CS 61b: Final Review

Data Structures

Amir Kamil and Jack Sampson

DISCLAIMER

We have NOT seen the exam.
We do NOT know the format of the exam

What we are presenting is what we
“think is important” for the exam

Amir Kamil and Jack Sampson Final Review

Review Topics

= Inheritance, Method Calls
= Asymptotic Analysis
= Data Structures
o Binary Search Trees
o B-Trees
o Heaps
o Hash Tables
a AVL Trees
= Graphs
o DFS, BFS
o Topological Sort
o Strongly Connected
Components

o Dijkstra

o Kruskal

Sorting

Skip Lists

Threading, Synchronization
Scheduling

Minimax

B+ Trees

Threaded Trees

Amir Kamil and Jack Sampson

inal Review

‘ Inheritance/Method Calls

= Given the class definitions on the next slide,
which lines in class foobarbaz are illegal?

Amir Kamil and Jack Sampson Final Review

‘ Inheritance

package foo;
public class foo {
static void f1() {...}
protected boolean f2(int x) {...}
private String f3(String s) {...}
}

package foo;
import bar.bar;
public class foobarbaz {
static void main(String[] args) {
foo f = new foo();
bar r = new bar();
baz z;
r.f3(3);
£.£2(3);

package foo;

public class baz extends foo {
private String f3(String s) {...}

}

z = (baz) f;

f =new baz();
£.£23);

z = (baz) f;

package bar;

import foo.foo;

public class bar extends foo {
protected boolean f3(int x) {...}

z.f1();
r.f10);
((foo) 1).f1();
}
}

Final Review

Inheritance/Method Calls

Access table:

world package | child definer
public X X X X
private X
protected X X X
<default> X X

Static methods called according to static type
Child type can be assigned to parent variable
without a cast, but the reverse requires one, and
the dynamic types must match

Amir Ka n Final Review

‘ Inheritance

package foo;
public class foo {
static void f1() {...}
protected boolean f2(int x) {...}
private String f3(String s) {...}
}

package foo;

public class baz extends foo {
private String f3(String s) {...}

}

package bar;

import foo.foo;

public class bar extends foo {
protected boolean f3(int x) {...}

}

package foo;
import bar.bar;
public class foobarbaz {
static void main(String[] args) {
foo f = new foo();
bar r = new bar();
baz z;
r.f3(3); /I ILLEGAL
£.£2(3);
z=(baz) f; /I ILLEGAL
f = new baz();
£.£2(3);
z = (baz) f;
z.f1();
r.f1(); /I ILLEGAL
((foo) 1).f1();

Amir Kamil and Jack Sampson

Final Review

| Asymptotic Analysis

= O — Upper bound/Worst case
= Q — Lower bound

= © —both

= 0 - strictly Upper bound

More detail...

Amir Kamil and Jack Sampson Final Review 8

| Asymptotic Analysis

T(n) is O(f(n)) if and only if there exists positive constants C and N
such that

T(n) <=Cf(n)foralln>=N
N C(n)

v

T(n)

Amir Kamil and Jack Sampson Final Review 10

| Asymptotic Analysis
T(n) is O(f(n)) if and only if there exists positive constants C and N
such that
T(n)<=Cf(n)foralln>=N
5 f(n)
T(n)=4n
T(n) f(n) =n
4nisO(n)
f(n)
Amir Kamil and Jack Sampson Final Review 9
| Asymptotic Analysis

T(n) is O(f(n)) if and only if there exists
positive constants C and N such that
T(n) <= Cf(n) foralln>=N

T(n) is Q(f(n)) if and only if there exists
positive constants C and N such that
T(n) >=Cf(n) foralln>=N

Final Review 1

| Asymptotic Analysis

T(n) is ©(f(n)) if and only if
= T(n)is O(f(n))

and
= T(n)is Q(f(n))

Examples
5n2+1 is ©(n?)
3n is O(n?), but 3n is NOT ©(n?)
because 3n is not Q(n?)

Final Review 12

| Asymptotic Analysis Problem

= Find the running time of the following code:

int foo(int x) {

intans =1;

for (inti=0;i<x;i++) {
for (intj = 0;j <1i; j++) {

ans *= (i +j);

}

}

return ans;

}

Amir Kamil and Jack Sampson Final Review

| Asymptotic Analysis Solution

= The nested loops give away the answer: the outer loop
executes x times, the inner loop an average of x/2 times,
for a running time of O(x?).

int foo(int x) {

intans =1;

for (inti=0;i<x;i++) {
for (int j = 0; j <1 j++) {

ans *= (i +]);

}

}

return ans;

}

Amir Kamil and Jack Sampson Final Review 14

‘ Trees: Binary Tree

Tree: A

Preorder : ABCEGFD
Inorder : CEBAGDF
Postorder: ECBDFGA

Amir Kamil and Jack Sampson Final Review

‘ Trees: BST Problem

= Remove 8 from:

Amir Kamil and Jack Sampson Final Review 16

‘ Trees: BST Problem

= Remove 8 from:

Replace with successor (left-most node in
right subtree)

Amir Kamil and Jack Sampson Final Review

‘ Trees: BST Solution

= Final tree:

Amir Kamil and Jack Sampson Final Review 18

Trees: B-Tree of Order 4 / 2-3-4 Tree

= Insert 4 and 6 into the following 2-3-4 tree

Amir Kamil and Jack Sampson Final Review 19

Trees: B-Tree of Order 4 / 2-3-4 Tree

= Insert 4

Amir Kamil and Jack Sampson Final Review 20

Trees: B-Tree of Order 4 / 2-3-4 Tree

= Insert 6

Overflow, so split node and
promote middle element

Amir Kamil and Jack Sampson Final Review 21

Trees: B-Tree of Order 4 / 2-3-4 Tree

= Insert 6

Overflow, so split node and
promote middle element

Amir Kamil and Jack Sampson Final Review 22

Trees: B-Tree of Order 4 / 2-3-4 Tree

= Remove 16 from the following 2-3-4 tree

Amir Kamil and Jack Sampson Final Review 2

Trees: B-Tree of Order 4 / 2-3-4 Tree

= Remove 16

Underflow, so merge with sibling
and demote parent element

Amir Kamil and Jack Sampson Final Review 24

Trees: B-Tree of Order 4 / 2-3-4 Tree

= Remove 16

Underflow, so merge with sibling
and demote parent element

Amir Kamil and Jack Sampson Final Review

| Priority Queues — Problem

= Add 9, 76, 54, 3, 33, 21 to a max heap, using only
the array based representation

Amir Kamil and Jack Sampson Final Review 26

‘ Priority Queues — Insertion

Insert at the last position in the heap
Reheapify up: if the element is greater than
its parent, swap them and repeat

= For an element at position n, its children are
at 2n+1 and 2n+2

For an element at position n, its parent is at
floor[(n-1)/2]

Amir Kamil and Jack Sampson Final Review

‘ Priority Queues — Solution

= Add 9, 76, 54, 3, 33, 21 to a max heap, using only
the array based representation

Amir Kamil and Jack Sampson Final Review 28

‘ Priority Queues — Solution

= Add 9, 76, 54, 3, 33, 21 to a max heap, using only
the array based representation

Amir Kamil and Jack Sampson Final Review 29

‘ Priority Queues — Solution

= Add 9, 76, 54, 3, 33, 21 to a max heap, using only
the array based representation

Fels (=] [1 [-

0 1 2 3 4 5

Amir Kamil and Jack Sampson Final Review 30

Priority Queues — Solution

Add 9, 76, 54, 3, 33, 21 to a max heap, using only
the array based representation

|76|9‘54|3‘ ‘ ‘

0 2 3 4 5

Amir Kamil and Jack Sampson Final Review

Priority Queues — Solution

Add 9, 76, 54, 3, 33, 21 to a max heap, using only
the array based representation

P e —
|76|9‘54|3‘33‘ \

0 2 3 4 5

|76|33‘54|3‘9‘ \

0 2 3 4 5

Amir Kamil and Jack Sampson Final Review 32

Priority Queues — Solution

Add 9, 76, 54, 3, 33, 21 to a max heap, using only
the array based representation

|76|33‘54| 3 \ 9 \21\...
76
Tree
Representation q?’

Amir Kamil and Jack Sampson Final Review

2 5

Priority Queues — Problem

Remove the max from the heap

|76|33‘54|3‘9‘21‘...

2 3 4 5

0

Amir Kamil and Jack Sampson Final Review 34

Priority Queues — Removal

Replace the max element with the last
element in the heap

Reheapify down: if one or both of its children
is larger than it, swap with the larger of the
children and repeat

For an element at position n, its children are
at 2n+1 and 2n+2

For an element at position n, its parent is at
floor[(n-1)/2]

Amir Kamil and Jack Sampson Final Review

Priority Queues — Solution

Remove the max from the heap

|7‘6’|'a54|3‘9‘21‘...

0 1 2 3 4 5

|21|33‘54|3‘9‘ ‘

0 2 3 4 5

Amir Kamil and Jack Sampson Final Review 36

Priority Queues — Solution

Remove the max from the heap

e =[o]o] [

0 1 2 3 4 5

|54|33‘21|3‘9‘ ‘

0 1 2 3 4 5

Amir Kamil and Jack Sampson Final Review

Priority Queues — Solution

Remove the max from the heap

|54|33\21|3‘9‘ ‘

[
A
Tree
Representation

Amir Kamil and Jack Sampson Final Review 38

2 3 4 5

Hash Table Problem

Draw the structure of a size 7 hash table after
insertion of keys with the following hash
codes: 0, 95, 21, 6, 64, 74, 3, 54, 34, 75, 10.

Amir Kamil and Jack Sampson Final Review 39

Hash Tables

High-level idea — 2 components

1. Big array called hash table of size M

2. Function h which maps keys to integer values
For (key, item), use h(key) % M to find
location of item in table
Linked list in each entry that stores all items
that map to that location (chaining)

Amir Kamil and Jack Sampson Final Review 40

Hash Table Solution

Draw the structure of a size 7 hash table after
insertion of keys with the following hash
codes: 0, 95, 21, 6, 64, 74, 3, 54, 34, 75, 10.

0 6
a

ETETEEEE
nﬁé 95] [o4] o]
2| A (0] [7a) 5] [o4
% vl

Amir Kamil and Jack Sampson Final Review

AVL Tree Problem

Given the following AVL Tree, performs these
consecutive operations and draw out the tree
in each step:

o Remove(7)

o Insert (11)

o Insert(12)

Amir Kamil and Jack Sampson Final Review 42

‘ AVL Trees

= AVL Trees are just Binary Search Trees that
can rotate their nodes to try to maintain
balance.
o Two kinds of rotations — single and double
o Can decide which to do based on structure of tree

Amir Kamil and Jack Sampson Final Review 43

Insertions/Removals

= You have 3 nodes of importance, which we
will call x, y, and z (z is the parent of y which

is the parent of x)

o If x is the right child of y, and y is the right child of
z, you do a single rotation (same goes for left child
of left child)

o If x is the right child of y, and y is the left child of z,
you do a double rotation (same goes for left child
of right child)

Amir Kamil and Jack Sampson Final Review 44

Remove(7)

Remove 7 as in BST

Amir Kamil and Jack Sampson Final Review 45

Remove(7)

Single rotate

Amir Kamil and Jack Sampson Final Review 46

Remove(7)

Final tree

Amir Kamil and Jack Sampson Final Review 47

Insert(11)

Insert as in BST

Amir Kamil and Jack Sampson Final Review 48

Insert(12)

Insert(12)

Double rotate

Amir Kamil and Jack Sampson Final Review 50

()
Insert as in BST
Amir Kamil and Jack Sampson Final Review 49
Insert(12)
Final tree
Amir Kamil and Jack Sampson Final Review 51

| Searches (BES and DFES)

= BFS uses a queue, DFS uses a stack
public void BFS/DFS(Node start) {
Queue/Stack s = new Queue/Stack();
s.enqueue/push(start);
while (!s.empty()) {
Node n = s.dequeue/pop();
mark(n);
for (all children that are not yet marked) {
s.enqueue/push(child);
}
}
}

Amir Kamil and Jack Sampson Final Review 52

| Searches (BES and DES) Problem

= Perform BFS and DFS on the graph, starting
at node 1

| Seatches (BES and DES) Solution

= Perform BFS and DFS on the graph, starting
at node 1

BES DFS
1 1
2 2
5 3
3 4
4 5
" D7y :
7 7
Final Re 54

‘ Topological Sort Problem

= Perform a topological sort on the graph

o—

7

Amir Kamil and Jack Sampson Final

‘ Topological Sort

= Perform DFS, computing start/finish times
= Order nodes by decreasing finish times

Amir Kamil and Jack Sampson Final Review

‘ Topological Sort Solution

= Perform a topological sort on the graph

'SCC Problem

= Find the strongly connected components of
the graph

Amir Kamil and Jack Sampson Final Review

1/14 8/13
1.1
? 2.5
3/4 3.6
2
2/7 5.2
6.4
10/11 7.3

5/6

Amir Kamil and Jack Sampson Final Review
'SCC Algotithm

= Perform DFS, computing start/finish times

= Invert graph

Repeatedly run DFS on the remaining node

with the highest finishing time

= The nodes marked in each DFS run compose
a strongly connected component

Amir Kamil and Jack Sampson Final Review

'SCC Solution

= Find the strongly connected components of
the graph

8/13

1/14

3/4 9/10
2/7
0 11/12
5/6

Run DFS

Amir Kamil and Jack Sampson Final Review 60

10

'SCC Solution

= Find the strongly connected components of
the graph

'SCC Solution

= Find the strongly connected components of

the graph 8/13

8/13

114

3/4 9/10
217
11/12
5/6
Invert graph
Amir Kamil and Jack Sampson Final Review 61

'SCC Solution

= Find the strongly connected components of
the graph

Amir Kamil and Jack Sampson Final Review 63

1/14

® 9/10
2

112

Run DFS o

finish timg
Amir Kamil and Jack Sampson Final Review 62
'SCC Solution

= Find the strongly connected components of
the graph

‘ Dijkstra’s Algorithm Problem

= Find the shortest distances to each node
from node 1 8

Amir Kamil and Jack Sampson Final Review 65

Run DFS o
finish timg
Amir Kamil and Jack Sampson Final Review 64
' Dijkstra’s Algorithm

= Set all distances initially to «, except the start
node, which should be setto 0

= Construct a min priority queue of the nodes,
with their distances as keys

= Repeatedly remove the minimum element,
updating each of its adjacent node’s
distances if they are still in the queue and if
the updated distance is less than the current
distance

Amir Kamil and Jack Sampson Final Review 66

11

Dijkstra’s Algorithm Solution

= Find the shortest distances to each node
from node 1 8

P.Q.
1(0)
2 (o)
3 (o)
4 (o)
5 ()
6 (0)
7 ()

Amir Kamil and Jack Sampson Final Review 67

Dijkstra’s Algorithm Solution

= Find the shortest distances to each node
from node 1 8
P.Q.
x1 (0)
2(3)
3(9)
5(13)
4 ()
6 ()
7 ()

Amir Kamil and Jack Sampson Final Review 68

Dijkstra’s Algorithm Solution

= Find the shortest distances to each node
from node 1

0 P.Q.

x1 (0)

x2 (3)

w 309
5(13)
4(13)

6 (0)

7 ()

Amir Kamil and Jack Sampson Final Review 6

Dijkstra’s Algorithm Solution

= Find the shortest distances to each node
from node 1

0 P.Q.

x1 (0)

x2 (3)

o Xx3(09)
5(10)
4(11)
7(16)

6 (0)

Amir Kamil and Jack Sampson Final Review 70

' Dijkstra’s Algorithm Solution

= Find the shortest distances to each node
from node 1

0 P.Q.

x1 (0)

x2 (3)

18 x3(9)
X5 (10)
4(11)
7(15)

6 (18)

Amir Kamil and Jack Sampson Final Review 7

Dijkstra’s Algorithm Solution

= Find the shortest distances to each node
from node 1

0 P.Q.

x1 (0)

x2 (3)

15 x3(9)
X5 (10)

x4 (11)
7(14)
6(15)

Amir Kamil and Jack Sampson Final Review 72

12

Dijkstra’s Algorithm Solution

= Find the shortest distances to each node

from node 1
0 P.Q.
x1 (0)
x2 (3)
X3 9)
X5 (10)
x4 (11)
X7 (14)
6 (15)

Amir Kamil and Jack Sampson Final Review

Dijkstra’s Algorithm Solution

= Find the shortest distances to each node

from node 1
0 P.Q.
x1 (0)
x2 (3)
X3 9)
X5 (10)
x4 (11)
x7 (14)
X6 (15)

Amir Kamil and Jack Sampson Final Review 74

‘ Kruskal’s Algorithm Problem

= Find the MST of the graph, using Kruskal’s
Algorithm 8

Amir Kamil and Jack Sampson Final Review

‘ Kruskal’s Algorithm

= Put each node into a set by itself

= Sort all the edges in ascending order by their
weights

= Pick the least-weight edge, if the edge
connects two nodes in different sets, add the
edge to the MST and merge the two sets

Amir Kamil and Jack Sampson Final Review 76

' Kruskal’s Algorithm Solution

= Find the MST of the graph, using Kruskal's
Algorithm 8 Edges
3-5(1)
3-4(2)
1-2(3)
4-6 (4)
5-7(5)
2-3(6)
5-6 (8)
2-4 (10)
5-6 (12)
1-5 (13)
6-7 (16)

Amir Kamil and Jack Sampson Final Review

 Kruskal’s Algorithm Solution

= Find the MST of the graph, using Kruskal’s
Algorithm 8 Edges
x3-5 (1)
3-4(2)
1-2(3)
4-6 (4)
5-7(5)
2-3(6)
5-6 (8)
2-4 (10)
5-6 (12)
1-5 (13)
6-7 (16)

Amir Kamil and Jack Sampson Final Review 78

13

 Kruskal’s Algorithm Solution

= Find the MST of the graph, using Kruskal’s
Algorithm 8 Edses
x3-5 (1)
x3-4 (2)
12 (3)
4-6 (4)
5-7(5)
2-3(6)
5-6 (8)
2-4 (10)
5-6 (12)
1-5 (13)
6-7 (16)

Amir Kamil and Jack Sampson Final Review

 Kruskal’s Algorithm Solution

= Find the MST of the graph, using Kruskal’s
Algorithm 8 Edges
x3-5 (1)
x3-4 (2)
x1-2 (3)
46 (4)
5-7(5)
2-3 (6)
56 (8)
2-4 (10)
56 (12)
1-5 (13)
6-7 (16)

Amir Kamil and Jack Sampson Final Review

80

 Kruskal’s Algorithm Solution

= Find the MST of the graph, using Kruskal’s
Algorithm 8 Edges
— x3-5 (1)

13 x3-4(2)

x1-2 (3)

1 12 X4-6 (4)

6 5-7(5)

© 5\ 2:3(6)

) 5-6 (8)

2-4(10)

10 \@ 5-6 (12)

1-5 (13)

6-7 (16)

Amir Kamil and Jack Sampson Final Review

 Kruskal’s Algorithm Solution

= Find the MST of the graph, using Kruskal’s
Algorithm 8 Edges
— x3-5 (1)
13 x3-4(2)
x1-2 (3)
1 12 x4-6 (4)
6 x5-7 (5)
9 5
16 2-3(6)
5 5-6 (8)
2-4 (10)
10 \@ 5-6 (12)
1-5 (13)

6-7 (16)

Amir Kamil and Jack Sampson Final Review

' Kruskal’s Algorithm Solution

= Find the MST of the graph, using Kruskal's

Algorithm 8 Edges
— x3-5 (1)

X34 (2)
x1-2 (3)
X4-6 (4)
X5-7 (5)
x2-3 (6)
56 (8)
2-4.(10)
56 (12)
15 (13)
6-7 (16)

3 12

1
6 95
@NZ

Amir Kamil and Jack Sampson Final Review

 Kruskal’s Algorithm Solution

= Find the MST of the graph, using Kruskal’s

Algorithm
(5

o @

@2 7

L
3
(2

7

Amir Kamil and Jack Sampson Final

14

Sorting

Given the following steps, which sorting
algorithms were used in each case?

1327892693751 38
127892693751338
1589269372713 38
1592689372713 38
1591389 37272638
1591326 3727 89 38
159132627 37 89 38

1327892693751 38
132726937513889
113272693753889
151327269 373889
151327269 373889
159132726 37 38 89
159132627 37 38 89

159132627 37 89 38
159132627 37 38 89

Amir Kamil and Jack Sampson Final Review

Sorting

Selection Sort

1327892693751 38
1278926937513 38
1589269372713 38
15926893727 1338
15913893727 2638
15913263727 89 38
159132627 37 89 38

Quick Sort

132789269375138
132726937513889
113272693753889
151327269 373889
15132726937 3889
159132726 37 38 89
159132627 37 38 89

159132627 37 89 38
159132627 37 38 89

Amir Kamil and Jack Sampson Final Review 86

Sorting

Do a radix sort on the following sequence,
showing each step

(1087 643 2532 954 8174 65 340 1752)

Amir Kamil and Jack Sampson Final Review

Sorting
Step 1: sort by ones place

(1087 643 2532 954 8174 65 340 1752)

;

(340 2532 1752 643 954 8174 65 1087)

Amir Kamil and Jack Sampson Final Review 88

Sorting
Step 2: sort by tens place

(340 2532 1752 643 954 8174 65 1087)

!

(2532 340 643 1752 954 65 8174 1087)

Amir Kamil and Jack Sampson Final Review

Sorting
Step 3: sort by hundreds place

(2532 340 643 1752 954 65 8174 1087)

|

(65 1087 8174 340 2532 643 1752 954)

Amir Kamil and Jack Sampson Final Review 90

15

Sorting
Step 4: sort by thousands place

(65 1087 8174 340 2532 643 1752 954)

!

(65 340 643 954 1087 1752 2532 8174)

Amir Kamil and Jack Sampson Final Review 91

Skip List Problem

Write code for searching a skip list for a key.
Assume a skip list node is defined as
class Node {
Comparable key;
Node left, right, up, down;
}
and that the skip list pointer references the
top left node.

Amir Kamil and Jack Sampson Final Review 92

Skip Lists

2D linked lists

Bottom level contains all keys, and each
subsequent level contains probabilistically
half the keys of the previous level

Each level starts at -~ and ends at +«
The keys in each level are in ascending order

Amir Kamil and Jack Sampson Final Review 93

Skip List Example

=00 9 0
S 1
I<—’110 é 18 59 I
[!
-0 +=>.1Q «>3 <>Q +>18 «*35 <>59 +> 84 0

Amir Kamil and Jack Sampson Final Review 94

Skip List Searching

Start at top left node

If the current key is equal to the search key,
return the node

If the next key is greater than the search key,
go down and repeat search

Otherwise go right and repeat search

Amir Kamil and Jack Sampson Final Review 9

Skip List Solution

Write code for searching a skip list for a key

Node search(Node n, Comparable key) {
if (n.key.equals(key)) {
return n;
} else if (n.next.key.compareTo(key) > 0) {
return search(n.down, key);
}else {
return search(n.next, key);
}
}

Amir Kamil and Jack Sampson Final Review 9

16

Skip List Searching
l Search for 18
=00

-0 +=10

!

-0 +=1) 9 18 59

!

-0 +=>10 >3 +*9 <18 «*35 +*59 > 84 +— =
9 is not greater than 18, so move right

«—> O +— O

Skip List Searching

l Search for 18
-00 9 oIo
-00 <10 9 o0
! !
-00 +=>.{) +—9 <18 59 e
!]

=0 +>10Q) >3 «*9 <18 «*35 +*59 +> 84 +—>
« s greater than 18, so move down

Amir Kamil and Jack Sampson Final Review 97
Skip List Searching
l Search for 18
-00 9 0
! ! !
-0 =10 9 %
I !
-oIo<—>-1Io ——9g 18 59 oIo
=00 «*>.1() «>3 +*>9 <18 +*35 «*59 «> 84 +—> 0

« js greater than 18, so move down

Amir Kamil and Jack Sampson Final Review 98
Skip List Searching
l Search for 18
=00 9 0
! ! !
-0 =10 9 %
I ! !
~00 +=10 ———9 18 59 20
[! !
=00 «*>.1() «>3 +*>9 18 +*35 «*590 «> 84 +—> 0

18 is not greater than 18, so move right

Amir Kamil and Jack Sampson Final Review 100

o1

=00 +> 10 >3 +>9 <18 «*35 «*59 «> 84 +—
18 is equal to 18, so return node

Skip List Searching
l Search for 18
-00 9 0
! ! !
-0 +=>10 9 %
I ! !
-0 +=>.1) «—>9 <18 59 °I°
o0

Amir Kamil and Jack Sampson Final Review 101

Threading

Motivations:

a Modeling of simultaneous actions

a Counteract I/O Latency
Mechanism: Multiple threads of control

a Shared memory space, multiple program counters
Dangers:

a Shared access to memory can result in conflicts

o Multiple threads per processor can result in unequal time sharing (see

scheduling)

Conflict types:

o WAR (write after read)

o WAW (write after write)

o RAW (read after write)
How to avoid shared data conflicts? Locking
Dangers of locking? Deadlock

Amir Kamil and Jack Sampson Final Review 102

17

‘ Scheduling

= Throughput — Average number of tasks completed per unit time
= CPU Utilization — Average usage of the processor
= Wait time — time spent waiting for processor
= Turnaround time — time from task assignment to task completion
= Response time — time between assignment of task and first work
on task
= Large values => GOOD:
a throughput
o cpu utilization
= Large values => BAD (maybe):
o wait time
o turnaround time
o response time
= 1/0?

Amir Kamil and Jack Sampson Final Review 103

' "The Min-Max Algorithm

= An algorithm for making the best possible move in a ZERO-SUM-
GAME (not applicable to other types of games)
M nMax(State, maxtype)
if ganeover(State) return [null nove, score(State)]
if (maxtype)
return pair with max score from

for each valid nove from State M nMax(NewState, !
maxt ype)
el se
return pair with mn score from
for each valid nove from State M nMax(NewState, !
maxt ype)
= Justification:

o In a zero-sum-game, the best move for an opponent is to minimize your
score, just as your best move is to maximize your score. This will
therefore return the best possible move under the assumption that one’s
opponent plays perfectly.

Amir Kamil and Jack Sampson Final Review 104

The Min-Max Algorithm

= The following is an implementation of Min-Max in Common Lisp:
;i; The minimax decision procedure returns the optimal move in the game

3; using exhaustive generation of the entire game tree. Implementation

11; uses the fact that the evaluation and utility functions return a list of

;i; values from the point of view of each player, with the “current" player

;;; first. Hence, rather than using #'min, we always use #'max for the

; current player. A successor value is passed up the tree using
:; fight-rotation. This works for any number of players.
#; The notation *a+s" means an (action . state) par.

(defun minimax-decision (state game)
(car (the-biggest
#(lambda (a+s) (first (right-rotate (minimax-value (cdr a+s) game))))
(game-successors state game))))

(defun minimax-value (state game)
(if (game-over? game state)

(terminal-values state)

(right-rotate

(the-biggest
#(lambda (values) (first (right-rotate values)))
(mapcar #(lambda (a+s) (minimax-value (cdr a+s) game))

(game-successors state game))))))

Amir Kamil and Jack Sampson Final Review 105

Min-Max with cutoff

(defun minimax-cutoff-decision (state game eval-n limit)

"Return the best action, according to backed-up evaluation down to LIMIT.
After we search LIMIT levels seep, we use EVAL-FN to provide an estimate
of the true value of a state; thus the action may not actually be best."
(car (the-biggest

#(lambda (a+s)

(first (right-rotate
(minimax-cutoft-value (cdr a+s) game eval-fn (- imit 1)))))
(game-successors state game))))

(defun minimax-cutoff-value (state game eval-fn limit)
(cond ((game-over? game state) (terminal-values state))

((<= limit 0) (funcall eval-fn state))

(t (right-rotate
(the-biggest
#(lambda (values) (first (right-rotate values)))
(mapcar #(lambda (a+s)

(minimax-cutoft-value (cdr a+s) game eval-fn
(- limit 1)))
(game-successors state game)))))))

Amir Kamil and Jack Sampson Final Review 106

Min-Max with cutoff

(defun game-successors (state game)
"Return a list of (move . state) pairs that can be reached from this state."
(mapear #(lambda (move) (cons move (make-move game state move)))
(legal-moves game state)))

(defun terminal-values (state)
*Return the values of the state for each player."
(mapcar #(lambda (player) (getf (game-state-scores state) player))
(game-state-players state)))

Amir Kamil and Jack Sampson Final Review 107

‘ alpha-beta pruning

(defun alpha-beta-decision (state game eval-fn &optional (limit 4))

"Return the estimated best action, searching up to LIMIT and then
applying the EVAL-FN."
(car (the-biggest

#(lambda (a+s)

(first (right-rotate
(alpha-value (cdr a+s) game
(game-worst game) (game-worst game)
evalin (- limit 1)))))
(game-successors state game))))

(defun alpha-value (state game alpha beta eval-fn limit)
(cond ((game-over? game state) (terminal-values state))
((= 0 limit) (funcall eval-fn state)
(t (dolist (a+s (game-successors state game)
(st alpha (- alpha)))
(setq alpha (max alpha
(first (right-rotate
(beta-value (cdr a+s) game alpha beta
eval-fn (- limit 1))))))
(when (>= alpha (- beta))
(return (list (- beta) beta)))))))

Amir Kamil and Jack Sampson Final Review 108

18

‘ alpha-beta pruning

(defun beta-value (state game alpha beta eval-fn limit)
(cond ((game-over? game state) (terminal-values state))
((= 0 imit) (funcall eval-fn state)
(t (dolist (a+s (game-successors state game)
(ist beta (- beta)))
(setq beta (max beta
(first (right-rotate
(alpha-value (cdr a+s) game alpha beta
eval-fn (- limit 1))))))
(when (>= beta (- alpha))
(return (list (- alpha) alpha)))))

Amir Kamil and Jack Sampson Final Review 109

‘ Cool tree variants
= The threaded tree:

o Motivations:
= Inorder traversals are common
= Naive BST implementation can waste space (~half of all child
pointers are null)
o Mechanism:

= Add boolean flag to pointers (or do fun polymorphism) so as
to have leaf nodes point to the next node in an inorder
traversal

o Results:

= For a minimal change in the space requirements and
structure of a tree, inorder traversals can now be computed
using a straightforward iterative algorithm

Amir Kamil and Jack Sampson Final Review 110

‘ Cool tree variants continued

= The B+ tree:
o Motivations:
= Range queries are common
= size of Data >> size of Key, so treat differently
o Mechanism:
Start with B-tree
Differentiate between Leaf and index nodes. Index nodes hold keys,
leaf nodes hold data. Key values for all data are in leaf nodes.
Insert and delete as before, except keys are copied up on split, not
moved, and keys may remain on delete for data that no longer
exists

Add next and previous fields to all leaf nodes, forming a doubly
linked list

o Results:
= Range query now straightforward to return result for - tree now

Amir Kamil and Jack Sampson Final Review 1

‘ Credits

= Thanks to CS 61b staff of
o Fall 2001
o Spring 2002
= Thanks to Steve Sinha and Winston Liaw

= Thanks to
o CMU -MIT
a Cornell —Johns Hopkins U

for slide and example ideas

Amir Kamil and Jack Sampson Final Review 112

GOOD LUCK!

(and may you not need it)

Amir Kamil and Jack Sampson Final Review 113

19

