the language instead
of relegated to the library API.

5.1 Titanium Overview

Titanium [11] is a single program, multiple data di-
alect of Java developed at UC Berkeley. It is de-
signed for high-performance scientific computing on
the major supercomputers currently in use, includ-
ing vector machines and clusters of multiprocessors.
Titanium has a global memory space abstraction,
where all data can be directly referenced by any
processor, both for portability and for ease of pro-
gramming.

We chose Titanium as our base language for mul-
tiple reasons. As a research project at Berkeley,

the compiler source code was easily available to us,
as well as the developers for helping us in modi-
fying the compiler. In addition, the current com-
piler implementation translates Titainum code to C,
making it easy for us to implement persistency by
generating calls to pobj functions. The Titanium
compiler also includes global analyses that would
be useful in optimizing Titanium programs that use
persistency (see §5.5.3). Finally, since Titanium is
for the most part a superset of Java 1.4, the persis-
tency additions we made to Titanium could just as
well be done to Java.

5.2 Persistency Semantics

As a first attempt at persistency in Titanium, we
decided to implement a semantics in which persis-
tency is completely known at compile-time. Not
only did this restriction make it easier for us to im-
plement persistency, it also allowed us to add per-
sistency without adversely affecting non-persistent
operations.

5.2.1 Persistent Types

In order for operations on persistent types to be
statically determinable, we added a new type hi-
erarchy separate from the usual hierarchy rooted
at java.lang.Object. This new tree is rooted at
ti.lang.Persistent, and all objects of all types in
this hierarchy are persistent. As show in Figure 3,
types in the persistent hierarchy do not extend and
therefore are not assignable to types in the non-
persistent hierarchy?. Thus, operations on types in
the normal hierarchy are always on non-persistent
objects, and on types in the persistent hierarchy are
always on persistent objects.

In order to avoid programmer confusion on re-
covery, fields of persistent objects that reference
non-persistent objects must be declared transient.
These fields are not restored on recovery.

2Interfaces are somewhat problematic in this scheme. Our
current semantics forbid the implementation of interfaces by
persistent types, but an alternate semantics in which a sepa-
rate hierarchy of persistent interfaces exists is also possible.

.
LY

user.Bar

Figure 3: Two separate type hierarchies exist, one for persistent types and one for non-persistent types.
A type in one hierarchy cannot be assigned to a type in the other.

5.2.2 Persistent Arrays

In order for persistency to be useful in Java, it
must be possible to implement persistent analogs to
the non-persistent types in the Java API. Persistent
strings and vectors are two examples that are espe-
cially necessary. In order to allow such types to be
implemented, persistent arrays must be supported.

Since arrays are special types in Java and are
not re-implementable by a programmer, a separate
mechanism for supporting persistent arrays was nec-
essary. As such, we added a persistent type qual-
ifier that can be used to declare an array as persis-
tent. For example, the declaration

int[] persistent x =
new int[4] persistent;

can be used to declare and allocate a persistent ar-
ray of integers.

Persistent array types cannot be assigned to non-
persistent array or object types, in order to preserve
static knowledge of persistent operations.

5.2.3 Persistent Operations and Transac-
tions

All operations on persistent objects, including allo-
cations and field writes, are guaranteed to be atomi-
cally reflected to the backing store without any pro-
grammer interference. A mechanism for aggregating
transactions, however, is useful for two reasons:

e Performance. Persistent operations at the
minimum require a write to a log file on disk,
so aggregating multiple operations into a single
write reduces disk I/0O.

e Consistency. Logically atomic operations on
data structures that require multiple writes
could leave a structure in an inconsistent state
if a crash occurs in the middle of such an op-
eration. Consider, for example, insertion into a
doubly-linked list:

oldnode.next.prev = newnode;
oldnode.next = newnode;

In order to maintain consistency of the list,
these two operations should either both occur
or both not happen.

In order to allow manual aggregation of opera-
tions by a programmer, we added a transaction
statement to Titanium. This statement corresponds
to a single transaction in the backing store, so either
all persistent operations contained within are com-
mitted or uncommitted with respect to the store.
(No guarantees are made, however, about opera-
tions on non-persistent objects.) An insertion into
a list could now look like this in order to guarantee
consistency:

transaction {
oldnode.next.prev = newnode;
oldnode.next = newnode;

}

the programmer does not have to worry about man-
ually opening and closing transactions, and it is im-
possible for a transaction commit to be forgotten.

Semantics for nested transactions currently reflect
the semantics of the pobj implementation: nested
transactions commit when the outermost transac-
tion does.

5.2.4 Recovery

Recovery of persistent objects must begin at set of
statically addressible roots. Our Titanium language
extension defines all static variables that reference
persistent objects to be recovered, as well as all tran-
sitively reachable persistent objects. Fields of per-
sistent objects that reference non-persistent objects
or are otherwise transient® are zeroed out on re-
covery.

5.3 Implementation

Since the Titanium compiler generated C code, per-
sistency can be implemented in Titanium by di-
rectly mapping operations on persistent objects to
appropriate calls in the pobj layer.

5.3.1 Object Layouts and Types

In the Titanium runtime implementation, each ob-
ject has a reference to a statically allocated type
descriptor. Since descriptors are statically allocated
and are at the same memory location on every pro-
gram run, descriptors do not have to be persistified.
The Titanium compiler, however, does have to pre-
vent the descriptor reference from being zeroed out
on recovery. This is done by neglecting to inform
the pobj layer that it is a reference, so that the
layer treats it as an integer and recovers it.

No changes to object layouts were required for the
persistency extension.

5.3.2 Operations

Allocations of persistent objects and arrays use the
pobj allocation calls in order to allocate space, as
described in §5.3.3. Allocations of non-persistent
objects and arrays are unaffected.

Reads on persistent objects are implemented the
same way as reads on non-persistent objects, as
reads do not affect the backing store.

Writes to persistent objects are implemented in
two ways, one for references and one for primitives:

3 Actually, at the current moment, transience of persistent
references and primitive fields is not supported, due to lack
of support from the pobj layer.

e References. References

pobj_set_ref ().

are set using

e Primitives. Primitives are set by doing a nor-
mal assignment followed by a pobj_update()
on the affected object. This allows primitives
of arbitrary width (which Titanium supports
through immutables) to be written in the same
way.

Writes to non-persistent objects also are not af-
fected.

Writes to static variables of persistent type use
pobj_static_set_ref (). Writes to non-persistent
static variables are not affected.

5.3.3 Memory Management

One of the main benefits of using the pobj layer
over something like RVM is that it integrates cleanly
with memory managers. In the Titanium implemen-
tation, we integrated pobj with Titanium’s Boehm-
Weiser garbage collector [3] without any changes to
the collector itself.

The Titanium runtime uses multiple different al-
location functions in order to obtain space from
the garbage collector. These include functions that
work only on a single garbage collector page, func-
tions that span pages, functions that don’t clear
memory on allocations, and functions that do clear
memory. With pobj’s adhoc allocation support,
these functions could be used as necessary by pass-
ing them to pobj when allocating a persistent ob-
ject.

Garbage collection itself also integrates well with
the pobj layer. The Boehm-Weiser collector sup-
ports finalization when deallocating an object, and
by passing pobj’s finalizer to the collector, the col-
lector informs the pobj layer on all object collec-
tions. Thus, the pobj layer can deallocate the space
in the backing store corresponding to collected ob-
jects. Garbage collection on non-persistent objects
is unaffected.

5.4 Bugs and Limitations

Due to time constraints, limitations in the pobj
layer, and limitations in the 1ladd library, the fol-

10

lowing limitations exist in the Titanium persistency
extension:

e The extensions only work with the sequential
and smp backend of the Titanium compiler.
This is due to a lack of support for wide point-
ers in the pobj layer, and a lack of distributed
support in 1ladd.

e Persistent Titanium arrays are not supported.

e Some semantic checks are not currently done by
the compiler. For example, it does not enforce
that persistent array types not be assigned to
non-persistent array types.

e Persistent operations in static initializers are
not currently supported. This is because re-
covery occurs after initializers are run. Such
operations can be supported by deferring their
persistification until after recovery is done.

e Transience of persistent references and primi-
tives is not supported. This is due to lack of
support from pobj.

5.5 Generalized Persistency Semantics

The persistency semantics we implemented in Tita-
nium limit the interactions between non-persistent
and persistent data types. Functions and containers
originally written to operate on non-persistent ob-
jects cannot operate on persistent objects, and pre-
defined non-persistent types cannot be made per-
sistent. Here we present alternate semantics that
allow such interactions to occur and discuss the im-
plementation changes necessary to support them.

5.5.1 Persistency by Type

The separation of non-persistent and persistent type
hierarchies discussed above is somewhat artificial,
required only to avoid runtime persistency checks.
By replacing the implementation of writes in the Ti-
tanium compiler with a runtime persistency check
and branch to the appropriate persistent or non-
persistent write, this separation requirement can be
implemented. Persistency could then be obtained

by implementing an interface instead of by extend-
ing a type.

There are a couple of flaws in this set of semantics.
Performance of operations on non-persistent objects
suffers greatly, with a single memory write now re-
quiring an addition memory read and a branch. The
semantics are also not completely well-defined with
respect to inheritance: what happens to the fields
inherited by a persistent type from a non-persistent
supertype? Primitive fields do not pose a problem,
but non-persistent, non-transient reference fields do,
violating the previous constraint that persistent ob-
jects cannot have such fields. Either this constraint
needs to be relaxed, resulting in possible program-
mer confusion when such fields are not recovered, or
such inheritance must be made illegal.

5.5.2 Persistency by Qualification

A more general scheme that allows predefined types
to be persistent is to use a persistent qualifier to
denote an object’s persistency, similar to that dis-
cussed in §5.2.2 for arrays. However, assignment of
persistent types to non-persistent types would be
allowed, and the runtime would use the scheme de-
scribed in §5.5.1 for writes.

An important semantic issue arises with the use
of qualifiers: do qualifiers get propagated to refer-
ence fields? For example, does the backing array of
a persistent Vector also become persistent? With-
out this ability, such a type would be useless. The
solution appears to be persistence by reachability, in
which all objects reachable (through non-transient
fields) from a persistent object also are persistent.
As such, the compiler would have to determine when
an object becomes newly reachable and accordingly
make it persistent.

Asin §5.5.1, this scheme forces programs to pay a
penalty for each non-persistent write, reducing per-
formance.

5.5.3 Qualification Inference

The Titanium compiler contains optimizations that
leverage global analyses in order to infer various de-
sirable properties of references in a program. For

11

polypersistent

N

persistent

nonpersistent

Figure 4: Partial lattice of qualifiers that can be used to infer persistency of references.

example, it can infer when a particular pointer al-
ways references an object that is local to the current
processor and thus generate code that takes advan-
tage of this fact. The results of this inference rival
that of code heavily annotated by hand, with no
work required from the programmer [4].

Titanium’s inference system can also be used
to determine when variables only reference non-
persistent types, and thus be used to generate code
that does not require the check and branch discussed
in §5.5.1. Three qualifiers must be added to the
compiler?:

e persistent: the referenced object is always
persistent

e nonpersistent: the referenced object is al-
ways non-persistent

e polypersistent: the referenced object may be
persistent or non-persistent

These qualifiers form a partial lattice with
polypersistent at the top, as in Figure 4. The
optimal inferred solution is that which maximizes
the number of nonpersistent qualifiers in a pro-
gram, which can be computed easily [5].

With the qualifiers introduced above, the com-
piler can eliminate the persistency check and branch
for persistent and nonpersistent references. A
program which makes only limited use of persistence
would thus pay little penalty for non-persistent ac-
cesses.

4The nonpersistent and polypersistent qualifiers need
only be internal to the compiler and not exposed to the pro-
grammer.

12

6 Evaluation

We assess the pobj layer using two main criteria:

e Performance. We evaluate performace com-
pared to other persistency libraries and discuss
programmer optimizations to increase perfor-
mance.

e Usability. We compare the difficulty in using
pobj versus other options.

6.1 Performance

In this section, we examine the performance of the
pobj layer. We compare it to other persistency im-
plementations and determine the performance ben-
efits of certain pobj features.

6.1.1 Relative Performance

In order to quantify the effects of pobj’s generality
on performance, we measured it against RVM and
manual encoding of data structures to disk. We
used a microbenchmark that generates a list of in-
tegers, saves the list to disk, and subsequently re-
covers the list from disk. Unfortunately, an apples
to apples comparison was not possible, due to the
limited functionality provided by RVM and manual
encoding. The three implementations and the mea-
surements on them were as follows:

e pobj. The list is generated in the context of a
single transaction, and each node is allocated
as persistent. Save time is computed as the
amount of time required to recursively update
all nodes and to commit the resulting changes.
Recovery time does not include normal initial-
ization time.

Time to Save Integer List (P4 2.4GHz)

0.1 ‘ ‘
'pobj’ —+—
'manual’ ---x---
Irvm’ ---%---
- —
//J o
0.01) / g |
o /
°
c
g J
) [
< /
2 [
£ |
= I
0.001 |
¥
"
0.0001 | ‘ ‘ |
0 500 1000 1500 2000 2500

Number of Nodes

Figure 5: Time to write a simple list data structure to disk using pobj, LRVM, and manual writes.

Time to Restore Integer List (P4 2.4GHz)

' T
"pobj’ —+—
'manual’ ---x---
Irvm’ ---%---
—+
0.1 | s |
_—
_—
_—
_—
o
°
=
S
o
: i
K
©
£
[
0.001 [~ |
0.0001 | ‘ ‘ |
0 500 1000 1500 2000

2500

Number of Nodes

Figure 6: Time to restore a simple list data structure from disk using pobj, LRVM, and manual reads.
Initialization time for pobj and LRVM is not included in their restoration times.

e RVM. A single region is mapped into memory,
and nodes are sequentially allocated on this re-

13

gion. Pointers in nodes are kept swizzled in

memory. Save time is computed as the amount

of time required to commit a transaction rang-
ing over all nodes. Recovery time does not in-
clude initialization of the RVM library.

Manual encoding. List nodes are augmented
by a list ID, and nodes contain both a ref-
erence to the next node and the next node’s
ID. Nodes are encoded on disk as the tuple
(NodeID, IntVal, NextID). Upon recovery, each
node’s next reference is regenerated according
to the saved NextID, using an array to map
IDs to nodes. Save time consists of the time re-
quired to write each node’s tuple to disk. Re-
covery time includes both regenerating nodes
from their tuples and adjusting their next ref-
erences.

As Figure 5 indicates, RVM performs about 8 times
as fast as manual encoding when saving the list, and
manual encoding performs about 5 times as fast as
pobj. RVM’s fast performance is to be expected,
since it does no pointer swizzling (the in-memory
swizzled pointers result in slower pointer accesses,
however, which was not benchmarked), and it’s re-
flection to disk consists of a single sequential dump
of the mapped region. There are a few reasons for
pobj’s slow performance compared to manual en-
coding:

e It writes over twice as much data to disk, since
it writes out each object on allocation and on
update.

e The 11add backing store has been measured to
perform poorly relative to manual disk writes

[2].

e The performance measurement includes the
time it takes for pobj to determine which ob-
jects have been updated.

The gap between manual encoding and pobj in
restorations is even larger, as Figure 6 shows. This
is largely in part due to the simplicity of the list
data structure and the use of an array in the manual
decoding as opposed to a hash table in pobj. RVM
performs worse than manual encoding for small list
sizes due to the fact that regions must be at least as

14

large as a memory page, which is more than required
for small lists.

In general, pobj performs 5 to 10 times slower
than manual encoding. This is not a large price to
pay for its extra features such as transactions and
its relative ease of use. On the other hand, pobj is
another factor of 8 to 10 slower than RVM. This is
the price of flexibility.

6.1.2 Transactions and Updates

The pobj layer supports user-defined transactions
mainly to allow coarser atomic operations in order
to maintain consistency. Transactions provide per-
formance benefits as well by allowing multiple op-
erations to be written to the 11ladd log at once. As
Figures 7 and 8 show, aggregating multiple alloca-
tion or write operations into a single transaction
can provide an order of magnitude increase in per-
formance, even for small objects.

In addition to transactions, the pobj layer con-
tains support for performing multiple operations on
the same object and then issuing a single update
to reflect them. The results in 8 show large per-
formance advantages in this technique, with write
costs approaching that of non-persistent objects for
large numbers of writes.

6.1.3 Partial Updates

In order for operations on large objects to attain
a reasonable level of performance, the pobj layer
provides a mechanism for updating only the modi-
fied part of an object in the backing store instead of
rewriting the entire object. This is especially impor-
tant for operations on persistent arrays, which could
be arbitrarily large in size. Figure 9 shows that par-
tial updates perform about 2 to 3 times better than
full object updates.

While a threefold increase in performance is
nice, partial updates should theoretically perform
as much as N times better for an object of size N.
As can be seen in Figure 9, this is not the case.
This is due to an inefficient implementation of large
records in 1lladd that requires an entire record to
be written even on a partial update.

Time per Allocation, 100 Byte Objects (P4 2.4GHz)

1000 T T T T
‘persistent’ —+—
non-persistent’ ---x---
L
\
e
100 D E
o
o
c
S
o
2
S 0F E
E
©
£
[
1k i
0.1 L 1 ! 1 |
0 200 400 600 800 1000

Operations/Transaction

1200

Figure 7: Time to allocate a persistent object and reflect it to the backing store. Aggregrating multiple

allocations into a single transaction increases performance.

Time per Write to Single Object (P4 2.4GHz)

1000
‘ ‘persistent, iO byte object, 1 hpdate per transéct\on’ —t
persistent, 10 byte object, 1 update per write’ ---x---
'persistent, 100 byte object, 1 update per transaction’ ---*---
'persistent, 100 byte object, 1 update per write’ =}
o)
o
c -
o
o
Q
@
[=}
S
E
[-
£
= T TTT—
—y
01 | 4
0.01 ‘ ‘ ‘ 1 ‘
0 200 400 600 800 1000 1200

Operations/Transaction

Figure 8: Time to write to a persistent object and reflect the change to the backing store. Aggregating
multiple writes into a single transaction increases performance, as does issuing a single update for multiple

writes.

15

Time to Update a Single Field in a Persistent Object (P4 2.4GHz)

100000 T

10000

Time (microseconds)

1000

100 L

‘ “full ‘object update’ —+—

1000
Object Size

10000 100000

Figure 9: Comparison of writing out an entire object upon a field write and writing out only the modified

field.

6.1.4 Titanium Performance

The performance of the Titanium persistency ex-
tension is on par with C code that directly uses
pobj. Unfortunately, we could not compare its per-
formance to Serializable or JDO, as neither is
currently supported in Titanium.

6.2 Usability

One of the main advantages that the pobj layer has
over other persistency libraries is its ease of use and
flexibility. Our experience with RVM in particular
was not entirely pleasant, with multiple operations
required to initialize the library and allocate a re-
gion in which to work in. These operations would
seemingly fail for no apparent reason; for example,
we could not get RVM to map a region into statically
allocated space, despite abiding by the documenta-
tion’s requirements that the buffer be page-aligned.
Combined with the lack of support for relocation,
this forced us to manually swizzle pointers between
list nodes. In addition, we were unable to success-
fully recover more than about 400 list nodes from a

persistent region, regardless of how large the region
was, limiting the benchmarks we could run.

Persistency through manual dumping of data
structures is also difficult to use. Not only must
pointer swizzling be done by hand, but the data
contained in a structure must be encoded in such a
way as to be recoverable. This is not only tedious
but error-prone as well®.

The pobj interface, on the other hand, is quite
easy to use. A single call to an initialization func-
tions is required to start the library, and the pobj
allocation functions can be used as drop-in replace-
ments for malloc(), calloc(), and free(). Only
two calls are required to save a data structure to
the backing store, as long as the structure has been
typified (§3.5.4): one to save its root in a static vari-
able and the other to recursively update all objects
reachable from the root. The pobj layer does not
sacrifice flexibility for ease of use, however. It pro-
vides many functions that advanced programmers

5For example, checkpointing code in a Titanium heart
simulation suffered from many bugs and took the develop-
ers months to get it working.

16

can use to control what gets updated, when up-
dates occur, and when transactions begin and end.
In addition, it exports an interface that can be eas-
ily integrated with other libraries such as garbage
collectors. This combination of usability and flexi-
bility is pobj’s main advantage over RVM and other
persistency layers.

7 Future Work

In this section, we describe several issues that need
to be addressed in the implementation of pobj and
the Titanium persistency extension. We consider all
of them to be beneficial to user applications. How-
ever, while some of them are relatively simple tech-
nical hacks, others require extensive modifications
to current pobj and Titanium internals.

Type descriptors. As mentioned in §4.1, replac-
ing the currently used embedded type informa-
tion with global, user-definable type descrip-
tors would lead to a considerable performance
gain, thanks to reduced time and space over-
heads. Implementing this feature requires an
additional types repository to be maintained
by pobj, similar to the ones that are already
in use.

Transient fields. In current pobj implementation
every field of a persistent object, reference or
non-reference, is always restored during recon-
struction. Furthermore, any reference field of
such an object will always be traversed dur-
ing recursive update procedure. However, it is
sometimes necessary to denote transient fields
within objects that do not follow this behav-
ior: the contents of such fields is known to
be lost (nullified) through reconstruction, and
they should not be traversed by recursive up-
date procedures. (This is analogous to tran-
sient fields in Java and their role in object se-
rialization.)

Supporting transient fields would require
adding an considerable amount of type infor-
mation to each object, given that type de-
scriptors are not yet implemented. Introducing

them becomes straightforward in the presence
of type descriptors, hence we consider it a de-
pendent feature of the above.

Correct swizzling of non-authentic handles.
As previously mentioned in §4.3 and §3.3, this
feature would allow correct reconstruction of
object reference fields and static references,
even if the authentic handle invariant is not
met. One way to support it is to construct a
temporary radix tree that will allow efficient
mapping of arbitrary pointer values to object
handles. A handy feature for many usage
patterns, it will be implemented as a future
extension to pobj.

Generalized persistent statics. This relates to
the persistification of any static variable /
structure, that is not necessarily a static refer-
ence. Such a feature would require considerable
extensions to the way pobj handles persistent
image binding, so we consider it to be a long-
term extension.

Explicit abort semantics. This relates to the
ability to invoke explicit abort methods that
restore a set of objects to the state of their last
known persistent image.

Generalized Titanium semantics. As dis-
§5.5, generalizing Titanium’s
persistency semantics would make it possible
to use legacy code with persistent objects.

cussed in

Titanium persistency optimizations. The Ti-
tanium compiler currently issues an update for
every persistent operation in a transaction. It
should be possible for the compiler to detect
when multiple operations occur on the same
object and thus issue only a single update at
the end of the transaction.

8 Conclusion

The pobj layer is a useful tool for providing per-
sistency in both C and high-level languages such
as Titanium. Though it does not perform as well

17

as aternative persistency facilities, its ease of use
and flexibility make it ideal for programs that don’t
make heavy use of persistency.

While other mechanisms for providing persistency
in a high-level language have existed for years, they
have primarily been implemented at the application
level over heavyweight databases. The Titanium
persistency extension, on the other hand, integrates
persistency into the language, allowing persistency
to be transparent to programmers. Its implementa-
tion on top of the lightweight pobj layer allows it to
be integrated with the rest of Titanium’s language
features without causing any interference. A simi-
lar approach can be followed in Java to provide easy
persistency to the masses.

References

[1] Java object serialization specification, 2001.
ftp://ftp.java.sun.com/docs/j2sel.4 /serial-spec.pdf.

[2] J. Bayer, J. Blomo, J. Kittiyachavalit, and E. Brewer.
Lladd: Lightweight library for atomic, durable
data. Technical report, UC Berkeley, March 2004.
http://www.xcf.berkeley.edu/ jkit/LLADD.pdf.

[3] H. Boehm and M. Weiser. Garbage collection in an un-
cooperative environment. Software Practice and Experi-
ence, pages 807-820, September 1988.

[4] B. Liblit and A. Aiken. Type systems for distributed
data structures. Principles of Programming Languages,
January 2000.

[5] B. Liblit, A. Aiken, and K. Yelick. Type systems for
distributed data sharing. International Static Analysis
Symposium, June 2003.

[6] B. Liskov, A. Adya, M. Castro, M. Day, S. Ghemawat,
R. Gruber, U. Maheshwari, A. Myers, and L. Shira. Safe
and efficient sharing of persistent objects in thor. Pro-
ceedings of the 1996 ACM SIGMOD Int. Conf. on Man-
agement of Data, pages 318-329, June 1996.

[7] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and
P. Schwarz. ARIES: a transaction recovery method sup-
porting fine-granularity locking and partial rollbacks us-
ing write-ahead logging. ACM Trans. Database Syst.,
17(1):94-162, 1992.

[8] J. Moss. Working with persistent objects: To swizzle or
not to swizzle. Transactions on Software Engineering,
18(8):657-673, 1992.

[9] C. Russell. Java data objects: Jsr
Technical report, Sun Microsystems, Inc.,
http://java.sun.com/products/jdo/index.jsp.

000012.
2000.

18

[10] M. Satyanarayanan, H. H. Mashburn, P. Kumar, D. C.
Steere, and J. J. Kistler. Lightweight recoverable virtual
memory. ACM Trans. Comput. Syst., 12(1):33-57, 1994.

K. A. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Li-
blit, A. Krishnamurthy, P. N. Hilfinger, S. L. Graham,
D. Gay, P. Colella, and A. Aiken. Titanium: A high-
performance java dialect. Concurrency: Practice and
Ezperience, 10(11-13), September—November 1988.

(11]

	1 Introduction
	2 Background
	2.1 Design Goals
	2.2 Related Work

	3 Architecture
	3.1 High-Level Design
	3.2 Object Images
	3.3 Simplifying Assumptions
	3.4 Topological Memory Image Reconstruction
	3.5 Interface
	3.5.1 Initialization
	3.5.2 Memory Allocation
	3.5.3 Persistency Control
	3.5.4 Object Typing and Persistent Image Updates
	3.5.5 Static (Anchor) Reference Manipulation
	3.5.6 Transactional Contexts

	4 Implementation
	4.1 Object Wrappers
	4.2 Repositories
	4.3 Reconstruction
	4.4 Recursive Updates

	5 Transparent Persistency in Titanium/Java
	5.1 Titanium Overview
	5.2 Persistency Semantics
	5.2.1 Persistent Types
	5.2.2 Persistent Arrays
	5.2.3 Persistent Operations and Transactions
	5.2.4 Recovery

	5.3 Implementation
	5.3.1 Object Layouts and Types
	5.3.2 Operations
	5.3.3 Memory Management

	5.4 Bugs and Limitations
	5.5 Generalized Persistency Semantics
	5.5.1 Persistency by Type
	5.5.2 Persistency by Qualification
	5.5.3 Qualification Inference

	6 Evaluation
	6.1 Performance
	6.1.1 Relative Performance
	6.1.2 Transactions and Updates
	6.1.3 Partial Updates
	6.1.4 Titanium Performance

	6.2 Usability

	7 Future Work
	8 Conclusion

