CS 61b: Final Review

Data Structures

Amir Kamil and Jack Sampson

DISCLAIMER

We have NOT seen the exam.
We do NOT know the format of the exam

What we are presenting is what we
“think is important” for the exam
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Review Topics

= Inheritance, Method Calls
= Asymptotic Analysis
= Data Structures
o Binary Search Trees
o B-Trees
o Heaps
o Hash Tables
a AVL Trees
= Graphs
o DFS, BFS
o Topological Sort
o Strongly Connected
Components

o Dijkstra

o Kruskal

Sorting

Skip Lists

Threading, Synchronization
Scheduling

Minimax

B+ Trees

Threaded Trees
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‘ Inheritance/Method Calls

= Given the class definitions on the next slide,
which lines in class foobarbaz are illegal?
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‘ Inheritance

package foo;
public class foo {
static void f1() {...}
protected boolean f2(int x) {...}
private String f3(String s) {...}
}

package foo;
import bar.bar;
public class foobarbaz {
static void main(String[] args) {
foo f = new foo();
bar r = new bar();
baz z;
r.f3(3);
£.£2(3);

package foo;

public class baz extends foo {
private String f3(String s) {...}

}

z = (baz) f;

f =new baz();
£.£23);

z = (baz) f;

package bar;

import foo.foo;

public class bar extends foo {
protected boolean f3(int x) {...}

z.f1();
r.f10);
((foo) 1).f1();
}
}

Final Review

Inheritance/Method Calls

Access table:

world package | child definer
public X X X X
private X
protected X X X
<default> X X

Static methods called according to static type
Child type can be assigned to parent variable
without a cast, but the reverse requires one, and
the dynamic types must match
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‘ Inheritance

package foo;
public class foo {
static void f1() {...}
protected boolean f2(int x) {...}
private String f3(String s) {...}
}

package foo;

public class baz extends foo {
private String f3(String s) {...}

}

package bar;

import foo.foo;

public class bar extends foo {
protected boolean f3(int x) {...}

}

package foo;
import bar.bar;
public class foobarbaz {
static void main(String[] args) {
foo f = new foo();
bar r = new bar();
baz z;
r.f3(3); /I ILLEGAL
£.£2(3);
z=(baz) f; /I ILLEGAL
f = new baz();
£.£2(3);
z = (baz) f;
z.f1();
r.f1(); /I ILLEGAL
((foo) 1).f1();
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| Asymptotic Analysis

= O — Upper bound/Worst case
= Q — Lower bound

= © —both

= 0 - strictly Upper bound

More detail...
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| Asymptotic Analysis

T(n) is O( f(n) ) if and only if there exists positive constants C and N
such that

T(n) <=Cf(n)foralln>=N
N C(n)

v

T(n)
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| Asymptotic Analysis
T(n) is O( f(n) ) if and only if there exists positive constants C and N
such that
T(n)<=Cf(n)foralln>=N
5 f(n)
T(n)=4n
T(n) f(n) =n
4nisO(n)
f(n)
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| Asymptotic Analysis

T(n) is O( f(n) ) if and only if there exists
positive constants C and N such that
T(n) <= Cf(n) foralln>=N

T(n) is Q( f(n) ) if and only if there exists
positive constants C and N such that
T(n) >=Cf(n) foralln>=N

Final Review 1

| Asymptotic Analysis

T(n) is ©( f(n) ) if and only if
= T(n)is O(f(n))

and
= T(n)is Q(f(n))

Examples
5n2+1 is ©(n?)
3n is O(n?), but 3n is NOT ©(n?)
because 3n is not Q(n?)
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| Asymptotic Analysis Problem

= Find the running time of the following code:

int foo(int x) {

intans =1;

for (inti=0;i<x;i++) {
for (intj = 0;j <1i; j++) {

ans *= (i +j);

}

}

return ans;

}
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| Asymptotic Analysis Solution

= The nested loops give away the answer: the outer loop
executes x times, the inner loop an average of x/2 times,
for a running time of O(x?).

int foo(int x) {

intans =1;

for (inti=0;i<x;i++) {
for (int j = 0; j <1 j++) {

ans *= (i +]);

}

}

return ans;

}
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‘ Trees: Binary Tree

Tree: A

Preorder : ABCEGFD
Inorder : CEBAGDF
Postorder: ECBDFGA
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‘ Trees: BST Problem

= Remove 8 from:
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‘ Trees: BST Problem

= Remove 8 from:

Replace with successor (left-most node in
right subtree)

Amir Kamil and Jack Sampson Final Review

‘ Trees: BST Solution

= Final tree:
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Trees: B-Tree of Order 4 / 2-3-4 Tree

= Insert 4 and 6 into the following 2-3-4 tree
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Trees: B-Tree of Order 4 / 2-3-4 Tree

= Insert 4
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Trees: B-Tree of Order 4 / 2-3-4 Tree

= Insert 6

Overflow, so split node and
promote middle element
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Trees: B-Tree of Order 4 / 2-3-4 Tree

= Insert 6

Overflow, so split node and
promote middle element
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Trees: B-Tree of Order 4 / 2-3-4 Tree

= Remove 16 from the following 2-3-4 tree
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Trees: B-Tree of Order 4 / 2-3-4 Tree

= Remove 16

Underflow, so merge with sibling
and demote parent element
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Trees: B-Tree of Order 4 / 2-3-4 Tree

= Remove 16

Underflow, so merge with sibling
and demote parent element
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| Priority Queues — Problem

= Add 9, 76, 54, 3, 33, 21 to a max heap, using only
the array based representation
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‘ Priority Queues — Insertion

Insert at the last position in the heap
Reheapify up: if the element is greater than
its parent, swap them and repeat

= For an element at position n, its children are
at 2n+1 and 2n+2

For an element at position n, its parent is at
floor[(n-1)/2]
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‘ Priority Queues — Solution

= Add 9, 76, 54, 3, 33, 21 to a max heap, using only
the array based representation
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‘ Priority Queues — Solution

= Add 9, 76, 54, 3, 33, 21 to a max heap, using only
the array based representation
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‘ Priority Queues — Solution

= Add 9, 76, 54, 3, 33, 21 to a max heap, using only
the array based representation

Fels (=] [ 1 [-

0 1 2 3 4 5
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Priority Queues — Solution

Add 9, 76, 54, 3, 33, 21 to a max heap, using only
the array based representation

|76|9‘54|3‘ ‘ ‘

0 2 3 4 5
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Priority Queues — Solution

Add 9, 76, 54, 3, 33, 21 to a max heap, using only
the array based representation

P e —
|76|9‘54|3‘33‘ \

0 2 3 4 5

|76|33‘54|3‘9‘ \

0 2 3 4 5
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Priority Queues — Solution

Add 9, 76, 54, 3, 33, 21 to a max heap, using only
the array based representation

|76|33‘54| 3 \ 9 \21\...
76
Tree
Representation q?’
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2 5

Priority Queues — Problem

Remove the max from the heap

|76|33‘54|3‘9‘21‘...

2 3 4 5

0
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Priority Queues — Removal

Replace the max element with the last
element in the heap

Reheapify down: if one or both of its children
is larger than it, swap with the larger of the
children and repeat

For an element at position n, its children are
at 2n+1 and 2n+2

For an element at position n, its parent is at
floor[(n-1)/2]
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Priority Queues — Solution

Remove the max from the heap

|7‘6’|'a54|3‘9‘21‘...

0 1 2 3 4 5

|21|33‘54|3‘9‘ ‘

0 2 3 4 5
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Priority Queues — Solution

Remove the max from the heap

e =[o]o] [

0 1 2 3 4 5

|54|33‘21|3‘9‘ ‘

0 1 2 3 4 5
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Priority Queues — Solution

Remove the max from the heap

|54|33\21|3‘9‘ ‘

[
A
Tree
Representation
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2 3 4 5

Hash Table Problem

Draw the structure of a size 7 hash table after
insertion of keys with the following hash
codes: 0, 95, 21, 6, 64, 74, 3, 54, 34, 75, 10.
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Hash Tables

High-level idea — 2 components

1. Big array called hash table of size M

2. Function h which maps keys to integer values
For (key, item), use h(key) % M to find
location of item in table
Linked list in each entry that stores all items
that map to that location (chaining)

Amir Kamil and Jack Sampson Final Review 40

Hash Table Solution

Draw the structure of a size 7 hash table after
insertion of keys with the following hash
codes: 0, 95, 21, 6, 64, 74, 3, 54, 34, 75, 10.

0 6
a

ETETEEEE
nﬁé 95] [o4] o]
2| A (0] [7a) 5] [o4
% vl
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AVL Tree Problem

Given the following AVL Tree, performs these
consecutive operations and draw out the tree
in each step:

o Remove(7)

o Insert (11)

o Insert(12)
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‘ AVL Trees

= AVL Trees are just Binary Search Trees that
can rotate their nodes to try to maintain
balance.
o Two kinds of rotations — single and double
o Can decide which to do based on structure of tree
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Insertions/Removals

= You have 3 nodes of importance, which we
will call x, y, and z (z is the parent of y which

is the parent of x)

o If x is the right child of y, and y is the right child of
z, you do a single rotation (same goes for left child
of left child)

o If x is the right child of y, and y is the left child of z,
you do a double rotation (same goes for left child
of right child)
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Remove(7)

Remove 7 as in BST
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Remove(7)

Single rotate
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Remove(7)

Final tree
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Insert(11)

Insert as in BST
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Insert(12)

Insert(12)

Double rotate
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()
Insert as in BST
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Insert(12)
Final tree
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| Searches (BES and DFES)

= BFS uses a queue, DFS uses a stack
public void BFS/DFS(Node start) {
Queue/Stack s = new Queue/Stack();
s.enqueue/push(start);
while (!s.empty()) {
Node n = s.dequeue/pop();
mark(n);
for (all children that are not yet marked) {
s.enqueue/push(child);
}
}
}
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| Searches (BES and DES) Problem

= Perform BFS and DFS on the graph, starting
at node 1

| Seatches (BES and DES) Solution

= Perform BFS and DFS on the graph, starting
at node 1

BES DFS
1 1
2 2
5 3
3 4
4 5
" D7y :
7 7
Final Re 54




‘ Topological Sort Problem

= Perform a topological sort on the graph

o—

7
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‘ Topological Sort

= Perform DFS, computing start/finish times
= Order nodes by decreasing finish times

Amir Kamil and Jack Sampson Final Review

‘ Topological Sort Solution

= Perform a topological sort on the graph

'SCC Problem

= Find the strongly connected components of
the graph
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1/14 8/13
1.1
? 2.5
3/4 3.6
2
2/7 5.2
6.4
10/11 7.3

5/6
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'SCC Algotithm

= Perform DFS, computing start/finish times

= Invert graph

Repeatedly run DFS on the remaining node

with the highest finishing time

= The nodes marked in each DFS run compose
a strongly connected component
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'SCC Solution

= Find the strongly connected components of
the graph

8/13

1/14

3/4 9/10
2/7
0 11/12
5/6

Run DFS

Amir Kamil and Jack Sampson Final Review 60

10



'SCC Solution

= Find the strongly connected components of
the graph

'SCC Solution

= Find the strongly connected components of

the graph 8/13

8/13

114

3/4 9/10
217
11/12
5/6
Invert graph
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'SCC Solution

= Find the strongly connected components of
the graph
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1/14

® 9/10
2

112

Run DFS o

finish timg
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'SCC Solution

= Find the strongly connected components of
the graph

‘ Dijkstra’s Algorithm Problem

= Find the shortest distances to each node
from node 1 8
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Run DFS o
finish timg
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' Dijkstra’s Algorithm

= Set all distances initially to «, except the start
node, which should be setto 0

= Construct a min priority queue of the nodes,
with their distances as keys

= Repeatedly remove the minimum element,
updating each of its adjacent node’s
distances if they are still in the queue and if
the updated distance is less than the current
distance
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Dijkstra’s Algorithm Solution

= Find the shortest distances to each node
from node 1 8

P.Q.
1(0)
2 (o)
3 (o)
4 (o)
5 ()
6 (0)
7 ()
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Dijkstra’s Algorithm Solution

= Find the shortest distances to each node
from node 1 8
P.Q.
x1 (0)
2(3)
3(9)
5(13)
4 ()
6 ()
7 ()
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Dijkstra’s Algorithm Solution

= Find the shortest distances to each node
from node 1

0 P.Q.

x1 (0)

x2 (3)

w 309
5(13)
4(13)

6 (0)

7 ()
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Dijkstra’s Algorithm Solution

= Find the shortest distances to each node
from node 1

0 P.Q.

x1 (0)

x2 (3)

o Xx3(09)
5(10)
4(11)
7(16)

6 (0)
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' Dijkstra’s Algorithm Solution

= Find the shortest distances to each node
from node 1

0 P.Q.

x1 (0)

x2 (3)

18 x3(9)
X5 (10)
4(11)
7(15)

6 (18)
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Dijkstra’s Algorithm Solution

= Find the shortest distances to each node
from node 1

0 P.Q.

x1 (0)

x2 (3)

15 x3(9)
X5 (10)

x4 (11)
7(14)
6(15)
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Dijkstra’s Algorithm Solution

= Find the shortest distances to each node

from node 1
0 P.Q.
x1 (0)
x2 (3)
X3 9)
X5 (10)
x4 (11)
X7 (14)
6 (15)
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Dijkstra’s Algorithm Solution

= Find the shortest distances to each node

from node 1
0 P.Q.
x1 (0)
x2 (3)
X3 9)
X5 (10)
x4 (11)
x7 (14)
X6 (15)
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‘ Kruskal’s Algorithm Problem

= Find the MST of the graph, using Kruskal’s
Algorithm 8

Amir Kamil and Jack Sampson Final Review

‘ Kruskal’s Algorithm

= Put each node into a set by itself

= Sort all the edges in ascending order by their
weights

= Pick the least-weight edge, if the edge
connects two nodes in different sets, add the
edge to the MST and merge the two sets
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' Kruskal’s Algorithm Solution

= Find the MST of the graph, using Kruskal's
Algorithm 8 Edges
3-5(1)
3-4(2)
1-2(3)
4-6 (4)
5-7(5)
2-3(6)
5-6 (8)
2-4 (10)
5-6 (12)
1-5 (13)
6-7 (16)
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 Kruskal’s Algorithm Solution

= Find the MST of the graph, using Kruskal’s
Algorithm 8 Edges
x3-5 (1)
3-4(2)
1-2(3)
4-6 (4)
5-7(5)
2-3(6)
5-6 (8)
2-4 (10)
5-6 (12)
1-5 (13)
6-7 (16)
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 Kruskal’s Algorithm Solution

= Find the MST of the graph, using Kruskal’s
Algorithm 8 Edses
x3-5 (1)
x3-4 (2)
12 (3)
4-6 (4)
5-7(5)
2-3(6)
5-6 (8)
2-4 (10)
5-6 (12)
1-5 (13)
6-7 (16)
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 Kruskal’s Algorithm Solution

= Find the MST of the graph, using Kruskal’s
Algorithm 8 Edges
x3-5 (1)
x3-4 (2)
x1-2 (3)
46 (4)
5-7(5)
2-3 (6)
56 (8)
2-4 (10)
56 (12)
1-5 (13)
6-7 (16)
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80

 Kruskal’s Algorithm Solution

= Find the MST of the graph, using Kruskal’s
Algorithm 8 Edges
— x3-5 (1)

13 x3-4(2)

x1-2 (3)

1 12 X4-6 (4)

6 5-7(5)

© 5\ 2:3(6)

) 5-6 (8)

2-4(10)

10 \@ 5-6 (12)

1-5 (13)

6-7 (16)
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 Kruskal’s Algorithm Solution

= Find the MST of the graph, using Kruskal’s
Algorithm 8 Edges
— x3-5 (1)
13 x3-4(2)
x1-2 (3)
1 12 x4-6 (4)
6 x5-7 (5)
9 5
16 2-3(6)
5 5-6 (8)
2-4 (10)
10 \@ 5-6 (12)
1-5 (13)

6-7 (16)
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' Kruskal’s Algorithm Solution

= Find the MST of the graph, using Kruskal's

Algorithm 8 Edges
— x3-5 (1)

X34 (2)
x1-2 (3)
X4-6 (4)
X5-7 (5)
x2-3 (6)
56 (8)
2-4.(10)
56 (12)
15 (13)
6-7 (16)

3 12

1
6 95
@NZ
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 Kruskal’s Algorithm Solution

= Find the MST of the graph, using Kruskal’s

Algorithm
(5

o @

@2 7

L
3
(2

7
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Sorting

Given the following steps, which sorting
algorithms were used in each case?

1327892693751 38
127892693751338
1589269372713 38
1592689372713 38
1591389 37272638
1591326 3727 89 38
159132627 37 89 38

1327892693751 38
132726937513889
113272693753889
151327269 373889
151327269 373889
159132726 37 38 89
159132627 37 38 89

159132627 37 89 38
159132627 37 38 89
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Sorting

Selection Sort

1327892693751 38
1278926937513 38
1589269372713 38
15926893727 1338
15913893727 2638
15913263727 89 38
159132627 37 89 38

Quick Sort

132789269375138
132726937513889
113272693753889
151327269 373889
15132726937 3889
159132726 37 38 89
159132627 37 38 89

159132627 37 89 38
159132627 37 38 89
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Sorting

Do a radix sort on the following sequence,
showing each step

(1087 643 2532 954 8174 65 340 1752)

Amir Kamil and Jack Sampson Final Review

Sorting
Step 1: sort by ones place

(1087 643 2532 954 8174 65 340 1752)

;

(340 2532 1752 643 954 8174 65 1087)
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Sorting
Step 2: sort by tens place

(340 2532 1752 643 954 8174 65 1087)

!

(2532 340 643 1752 954 65 8174 1087)
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Sorting
Step 3: sort by hundreds place

(2532 340 643 1752 954 65 8174 1087)

|

(65 1087 8174 340 2532 643 1752 954)
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Sorting
Step 4: sort by thousands place

(65 1087 8174 340 2532 643 1752 954)

!

(65 340 643 954 1087 1752 2532 8174)
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Skip List Problem

Write code for searching a skip list for a key.
Assume a skip list node is defined as
class Node {
Comparable key;
Node left, right, up, down;
}
and that the skip list pointer references the
top left node.
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Skip Lists

2D linked lists

Bottom level contains all keys, and each
subsequent level contains probabilistically
half the keys of the previous level

Each level starts at -~ and ends at +«
The keys in each level are in ascending order
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Skip List Example

=00 9 0
S 1
I<—’110 é 18 59 I
[ !
-0 +=>.1Q «>3 <>Q +>18 «*35 <>59 +> 84 0
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Skip List Searching

Start at top left node

If the current key is equal to the search key,
return the node

If the next key is greater than the search key,
go down and repeat search

Otherwise go right and repeat search

Amir Kamil and Jack Sampson Final Review 9

Skip List Solution

Write code for searching a skip list for a key

Node search(Node n, Comparable key) {
if (n.key.equals(key)) {
return n;
} else if (n.next.key.compareTo(key) > 0) {
return search(n.down, key);
}else {
return search(n.next, key);
}
}

Amir Kamil and Jack Sampson Final Review 9
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Skip List Searching
l Search for 18
=00

-0 +=10

!

-0 +=1) 9 18 59

!

-0 +=>10 >3 +*9 <18 «*35 +*59 > 84 +— =
9 is not greater than 18, so move right

«—> O +— O

Skip List Searching

l Search for 18
-00 9 oIo
-00 <10 9 o0
! !
-00 +=>.{) +—9 <18 59 e
! ]

=0 +>10Q) >3 «*9 <18 «*35 +*59 +> 84 +—>
« s greater than 18, so move down

Amir Kamil and Jack Sampson Final Review 97
Skip List Searching
l Search for 18
-00 9 0
! ! !
-0 =10 9 %
I !
-oIo<—>-1Io ——9g 18 59 oIo
=00 «*>.1() «>3 +*>9 <18 +*35 «*59 «> 84 +—> 0

« js greater than 18, so move down
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Skip List Searching
l Search for 18
=00 9 0
! ! !
-0 =10 9 %
I ! !
~00 +=10 ———9 18 59 20
[ ! !
=00 «*>.1() «>3 +*>9 18 +*35 «*590 «> 84 +—> 0

18 is not greater than 18, so move right
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o1

=00 +> 10 >3 +>9 <18 «*35 «*59 «> 84 +—
18 is equal to 18, so return node

Skip List Searching
l Search for 18
-00 9 0
! ! !
-0 +=>10 9 %
I ! !
-0 +=>.1) «—>9 <18 59 °I°
o0
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Threading

Motivations:

a Modeling of simultaneous actions

a Counteract I/O Latency
Mechanism: Multiple threads of control

a Shared memory space, multiple program counters
Dangers:

a Shared access to memory can result in conflicts

o Multiple threads per processor can result in unequal time sharing (see

scheduling)

Conflict types:

o WAR (write after read)

o WAW (write after write)

o RAW (read after write)
How to avoid shared data conflicts? Locking
Dangers of locking? Deadlock
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‘ Scheduling

= Throughput — Average number of tasks completed per unit time
= CPU Utilization — Average usage of the processor
= Wait time — time spent waiting for processor
= Turnaround time — time from task assignment to task completion
= Response time — time between assignment of task and first work
on task
= Large values => GOOD:
a throughput
o cpu utilization
= Large values => BAD (maybe):
o wait time
o turnaround time
o response time
= 1/0?
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' "The Min-Max Algorithm

= An algorithm for making the best possible move in a ZERO-SUM-
GAME (not applicable to other types of games)
M nMax( State, maxtype)
if ganeover(State) return [null nove, score(State)]
if (maxtype)
return pair with max score from

for each valid nove from State M nMax(NewState, !
maxt ype)
el se
return pair with mn score from
for each valid nove from State M nMax(NewState, !
maxt ype)
= Justification:

o In a zero-sum-game, the best move for an opponent is to minimize your
score, just as your best move is to maximize your score. This will
therefore return the best possible move under the assumption that one’s
opponent plays perfectly.
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The Min-Max Algorithm

= The following is an implementation of Min-Max in Common Lisp:
;i; The minimax decision procedure returns the optimal move in the game

3; using exhaustive generation of the entire game tree. Implementation

11; uses the fact that the evaluation and utility functions return a list of

;i; values from the point of view of each player, with the “current" player

;;; first. Hence, rather than using #'min, we always use #'max for the

; current player. A successor value is passed up the tree using
:; fight-rotation. This works for any number of players.
#; The notation *a+s" means an (action . state) par.

(defun minimax-decision (state game)
(car (the-biggest
#(lambda (a+s) (first (right-rotate (minimax-value (cdr a+s) game))))
(game-successors state game))))

(defun minimax-value (state game)
(if (game-over? game state)

(terminal-values state)

(right-rotate

(the-biggest
#(lambda (values) (first (right-rotate values)))
(mapcar #(lambda (a+s) (minimax-value (cdr a+s) game))

(game-successors state game))))))
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Min-Max with cutoff

(defun minimax-cutoff-decision (state game eval-n limit)

"Return the best action, according to backed-up evaluation down to LIMIT.
After we search LIMIT levels seep, we use EVAL-FN to provide an estimate
of the true value of a state; thus the action may not actually be best."
(car (the-biggest

#(lambda (a+s)

(first (right-rotate
(minimax-cutoft-value (cdr a+s) game eval-fn (- imit 1)))))
(game-successors state game))))

(defun minimax-cutoff-value (state game eval-fn limit)
(cond ((game-over? game state) (terminal-values state))

((<= limit 0) (funcall eval-fn state))

(t (right-rotate
(the-biggest
#(lambda (values) (first (right-rotate values)))
(mapcar #(lambda (a+s)

(minimax-cutoft-value (cdr a+s) game eval-fn
(- limit 1)))
(game-successors state game)))))))

Amir Kamil and Jack Sampson Final Review 106

Min-Max with cutoff

(defun game-successors (state game)
"Return a list of (move . state) pairs that can be reached from this state."
(mapear #(lambda (move) (cons move (make-move game state move)))
(legal-moves game state)))

(defun terminal-values (state)
*Return the values of the state for each player."
(mapcar #(lambda (player) (getf (game-state-scores state) player))
(game-state-players state)))
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‘ alpha-beta pruning

(defun alpha-beta-decision (state game eval-fn &optional (limit 4))

"Return the estimated best action, searching up to LIMIT and then
applying the EVAL-FN."
(car (the-biggest

#(lambda (a+s)

(first (right-rotate
(alpha-value (cdr a+s) game
(game-worst game) (game-worst game)
evalin (- limit 1)))))
(game-successors state game))))

(defun alpha-value (state game alpha beta eval-fn limit)
(cond ((game-over? game state) (terminal-values state))
((= 0 limit) (funcall eval-fn state)
(t (dolist (a+s (game-successors state game)
(st alpha (- alpha)))
(setq alpha (max alpha
(first (right-rotate
(beta-value (cdr a+s) game alpha beta
eval-fn (- limit 1))))))
(when (>= alpha (- beta))
(return (list (- beta) beta)))))))

Amir Kamil and Jack Sampson Final Review 108

18



‘ alpha-beta pruning

(defun beta-value (state game alpha beta eval-fn limit)
(cond ((game-over? game state) (terminal-values state))
((= 0 imit) (funcall eval-fn state)
(t (dolist (a+s (game-successors state game)
(ist beta (- beta)))
(setq beta (max beta
(first (right-rotate
(alpha-value (cdr a+s) game alpha beta
eval-fn (- limit 1))))))
(when (>= beta (- alpha))
(return (list (- alpha) alpha)))))

Amir Kamil and Jack Sampson Final Review 109

‘ Cool tree variants
= The threaded tree:

o Motivations:
= Inorder traversals are common
= Naive BST implementation can waste space (~half of all child
pointers are null)
o Mechanism:

= Add boolean flag to pointers (or do fun polymorphism) so as
to have leaf nodes point to the next node in an inorder
traversal

o Results:

= For a minimal change in the space requirements and
structure of a tree, inorder traversals can now be computed
using a straightforward iterative algorithm
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‘ Cool tree variants continued

= The B+ tree:
o Motivations:
= Range queries are common
= size of Data >> size of Key, so treat differently
o Mechanism:
Start with B-tree
Differentiate between Leaf and index nodes. Index nodes hold keys,
leaf nodes hold data. Key values for all data are in leaf nodes.
Insert and delete as before, except keys are copied up on split, not
moved, and keys may remain on delete for data that no longer
exists

Add next and previous fields to all leaf nodes, forming a doubly
linked list

o Results:
= Range query now straightforward to return result for - tree now
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GOOD LUCK!

(and may you not need it)
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