
Pretty Good Voting 
(PGV) 

Christian Bell, Jason Duell, Amir Kamil 
 

Computer Security 
CS 261 

Fall 2004 



PGV Introduction 
• According to the SERVE report, "there really is no good way to 

build [..] a voting system without a radical change in the overall 
architecture of the Internet and the PC, or some unforeseen 
security breakthrough“ 

         
• PGV is an effort to provide a practical Internet voting solution 
 
• What's the best we can do with current Internet technologies 

assuming we are not targeting the holy grail of elections, 
presidential elections? 

 
• How and to whom can we provide 'Pretty Good Voting' ? 

– Elections possible for non-profit organizations, corporate shareholders 
– Potential for higher voter turnouts 
– Potential for higher voter convenience 
– Potential for higher confidence in results 



Problem space  

Federal online elections “Impossible” 

E-commerce  
(HTTPS) 

Easy and well  
understood 

Application Level of difficulty 

PGV ? ? ? 



Election Requirements 

• “Must-haves” 
– Fair count: registered voters only, vote only once, 

counted accurately 

• “Nice to Have” 
– “Strong” anonymity  

• “weak”, ecommerce-style anonymity may be OK 

• Not needed? 
– Preventing coercion, selling of votes 
– Receipt-free (receipts are good!) 
– Denial of Service (temporary DoS is OK) 



Focus on Feasibility/Acceptance 

PGV Environment 
• Registered voters only 
• Collusion resistance: 

– Decentralized tabulation 
– Prevent ballot stuffing 

• Robust: don’t lose votes 
• Spyware detection 
• E-commerce style availability (web server) and 

security (SSL and DNS): No better, no worse 
• Open policy: open security and voting protocols 
 

 

Ease of Use 
• Standard Web browser 

– Perhaps with applet, plugin 

• No user key management 
• Voters can see their 

ballots (in plain text) in 
the results 



A A A 

O O O O 

V 

PGV “simple” solution 

1. Voter sends ballot to all authentication servers: 
Ballot = {User, Pass, Vote, unique_id}Kas 

2. Authentication servers validate user, then 
send ballot to Observers with voter 
obscured as MD5(user, password). 

3. Observers check that authentication 
servers produce same results.  Publish 
votes.  Voters can find/check their ballot 
via their unique_id. 



A A A 

O O O O 

V 

V1 V2 V3 V4 V5 

V3 V1 V4 V5 V2 

V2 V3 V1 V5 V4 

M1 

M2 

M3 

PGV Mix-net solution 

1. Browser encrypts ballot with Mix-net public 
keys, and sends to authentication servers: 

 (user, password, {{{vote, unique_id}M3}M2}M1) 

2. Authentication servers validate 
user, sign {vote} and send to 
observers. 

3. Observers check that authentication 
servers produce same ciphertexts; 
pass into mix-net. 

4. Mix-net shuffles voters/votes.  Each 
step stored with observers for 
verfiability, including final results. 
Voters can find/check their ballot via 
their unique_id. 



Security guarantees 

• Authentication servers 
– Must all produce same result, or flag raised, so all 

must collude to tamper with votes 
– Sign results, so fraud traceable 

• Observers 
– Not trusted with any secrets.  All inputs signed by 

source, so can’t tamper. 

• Mix-Net 
– All servers would need to collude to compromise 

voter’s anonymity. 



“Spyware” detection 
• Use out-of-band channel to distribute per-voter permutations. 
• Voters cast ballot for symbol corresponding to candidate. 
• Spyware can’t predict symbol for a given candidate, so can’t 

swing election (at best can randomly misrepresent voter). 

= Kerry 

= Bush 

= Nader 

1. 

2. 

3. 

1. Mail ballot 2. On-screen vote 


	Pretty Good Voting (PGV)
	PGV Introduction
	Problem space	
	Election Requirements
	Focus on Feasibility/Acceptance
	PGV “simple” solution
	PGV Mix-net solution
	Security guarantees
	“Spyware” detection

