CS61A Lecture 43

Amir Kamil

UC Berkeley
May 1, 2013

Announcements @

HW13 due tonight

O Scheme contest due Friday

O Special guest lecture by Brian Harvey on Friday at
2pm

Attendance is mandatory!!!

The Problem with Shared State Qf

def increment() :
count = counter|[0]

sleep (0) -{May cause the interpreter to switch threadsj

counter[0] = count + 1

Given a switch at the sleep call, here is a possible sequence of operations on
each thread:

Thread © Thread 1
read counter[Q]: ©
read counter[Q]: ©
calculate 0 + 1: 1
write 1 -> counter[0]
calculate 0 + 1: 1
write 1 -> counter[0]

The counter ends up with a value of 1, even though it was incremented twice!

Synchronized Data Structures Cd

Some data structures guarantee synchronization, so that their operations are
atomic

from queue import Queue <E Synchronized FIFO queue J

queue = Queue()

def increment() :
count = queue.get() <E Waits until an item is available J

sleep (0)

queue.put (count + 1)

other = Thread (target=increment, args=())
other.start ()

queue.put (0) _<,|: Add initial value of O j

increment ()
other. join()

print('count is now', queue.get())

Manual Synchronization with a Lock @

Manual Synchronization with a Lock @

A lock ensures that only one thread at a time can hold it

Manual Synchronization with a Lock @

A lock ensures that only one thread at a time can hold it

Once it is acquired, no other threads may acquire it until it is released

Manual Synchronization with a Lock @

A lock ensures that only one thread at a time can hold it

Once it is acquired, no other threads may acquire it until it is released

counter = [O0]

def 1ncrement():

count = counter|[O]}
sleep(0)
counter[O] = count + 1

other = Thread(target=increment, args=())
other.start()

increment()

other.join()

print(“count i1s now", counter[0])

Manual Synchronization with a Lock @

A lock ensures that only one thread at a time can hold it

Once it is acquired, no other threads may acquire it until it is released
from threading import Lock

counter = [O0]

def 1ncrement():

count = counter|[O]}
sleep(0)
counter[O] = count + 1

other = Thread(target=increment, args=())
other.start()

increment()

other.join()

print(“count i1s now", counter[0])

Manual Synchronization with a Lock @

A lock ensures that only one thread at a time can hold it

Once it is acquired, no other threads may acquire it until it is released
from threading import Lock

counter = [O0]
counter_lock = Lock()

def 1ncrement():

count = counter|[O]}
sleep(0)
counter[O] = count + 1

other = Thread(target=increment, args=())
other.start()

increment()

other.join()

print(“count i1s now", counter[0])

Manual Synchronization with a Lock @

A lock ensures that only one thread at a time can hold it

Once it is acquired, no other threads may acquire it until it is released
from threading import Lock

counter = [O0]
counter_lock = Lock()

def 1ncrement():
counter_lock.acquire()
count = counter|[O]}
sleep(0)
counter[O] = count + 1

other = Thread(target=increment, args=())
other.start()

increment()

other.join()

print(“count i1s now", counter[0])

Manual Synchronization with a Lock @

A lock ensures that only one thread at a time can hold it

Once it is acquired, no other threads may acquire it until it is released
from threading import Lock

counter = [O0]
counter_lock = Lock()

def 1ncrement():
counter_lock.acquire()
count = counter|[O]}
sleep(0)
counter[O] = count + 1
counter_ lock.release()
other = Thread(target=increment, args=())
other.start()
increment()
other.join()
print(“count i1s now", counter[0])

The With Statement

def 1ncrement():
counter_lock.acquire()
count = counter|[O]}
sleep(0)
counter[O] = count + 1
counter_lock.release()

The With Statement @

A programmer must ensure that a thread releases a lock when it is done with it

def 1ncrement():
counter_lock.acquire()
count = counter|[O]}
sleep(0)
counter[O] = count + 1
counter_lock.release()

The With Statement @

A programmer must ensure that a thread releases a lock when it is done with it

This can be very error-prone, particularly if an exception may be raised

def 1ncrement():
counter_lock.acquire()
count = counter|[O]}
sleep(0)
counter[O] = count + 1
counter_lock.release()

The With Statement @

A programmer must ensure that a thread releases a lock when it is done with it
This can be very error-prone, particularly if an exception may be raised

The wi th statement takes care of acquiring a lock before its suite and
releasing it when execution exits its suite for any reason

def 1ncrement():
counter_lock.acquire()
count = counter|[O]}
sleep(0)
counter[O] = count + 1
counter_lock.release()

The With Statement

(af

A programmer must ensure that a thread releases a lock when it is done with it

This can be very error-prone, particularly if an exception may be raised

The wi th statement takes care of acquiring a lock before its suite and
releasing it when execution exits its suite for any reason

def

def

increment():
counter_lock.acquire()
count = counter|[O]}
sleep(0)

counter[O] = count + 1
counter_lock.release()

increment():

with counter_lock:
count = counter|O]
sleep(0)
counter[0] = count

+ 1

Example: Web Crawler

Example: Web Crawler @

A web crawler is a program that systematically browses the Internet

Example: Web Crawler @

A web crawler is a program that systematically browses the Internet

For example, we might write a web crawler that validates links on a website,
recursively checking all links hosted by the same site

Example: Web Crawler @

A web crawler is a program that systematically browses the Internet

For example, we might write a web crawler that validates links on a website,
recursively checking all links hosted by the same site

A parallel crawler may use the following data structures:

Example: Web Crawler @

A web crawler is a program that systematically browses the Internet

For example, we might write a web crawler that validates links on a website,
recursively checking all links hosted by the same site

A parallel crawler may use the following data structures:

® A queue of URLs that need processing

Example: Web Crawler @

A web crawler is a program that systematically browses the Internet

For example, we might write a web crawler that validates links on a website,
recursively checking all links hosted by the same site

A parallel crawler may use the following data structures:
® A queue of URLs that need processing

®* Aset of URLs that have already been seen, to avoid repeating work and
getting stuck in a circular sequence of links

Example: Web Crawler @

A web crawler is a program that systematically browses the Internet

For example, we might write a web crawler that validates links on a website,
recursively checking all links hosted by the same site

A parallel crawler may use the following data structures:
® A queue of URLs that need processing

®* Aset of URLs that have already been seen, to avoid repeating work and
getting stuck in a circular sequence of links

These data structures need to be accessed by all threads, so they must be
properly synchronized

Example: Web Crawler @

A web crawler is a program that systematically browses the Internet

For example, we might write a web crawler that validates links on a website,
recursively checking all links hosted by the same site

A parallel crawler may use the following data structures:
® A queue of URLs that need processing

®* Aset of URLs that have already been seen, to avoid repeating work and
getting stuck in a circular sequence of links

These data structures need to be accessed by all threads, so they must be
properly synchronized

They synchronized Queue class can be used for the URL queue

Example: Web Crawler @

A web crawler is a program that systematically browses the Internet

For example, we might write a web crawler that validates links on a website,
recursively checking all links hosted by the same site

A parallel crawler may use the following data structures:
® A queue of URLs that need processing

®* Aset of URLs that have already been seen, to avoid repeating work and
getting stuck in a circular sequence of links

These data structures need to be accessed by all threads, so they must be
properly synchronized

They synchronized Queue class can be used for the URL queue

There is no synchronized set in the Python library, so we must provide our own
synchronization using a lock

Synchronization in the Web Crawler @

Synchronization in the Web Crawler @

The following illustrates the main synchronization in the web crawler:

Synchronization in the Web Crawler @

The following illustrates the main synchronization in the web crawler:

def put _urlurl):
""" Queue the given URL.
queue.putCurl)

def get url():
""" Retrieve a URL.
return gqueue.get()

Synchronization in the Web Crawler @

The following illustrates the main synchronization in the web crawler:

def put _urlurl):
""" Queue the given URL.
queue.put(url)

def get url():
""" Retrieve a URL.
return gqueue.get()

def already seen(url):
""" Check 1Tt a URL has already been seen.
with seen_lock:
1T url In seen:
return True
seen.add(url)
return False

Example: Particle Simulation fd

Example: Particle Simulation @

A set of particles all interact with each other (e.g. short range repulsive force)

Example: Particle Simulation @

Q‘%‘:

A set of particles all interact with each other (e.g. short range repulsive force)

Example: Particle Simulation @

Q‘%‘:

A set of particles all interact with each other (e.g. short range repulsive force)

The set of particles is divided among all threads/processes

Example: Particle Simulation fd

A set of particles all interact with each other (e.g. short range repulsive force)

The set of particles is divided among all threads/processes

Example: Particle Simulation fd

A set of particles all interact with each other (e.g. short range repulsive force)
The set of particles is divided among all threads/processes

Forces are computed from particles’ positions

Example: Particle Simulation fd

A set of particles all interact with each other (e.g. short range repulsive force)
The set of particles is divided among all threads/processes

Forces are computed from particles’ positions

®* Their positions constitute shared data

Example: Particle Simulation fd

A set of particles all interact with each other (e.g. short range repulsive force)
The set of particles is divided among all threads/processes

Forces are computed from particles’ positions

®* Their positions constitute shared data

The simulation is discretized into timesteps

Example: Particle Simulation

.....
.......

Example: Particle Simulation

In each timestep, each thread/process must:

Example: Particle Simulation

In each timestep, each thread/process must:

1. Read the positions of every particle (read shared data)

Example: Particle Simulation

In each timestep, each thread/process must:
1. Read the positions of every particle (read shared data)

2. Update acceleration of its own particles (access non-shared data)

Example: Particle Simulation

In each timestep, each thread/process must:
1. Read the positions of every particle (read shared data)
2. Update acceleration of its own particles (access non-shared data)

3. Update velocities of its own particles (access non-shared data)

Example: Particle Simulation

In each timestep, each thread/process must:

N A

Read the positions of every particle (read shared data)
Update acceleration of its own particles (access non-shared data)
Update velocities of its own particles (access non-shared data)

Update positions of its own particles (write shared data)

Example: Particle Simulation fd

In each timestep, each thread/process must: (C\j)ncurrent reads are OK)

Read the positions of every particle (read shared data)
Update acceleration of its own particles (access non-shared data)

Update velocities of its own particles (access non-shared data)

N A

Update positions of its own particles (write shared data)

Example: Particle Simulation fd

In each timestep, each thread/process must: (C\j)ncurrent reads are OK)

Read the positions of every particle (read shared data)
Update acceleration of its own particles (access non-shared data)

Update velocities of its own particles (access non-shared data)

N A

Update positions of its own particles (write shared data)
/\

@rites are to different IocationB

Example: Particle Simulation @

--

Update acceleration of its own particles (access non- shared data)

2
3. Update velocities of its own particles (access non-shared data)

4. Update positions of its own particles (write shared data)
-- K p———

Steps 1 and 4 conflict with each other @rites are to different IocationB

Solution #1: Barriers

In each timestep, each thread/process must:

--

2. Update acceleration of its own particles (access non- shared data)
3. Update velocities of its own particles (access non-shared data)
4 Update positions of its own particles (write shared data)

Steps 1 and 4 conflict with each other

Solution #1: Barriers @

In each timestep, each thread/process must:

--

1. Read the positions of every particle (read shared data)

2. "Update acceleration of its own particies (access non-shared data)
3.....Update velocities of its own particles (access non-shared data)
4 Update positions of its own particles (write shared data) |

Steps 1 and 4 conflict with each other

We can solve this conflict by dividing the program into phases, ensuring that all
threads change phases at the same time

Solution #1: Barriers @

In each timestep, each thread/process must:

--

2. Update acceleration of its own particles (access non- shared data)
3

Update velocities of its own particles (access non-shared data)

Steps 1 and 4 conflict with each other

We can solve this conflict by dividing the program into phases, ensuring that all
threads change phases at the same time

A barrier is a synchronization mechanism that accomplishes this

Solution #1: Barriers @

In each timestep, each thread/process must:

--

1. Read the positions of every particle (read shared data)
2. Update acceleration of its own particles (access non- shared data)
3. Update velocities of its own particles (access non-shared data)

Steps 1 and 4 conflict with each other

We can solve this conflict by dividing the program into phases, ensuring that all
threads change phases at the same time

A barrier is a synchronization mechanism that accomplishes this

from threading import Barrier

Solution #1: Barriers @

In each timestep, each thread/process must:

--

1. Read the positions of every particle (read shared data)
2. Update acceleration of its own particles (access non- shared data)
3. Update velocities of its own particles (access non-shared data)

Steps 1 and 4 conflict with each other

We can solve this conflict by dividing the program into phases, ensuring that all
threads change phases at the same time

A barrier is a synchronization mechanism that accomplishes this

from threading import Barrier

barrier = Barrier(num_threads)

Solution #1: Barriers @

In each timestep, each thread/process must:

--

2. Update acceleration of its own particles (access non- shared data)
3

Update velocities of its own particles (access non-shared data)

Steps 1 and 4 conflict with each other

We can solve this conflict by dividing the program into phases, ensuring that all
threads change phases at the same time

A barrier is a synchronization mechanism that accomplishes this

from threading import Barrier
barrier = Barrier(num_threads)

barrier_.wait()

Solution #1: Barriers @

In each timestep, each thread/process must:

Update acceleration of its own particles (access non- shared data)

2
3. Update velocities of its own particles (access non-shared data)

--

Steps 1 and 4 conflict with each other

We can solve this conflict by dividing the program into phases, ensuring that all
threads change phases at the same time

A barrier is a synchronization mechanism that accomplishes this

from threading import Barrier

barrier = Barrier (num threads)

barrier.wait () —<!:Waits until num threads threads reach itj

Solution #1: Barriers Cd

In each timestep, each thread/process must:

Update acceleration of its own particles (access non- shared data)

2
3. Update velocities of its own particles (access non-shared data)

ll

Steps 1 and 4 conflict with each other

We can solve this conflict by dividing the program into phases, ensuring that all
threads change phases at the same time

A barrier is a synchronization mechanism that accomplishes this

from threading import Barrier

barrier = Barrier (num threads)

barrier.wait () —{Waits until num threads threads reach itj

Solution #1: Barriers Qf

In each timestep, each thread/process must:

lll

Update acceleration of its own particles (access non- shared data)

2
3. Update velocities of its own particles (access non-shared data)

ll

Steps 1 and 4 conflict with each other

We can solve this conflict by dividing the program into phases, ensuring that all
threads change phases at the same time

A barrier is a synchronization mechanism that accomplishes this

from threading import Barrier

barrier = Barrier (num threads)

barrier.wait () —=!:Waits until num threads threads reach itj

Solution #2: Message Passing @

Solution #2: Message Passing @

Alternatively, we can explicitly pass state from the thread/process that owns it
to those that need to use it

Solution #2: Message Passing @

Alternatively, we can explicitly pass state from the thread/process that owns it
to those that need to use it

Solution #2: Message Passing @

Alternatively, we can explicitly pass state from the thread/process that owns it
to those that need to use it

In each timestep, every process makes a copy of its own particles

Solution #2: Message Passing Qf

Alternatively, we can explicitly pass state from the thread/process that owns it
to those that need to use it

In each timestep, every process makes a copy of its own particles

Solution #2: Message Passing Qf

Alternatively, we can explicitly pass state from the thread/process that owns it
to those that need to use it

In each timestep, every process makes a copy of its own particles

Then, they do the following num processes-1 times:

Solution #2: Message Passing Qf

Alternatively, we can explicitly pass state from the thread/process that owns it
to those that need to use it

In each timestep, every process makes a copy of its own particles

Then, they do the following num processes-1 times:

1. Interact with the copy that is present

Solution #2: Message Passing Qf

Alternatively, we can explicitly pass state from the thread/process that owns it
to those that need to use it

In each timestep, every process makes a copy of its own particles

Then, they do the following num processes-1 times:

1. Interact with the copy that is present

Solution #2: Message Passing Qf

Alternatively, we can explicitly pass state from the thread/process that owns it
to those that need to use it

In each timestep, every process makes a copy of its own particles

Then, they do the following num processes-1 times:
1. Interact with the copy that is present
2. Send the copy to the left, receive from the right

Solution #2: Message Passing Qf

Alternatively, we can explicitly pass state from the thread/process that owns it
to those that need to use it

In each timestep, every process makes a copy of its own particles

Then, they do the following num processes-1 times:
1. Interact with the copy that is present
2. Send the copy to the left, receive from the right

Solution #2: Message Passing Qf

Alternatively, we can explicitly pass state from the thread/process that owns it
to those that need to use it

In each timestep, every process makes a copy of its own particles

Then, they do the following num processes-1 times:
1. Interact with the copy that is present
2. Send the copy to the left, receive from the right

Solution #2: Message Passing Qf

Alternatively, we can explicitly pass state from the thread/process that owns it
to those that need to use it

In each timestep, every process makes a copy of its own particles

Then, they do the following num processes-1 times:
1. Interact with the copy that is present
2. Send the copy to the left, receive from the right

Solution #2: Message Passing Qf

Alternatively, we can explicitly pass state from the thread/process that owns it
to those that need to use it

In each timestep, every process makes a copy of its own particles

Then, they do the following num processes-1 times:
1. Interact with the copy that is present
2. Send the copy to the left, receive from the right

Solution #2: Message Passing Qf

Alternatively, we can explicitly pass state from the thread/process that owns it
to those that need to use it

In each timestep, every process makes a copy of its own particles

Then, they do the following num processes-1 times:
1. Interact with the copy that is present
2. Send the copy to the left, receive from the right

Solution #2: Message Passing Qf

Alternatively, we can explicitly pass state from the thread/process that owns it
to those that need to use it

In each timestep, every process makes a copy of its own particles

Then, they do the following num processes-1 times:
1. Interact with the copy that is present
2. Send the copy to the left, receive from the right

Solution #2: Message Passing Qf

Alternatively, we can explicitly pass state from the thread/process that owns it
to those that need to use it

In each timestep, every process makes a copy of its own particles

Then, they do the following num processes-1 times:
1. Interact with the copy that is present
2. Send the copy to the left, receive from the right

Thus, reads are on copies, so they don’t conflict with writes

Summary

Summary @

Parallelism is necessary for performance, due to hardware trends

Summary @

Parallelism is necessary for performance, due to hardware trends

But parallelism is hard in the presence of mutable shared state

Summary @

Parallelism is necessary for performance, due to hardware trends

But parallelism is hard in the presence of mutable shared state

® Access to shared data must be synchronized in the presence of
mutation

Summary @

Parallelism is necessary for performance, due to hardware trends

But parallelism is hard in the presence of mutable shared state

® Access to shared data must be synchronized in the presence of
mutation

Making parallel programming easier is one of the central
challenges that Computer Science faces today

Abstraction, Abstraction, Abstraction @

Abstraction, Abstraction, Abstraction @

The central idea of 61A is abstraction

Abstraction, Abstraction, Abstraction @

The central idea of 61A is abstraction

®* Not only central in Computer Science, but in any discipline that deals with
complex systems

Abstraction, Abstraction, Abstraction @

The central idea of 61A is abstraction

®* Not only central in Computer Science, but in any discipline that deals with
complex systems

Abstraction is our main tool for managing complexity

Abstraction, Abstraction, Abstraction @

The central idea of 61A is abstraction

®* Not only central in Computer Science, but in any discipline that deals with
complex systems

Abstraction is our main tool for managing complexity

® Complex systems have multiple abstraction layers to divide the system as a
whole into manageable pieces

Abstraction, Abstraction, Abstraction @

The central idea of 61A is abstraction

®* Not only central in Computer Science, but in any discipline that deals with
complex systems

Abstraction is our main tool for managing complexity

® Complex systems have multiple abstraction layers to divide the system as a
whole into manageable pieces

Not only did we learn how to use abstractions, we learned how to build them

Abstraction, Abstraction, Abstraction @

The central idea of 61A is abstraction

®* Not only central in Computer Science, but in any discipline that deals with
complex systems

Abstraction is our main tool for managing complexity

® Complex systems have multiple abstraction layers to divide the system as a
whole into manageable pieces

Not only did we learn how to use abstractions, we learned how to build them

® Nothingis magical!

Abstraction, Abstraction, Abstraction @

The central idea of 61A is abstraction

®* Not only central in Computer Science, but in any discipline that deals with
complex systems

Abstraction is our main tool for managing complexity

® Complex systems have multiple abstraction layers to divide the system as a
whole into manageable pieces

Not only did we learn how to use abstractions, we learned how to build them
® Nothingis magical!

® Wesaw lots of cool ideas (e.g. objects, rlists, interpreters, logic
programming), but we also saw how they work

Abstraction, Abstraction, Abstraction @

The central idea of 61A is abstraction

®* Not only central in Computer Science, but in any discipline that deals with
complex systems

Abstraction is our main tool for managing complexity

® Complex systems have multiple abstraction layers to divide the system as a
whole into manageable pieces

Not only did we learn how to use abstractions, we learned how to build them
® Nothingis magical!

® Wesaw lots of cool ideas (e.g. objects, rlists, interpreters, logic
programming), but we also saw how they work

® Simple and compact implementations provide very powerful abstractions

61A Topics in Future Courses @

61A Topics in Future Courses @

You will see the topics you learned here many times over your academic
career and beyond

61A Topics in Future Courses @

You will see the topics you learned here many times over your academic
career and beyond

Here is a (partial) mapping between CS classes and 61A topics:

61A Topics in Future Courses @

You will see the topics you learned here many times over your academic
career and beyond

Here is a (partial) mapping between CS classes and 61A topics:

® 61B: Object-oriented programming, inheritance, multiple representations,
recursive data (rlists and trees), orders of growth

® 61C: MapReduce, Parallelism

® 70: Recursion/induction, halting problem

® 162: Parallelism

® 164: Recursive data, interpretation, declarative programming
® 170: Recursive data, orders of growth, logic

® 172: Halting problem

® 186: Declarative programming

61A Topics in Future Courses @

You will see the topics you learned here many times over your academic
career and beyond

Here is a (partial) mapping between CS classes and 61A topics:

® 61B: Object-oriented programming, inheritance, multiple representations,
recursive data (rlists and trees), orders of growth

® 61C: MapReduce, Parallelism

® 70: Recursion/induction, halting problem

® 162: Parallelism

® 164: Recursive data, interpretation, declarative programming
® 170: Recursive data, orders of growth, logic

® 172: Halting problem

® 186: Declarative programming

Of course, you will see abstraction everywhere!

Stay Involved!

Stay Involved! @

The community is what makes 61A great (TAs, readers, lab
assistants)

Stay Involved! @

The community is what makes 61A great (TAs, readers, lab
assistants)

The entire teaching staff consists of undergrads like you

Stay Involved! @

The community is what makes 61A great (TAs, readers, lab
assistants)

The entire teaching staff consists of undergrads like you
® Most of them are sophomores!

Stay Involved! @

The community is what makes 61A great (TAs, readers, lab
assistants)

The entire teaching staff consists of undergrads like you
® Most of them are sophomores!

If you can, please lab assist for future semesters

Stay Involved! @

The community is what makes 61A great (TAs, readers, lab
assistants)

The entire teaching staff consists of undergrads like you
® Most of them are sophomores!

If you can, please lab assist for future semesters
® You get units!

Stay Involved! @

The community is what makes 61A great (TAs, readers, lab
assistants)

The entire teaching staff consists of undergrads like you
® Most of them are sophomores!

If you can, please lab assist for future semesters
® You get units!

® Readers and TAs are often chosen based on their involvement
with the course, in addition to grades and other factors

Stay Involved! @

The community is what makes 61A great (TAs, readers, lab
assistants)

The entire teaching staff consists of undergrads like you
® Most of them are sophomores!

If you can, please lab assist for future semesters
® You get units!

® Readers and TAs are often chosen based on their involvement
with the course, in addition to grades and other factors

You can apply to be a reader or TA here:
https://willow.coe.berkeley.edu/PHP/gsiapp/menu.php

The 61A Staff

Teaching Assistants

Joy Jeng Keegan Mann Stephen Martinis Julia ©h

Robert Huang Mark Miyashita Sharad Vikram
Readers

From all of us:

Thank you for
a wonderful
semester!

Yan Zhao Lori Krakirian

James Sha Siyuan (Jack) He Jian Qiao Iris Wang Chenyang Yuan

61A Rocks!

61A Rocks!

Thanks to Andy Qin!

61A Rocks!

Thanks to Andy Qin!

Thanks to Adithya Murali!

61A Rocks!

b P L %
SRR Sl R P

Thanks to Lucas
Thanks to Adithya Murali! Karahadian!

61A Rocks!

in!

Thanks to Lucas
Thanks to Adithya Murali! Karahadian!

