CS61A Lecture 24

Amir Kamil and Hamilton Nguyen

UC Berkeley
March 18, 2013

Announcements

Ants project due tonight

O HW8 due Wednesday at 7pm

O Midterm 2 Thursday at 7pm

See course website for more information

Closure Property of Data @

A tuple can contain another tuple as an element.

Pairs are sufficient to represent sequences.

Recursive list representation of the sequence 1, 2, 3, 4:

— 1 —r—> 2 ——> 3 ——| 4 | None

Recursive lists are recursive: the rest of the list is a list.

Nested pairs (old): (1, (2, (3, (4, None))))

Rlist class (new): Rlist(1, Rlist(2, Rlist(3, Rlist(4))))

Recursive List Class

Methods can be recursive as well!

class RIist(object):
class EmptyList(object):

‘def __Ien__(self):@ There's the
] return O ;
... base Case!

empty = EmptyList()

def init_ (self, Tirst, rest=empty):
self.first = first
self.rest = rest

III

‘def _ len_ (self): : : :
return 1 + len(self.rest) i Yes, this call is j

def_getitem_(se|f, i): recursive

it 1 ==
return self._first
return self._rest[1 - 1]

Recursive Operations on Rlists @

Recursive Operations on Rlists @

Recursive list processing almost always involves a recursive call
on the rest of the list.

Recursive Operations on Rlists @

Recursive list processing almost always involves a recursive call
on the rest of the list.

>>> s = Rlist(1, Rlist(2, Rlist(3)))

Recursive Operations on Rlists @

Recursive list processing almost always involves a recursive call
on the rest of the list.

>>> s = Rlist(1, Rlist(2, Rlist(3)))

>>> s.rest

Recursive Operations on Rlists @

Recursive list processing almost always involves a recursive call
on the rest of the list.

>>> s = Rlist(1, Rlist(2, Rlist(3)))

>>> s.rest
Rlist(2, Rlist(3))

Recursive Operations on Rlists @

Recursive list processing almost always involves a recursive call
on the rest of the list.

>>> s = Rlist(1, Rlist(2, Rlist(3)))

>>> s.rest
Rlist(2, Rlist(3))

>>> extend rlist(s.rest, s)

Recursive Operations on Rlists @

Recursive list processing almost always involves a recursive call
on the rest of the list.

>>> s = Rlist(1, Rlist(2, Rlist(3)))

>>> s.rest
Rlist(2, Rlist(3))

>>> extend rlist(s.rest, s)
Rlist(2, Rlist(3, Rlist(1, Rlist(2, Rlist(3)))))

Recursive Operations on Rlists @

Recursive list processing almost always involves a recursive call
on the rest of the list.

>>> s = Rlist(1, Rlist(2, Rlist(3)))

>>> s.rest
Rlist(2, Rlist(3))

>>> extend rlist(s.rest, s)
Rlist(2, Rlist(3, Rlist(1, Rlist(2, Rlist(3)))))

def extend rlist(sl, s2):

Recursive Operations on Rlists @

Recursive list processing almost always involves a recursive call
on the rest of the list.

>>> s = Rlist(1, Rlist(2, Rlist(3)))

>>> s.rest
Rlist(2, Rlist(3))

>>> extend rlist(s.rest, s)
Rlist(2, Rlist(3, Rlist(1, Rlist(2, Rlist(3)))))

def extend rlist(sl, s2):
IT s1 is Rlist.empty:

Recursive Operations on Rlists @

Recursive list processing almost always involves a recursive call
on the rest of the list.

>>> s = Rlist(1, Rlist(2, Rlist(3)))

>>> s.rest
Rlist(2, Rlist(3))

>>> extend rlist(s.rest, s)
Rlist(2, Rlist(3, Rlist(1, Rlist(2, Rlist(3)))))

def extend rlist(sl, s2):
IT s1 is Rlist.empty:
return s2

Recursive Operations on Rlists @

Recursive list processing almost always involves a recursive call
on the rest of the list.

>>> s = Rlist(1, Rlist(2, Rlist(3)))

>>> s.rest
Rlist(2, Rlist(3))

>>> extend rlist(s.rest, s)
Rlist(2, Rlist(3, Rlist(1, Rlist(2, Rlist(3)))))

def extend rlist(sl, s2):
IT s1 is Rlist.empty:
return s2
return RIist(sl.first, extend rlist(sl.rest, s2))

Map and Filter on Rlists

Map and Filter on Rlists @

We want operations on a whole list, not an element at a time.

Map and Filter on Rlists @

We want operations on a whole list, not an element at a time.

def map_rlist(s, fn):

Map and Filter on Rlists @

We want operations on a whole list, not an element at a time.

def map_rlist(s, fn):
iIT s 1s Rlist.empty:

Map and Filter on Rlists @

We want operations on a whole list, not an element at a time.

def map_rlist(s, fn):
iIT s 1s Rlist.empty:
return s

Map and Filter on Rlists @

We want operations on a whole list, not an element at a time.

def map_rlist(s, fn):
iIT s 1s Rlist.empty:
return s
return RIist(fn(s.first), map rlist(s.rest, fn))

Map and Filter on Rlists @

We want operations on a whole list, not an element at a time.

def map_rlist(s, fn):
iIT s 1s Rlist.empty:
return s
return RIist(fn(s.first), map rlist(s.rest, fn))

def filter_rlist(s, fn):

Map and Filter on Rlists @

We want operations on a whole list, not an element at a time.

def map_rlist(s, fn):
iIT s 1s Rlist.empty:
return s
return RIist(fn(s.first), map rlist(s.rest, fn))

def filter_rlist(s, fn):
iIT s 1s Rlist.empty:

Map and Filter on Rlists @

We want operations on a whole list, not an element at a time.

def map_rlist(s, fn):
iIT s 1s Rlist.empty:
return s
return RIist(fn(s.first), map rlist(s.rest, fn))

def filter_rlist(s, fn):
iIT s 1s Rlist.empty:
return s

Map and Filter on Rlists @

We want operations on a whole list, not an element at a time.

def map_rlist(s, fn):
iIT s 1s Rlist.empty:
return s
return RIist(fn(s.first), map rlist(s.rest, fn))

def filter_rlist(s, fn):
iIT s 1s Rlist.empty:
return s
rest = Tilter rlist(s.rest, fn)

Map and Filter on Rlists @

We want operations on a whole list, not an element at a time.

def map_rlist(s, fn):
iIT s 1s Rlist.empty:
return s
return RIist(fn(s.first), map rlist(s.rest, fn))

def filter_rlist(s, fn):
iIT s 1s Rlist.empty:
return s
rest = Tilter rlist(s.rest, fn)
1T fn(s.first):

Map and Filter on Rlists @

We want operations on a whole list, not an element at a time.

def map_rlist(s, fn):
iIT s 1s Rlist.empty:
return s
return RIist(fn(s.first), map rlist(s.rest, fn))

def filter_rlist(s, fn):
iIT s 1s Rlist.empty:
return s
rest = Tilter rlist(s.rest, fn)
IT fn(s.first):
return Rlist(s.first, rest)

Map and Filter on Rlists @

We want operations on a whole list, not an element at a time.

def map_rlist(s, fn):
iIT s 1s Rlist.empty:
return s
return RIist(fn(s.first), map rlist(s.rest, fn))

def filter_rlist(s, fn):
iIT s 1s Rlist.empty:
return s
rest = Tilter rlist(s.rest, fn)
IT fn(s.first):
return Rlist(s.first, rest)
return rest

Tree Structured Data

Tree Structured Data

Nested Sequences are Hierarchical Structures.

Tree Structured Data

Nested Sequences are Hierarchical Structures.

((1, 2), (3, 4), 5)

Tree Structured Data

Nested Sequences are Hierarchical Structures.

((1, 2), (3, 4), 5)

Tree Structured Data

Nested Sequences are Hierarchical Structures.

((1, 2), (3, 4), 5)

Tree Structured Data

Nested Sequences are Hierarchical Structures.

((1, 2), (3, 4), 5)

lll

III

Tree Structured Data

Nested Sequences are Hierarchical Structures.

((1, 2), (3, 4), 5)

Tree Structured Data

Nested Sequences are Hierarchical Structures.

((1, 2), (3, 4), 5)

Tree Structured Data

Nested Sequences are Hierarchical Structures.

((1, 2), (3, 4), 5)

Tree Structured Data

Nested Sequences are Hierarchical Structures.

((1, 2), (3, 4), 5)

Tree Structured Data

Nested Sequences are Hierarchical Structures.

((1, 2), (3, 4), 5)

Tree Structured Data

Nested Sequences are Hierarchical Structures.

((1, 2), (3, 4), 5)

Tree Structured Data

Nested Sequences are Hierarchical Structures.

((1, 2), (3, 4), 5)

Tree Structured Data

Nested Sequences are Hierarchical Structures.

((1, 2), (3, 4), 5)

In every tree, a vast forest

Tree Structured Data

Nested Sequences are Hierarchical Structures.

((1, 2), (3, 4), 5)

In every tree, a vast forest

Example: http://go0.gl/0h6n5

Recursive Tree Processing

Recursive Tree Processing @

Tree operations typically make recursive calls on branches

Recursive Tree Processing @

Tree operations typically make recursive calls on branches

def count_leaves(tree):

Recursive Tree Processing @

Tree operations typically make recursive calls on branches

def count_leaves(tree):
1T type(tree) = tuple:

Recursive Tree Processing @

Tree operations typically make recursive calls on branches

def count_leaves(tree):
1T type(tree) = tuple:
return 1

Recursive Tree Processing @

Tree operations typically make recursive calls on branches

def count_leaves(tree):
1T type(tree) = tuple:
return 1
return sum(map(count_leaves, tree))

Recursive Tree Processing @

Tree operations typically make recursive calls on branches

def count_leaves(tree):
1T type(tree) = tuple:
return 1
return sum(map(count_leaves, tree))

def map_tree(tree, fn):

Recursive Tree Processing @

Tree operations typically make recursive calls on branches

def count_leaves(tree):
1T type(tree) = tuple:
return 1
return sum(map(count_leaves, tree))

def map_tree(tree, fn):
1T type(tree) = tuple:

Recursive Tree Processing @

Tree operations typically make recursive calls on branches

def count_leaves(tree):
1T type(tree) = tuple:
return 1
return sum(map(count_leaves, tree))

def map_tree(tree, fn):
1T type(tree) = tuple:
return fn(tree)

Recursive Tree Processing @

Tree operations typically make recursive calls on branches

def count_leaves(tree):
1T type(tree) = tuple:
return 1
return sum(map(count_leaves, tree))

def map_tree(tree, fn):
1T type(tree) = tuple:
return fn(tree)
return tuple(map tree(branch, fn)

Recursive Tree Processing @

Tree operations typically make recursive calls on branches

def count_leaves(tree):
1T type(tree) = tuple:
return 1
return sum(map(count_leaves, tree))

def map_tree(tree, fn):
1T type(tree) = tuple:
return fn(tree)
return tuple(map tree(branch, fn)
for branch iIn tree)

Trees with Internal Node Values @

Trees with Internal Node Values @

Trees can have values at internal nodes as well as their leaves.

Trees with Internal Node Values @

Trees can have values at internal nodes as well as their leaves.

fib(6)
fib(4) fib(5)
/ N
fib(2) fib(3)

| . / T\ fib(3) fib(4)
1 fib(1) fib(2) // . 4 AN

| ‘ fib(1) fib(2) fib(2) fib(3)

’ ' \ \ SN

%) 1 1 fib(1) fib(2)

(7 1

The Consumption of Time @

Implementations of the same functional abstraction can require
different amounts of time to compute their result.

The Consumption of Time @

Implementations of the same functional abstraction can require
different amounts of time to compute their result.

def count factors(n):

The Consumption of Time @

Implementations of the same functional abstraction can require
different amounts of time to compute their result.

def count_factors(n): Time (remainders)

The Consumption of Time @

Implementations of the same functional abstraction can require
different amounts of time to compute their result.

def count_factors(n): Time (remainders)

factors = 0
for k in range(l, n + 1):
iITn% k == 0:
factors += 1
return factors

The Consumption of Time @

Implementations of the same functional abstraction can require
different amounts of time to compute their result.

def count_factors(n): Time (remainders)

factors = 0
for k in range(l, n + 1):
iITn % k == 0:
factors += 1
return factors

The Consumption of Time @

Implementations of the same functional abstraction can require
different amounts of time to compute their result.

def count_factors(n): Time (remainders)

factors = 0
for k in range(l, n + 1):
iITn % k == 0: 1
factors += 1
return factors

The Consumption of Time @

Implementations of the same functional abstraction can require
different amounts of time to compute their result.

def count_factors(n): Time (remainders)

factors = 0
for k in range(l, n + 1):
iITn % k == 0: 1
factors += 1
return factors

The Consumption of Time @

Implementations of the same functional abstraction can require
different amounts of time to compute their result.

def count_factors(n): Time (remainders)

factors = 0
for k in range(l, n + 1):
iITn % k == 0: 1
factors += 1
return factors

sqrt_n = sgrt(n)

k, factors =1, O

while k < sqgrt _n:
iITn% k == 0:

factors += 2

k += 1

iT k * k == n:
factors += 1

return factors

The Consumption of Time @

Implementations of the same functional abstraction can require
different amounts of time to compute their result.

def count_factors(n): Time (remainders)

factors = 0
for k in range(l, n + 1):
iITn % k == 0: 1
factors += 1
return factors

sqrt_n = sgrt(n)
k, factors =1, O
while k < sqgrt _n:
iITn% k == 0:
factors += 2 n
L V7]
iT k * k == n:
factors += 1
return factors

Order of Growth

Order of Growth @

A method for bounding the resources used by a function as the
"size" of a problem increases

Order of Growth @

A method for bounding the resources used by a function as the
"size" of a problem increases

n: size of the problem

Order of Growth @

A method for bounding the resources used by a function as the
"size" of a problem increases

n: size of the problem

R(n): Measurement of some resource used (time or space)

Order of Growth @

A method for bounding the resources used by a function as the
"size" of a problem increases

n: size of the problem

R(n): Measurement of some resource used (time or space)

R(n) =0©(f(n))

Order of Growth @

A method for bounding the resources used by a function as the
"size" of a problem increases

n: size of the problem

R(n): Measurement of some resource used (time or space)

R(n) =0©(f(n))

means that there are positive constants ki and k2 such that

Order of Growth @

A method for bounding the resources used by a function as the
"size" of a problem increases

n: size of the problem

R(n): Measurement of some resource used (time or space)

R(n) =0©(f(n))

means that there are positive constants ki and k2 such that

ki-f(n) < R(n) < k- f(n)

Order of Growth @

A method for bounding the resources used by a function as the
"size" of a problem increases

n: size of the problem

R(n): Measurement of some resource used (time or space)

R(n) =0©(f(n))

means that there are positive constants ki and k2 such that
ki-f(n) < R(n) < k- f(n)

for sufficiently large values of n.

Constant Time: O(1)

Constant Time: O(1)

Time does not depend on input size.

Constant Time: O(1)

Time does not depend on input size.

def g(nh):
return 42

Constant Time: O(1)

Time does not depend on input size.

def g(n):
return 42

def foo(n):
baz = 7
it n>5:
baz += 5
return baz

Constant Time: O(1)

Time does not depend on input size.

def g(n):
return 42

def foo(n):
baz = 7
it n>5:
baz += 5
return baz

def 1s_even(n):
return n %9 2 == 0

Iteration vs. Tree Recursion (Time) @

Iterative and recursive implementations are not the same.

Time

def Tib _1ter(n):
prev, curr = 1, 0O
for _ 1n range(n - 1):
prev, curr = curr, prev + curr
return curr

def fib(n):
iIT n ==
return O
iIT n ==
return 1
return fib(n - 2) + fib(n - 1)

Iteration vs. Tree Recursion (Time) @

Iterative and recursive implementations are not the same.
Time

def fib_iter(n): @(’n,.)
prev, curr = 1, 0O
for _ 1n range(n - 1):
prev, curr = curr, prev + curr
return curr

def fib(n):
iIT n ==
return O
iIT n ==
return 1
return fib(n - 2) + fib(n - 1)

Iteration vs. Tree Recursion (Time) @

Iterative and recursive implementations are not the same.
Time

def fib_iter(n): @(’n,.)
prev, curr = 1, 0O
for _ 1n range(n - 1):
prev, curr = curr, prev + curr
return curr

def Fib(n): (—)(Qﬁ’”)
ifn==1: |
return O
it n == 2:
return 1
return fib(n - 2) + fib(n - 1)

Iteration vs. Tree Recursion (Time) @

Iterative and recursive implementations are not the same.
Time

def Fib_iter(n): @(n)
prev, curr = 1, 0O
for _ 1n range(n - 1):
prev, curr = curr, prev + curr
return curr

def Fib(n): (—)(Qﬁ”)
ifn==1: |
return O
iIT n ==
return 1
return fib(n - 2) + fib(n - 1)

Next time, we will see how to make recursive version faster.

The Consumption of Time @

Implementations of the same functional abstraction can require
different amounts of time to compute their result.

def count_factors(n): Time

factors = 0
for k in range(l, n + 1):
iITn% k == 0:
factors += 1
return factors

sqrt_n = sgrt(n)

k, factors =1, O

while k < sqgrt _n:
iITn% k == 0:

factors += 2

k += 1

iT k * k == n:
factors += 1

return factors

The Consumption of Time @

Implementations of the same functional abstraction can require
different amounts of time to compute their result.

def count_factors(n): Time
factors = 0O —) (
for k in range(l1, n + 1): ()(TL)
iITn%k == 0:

factors += 1
return factors

sqrt_n = sgrt(n)

k, factors =1, O

while k < sqgrt _n:
iITn% k == 0:

factors += 2

k += 1

iT k * k == n:
factors += 1

return factors

The Consumption of Time @

Implementations of the same functional abstraction can require
different amounts of time to compute their result.

def count_factors(n): Time
factors = 0O —) (
for k in range(l1, n + 1): ()(TL)
iITn%k == 0:

factors += 1
return factors

sqrt_n = sgrt(n)
k, factors =1, O — :
while k < sqgrt _n: ()(\/;{)
1ITn% k == 0:
factors += 2
k += 1
iIT k * k == n:

factors += 1
return factors

Exponentiation

Exponentiation @

Goal: one more multiplication lets us double the problem size.

Exponentiation @

Goal: one more multiplication lets us double the problem size.

def exp(b, n):
iIf n == 0:
return 1
return b * exp(b, n - 1)

Exponentiation @

Goal: one more multiplication lets us double the problem size.

def exp(b, n): [e
F n o= O b 1 ifn=0
return 1 b-b" !t otherwise

return b * exp(b, n - 1) \

Exponentiation @

Goal: one more multiplication lets us double the problem size.

def exp(b, n): [o
F n o= O b’”:<1 ifn=20
return 1 b-b" !t otherwise
return b * exp(b, n - 1) \
1 ifn=0
. i iy ¢ g "
b" = < (b2™)* if n is even

b-b" 1 if nisodd

Exponentiation @

Goal: one more multiplication lets us double the problem size.

def exp(b, n): [o
iIT n == 0: bt = % ! ifn=0
return 1 b-b" ! otherwise
return b * exp(b, n - 1) \
def square(x): 1 ifn=0
; 1 " .
b" = < (b2™)* if n is even

b-b" 1 if nisodd

Exponentiation @

Goal: one more multiplication lets us double the problem size.

def exp(b, n): [o
iIT n == 0O: bt = % 1 ifn=0
return 1 b-b" ! otherwise
return b * exp(b, n - 1) \
def square(x): 1 if n =0

return X * x

b'n

(b3™)2 if n is even

b-b" 1 if nisodd

Exponentiation @

Goal: one more multiplication lets us double the problem size.

def exp(b, n): [f n —
o b’”:<1 itn=20
return 1 b-b" ! otherwise
return b * exp(b, n - 1) \
def square(x): 1 if n =0

return X * x

b'n

(b3™)2 if n is even

def fast exp(b, n): . .
b-bv" 1 if nis odd

Exponentiation

(af

Goal: one more multiplication lets us double the problem size.

def exp(b, n):
iT n == 0: hr
return 1
return b * exp(b, n - 1)

def square(x):
return X * X
b'n
def fast exp(b, n):
i1t n == 0:

1

if n=20

b-b* 1 otherwise
\.

1
(b%n)2
b.bn—l

if n
if n

1f n

1S

1S

0
even

odd

Exponentiation

(af

Goal: one more multiplication lets us double the problem size.

def exp(b, n):
iIT n == 0O: hr
return 1
return b * exp(b, n - 1)

def square(x):
return x * x
b'n
def fast exp(b, n):
iT n == 0:
return 1

1

if n=20

b-b* 1 otherwise
\.

1
(b%n)2
b.bn—l

if n
if n

1f n

1S

1S

0
even

odd

Exponentiation @

Goal: one more multiplication lets us double the problem size.

def exp(b, n): i o
eI ol b”:<1 ifn=0
return 1 b-b" 1 otherwise
return b * exp(b, n - 1) \
def square(x): 1 ifn =0
return x * x)
b" = < (b2™)* if n is even
def fast exp(b, n): . .
if n == 0: b-bv" 1 if nis odd

return 1
elif n% 2 == 0:

Exponentiation

(af

Goal: one more multiplication lets us double the problem size.

def exp(b, n): [S
P, b”:<1 if n=2~0
return 1 b-b" ! otherwise
return b * exp(b, n - 1) \
def square(x): 1 ifn =0
return x * X 1
b" = < (b2™)* if n is even
def fast_exp(b, n):) .
if n == 0: b-b" 1 if nis odd
return 1
elitT n% 2 == 0:

return square(fast exp(b, n 7/ 2))

Exponentiation @

Goal: one more multiplication lets us double the problem size.

def exp(b, n): [S
P, b”:<1 if n=2~0
return 1 b-b" ! otherwise
return b * exp(b, n - 1) \
def square(x): 1 ifn =0
return x * X 1
b" = < (b2™)* if n is even
def fast_exp(b, n):) .
if n == 0: b-b" 1 if nis odd
return 1
elitT n% 2 == 0:

return square(fast exp(b, n 7/ 2))
else:

Exponentiation @

Goal: one more multiplication lets us double the problem size.

def exp(b, n): [] —
o b”:<1 itn=0
return 1 b-b" 1 otherwise
return b * exp(b, n - 1) \
def square(x): 1 if n =0

return X * x

. 1
b" = < (b2™)* if n is even
def fast exp(b, n):
if n == 0: b-bv" 1 if nis odd
return 1
elitf n% 2 == 0:
return square(fast exp(b, n 7/ 2))
else:

return b * fast exp(b, n - 1)

Exponentiation @

Goal: one more multiplication lets us double the problem size.

Time Space

def exp(b, n):
iT n == 0:
return 1
return b * exp(b, n - 1)

def square(x):
return x * x

def fast exp(b, n):
iT n == 0:
return 1
elitf n% 2 == 0:
return square(fast exp(b, n 7/ 2))
else:
return b * fast exp(b, n - 1)

Exponentiation @

Goal: one more multiplication lets us double the problem size.

Time Space

def ?;pgb:_n)z G)(n) ()(n)

return 1
return b * exp(b, n - 1)

def square(x):
return x * x

def fast exp(b, n):
iT n == 0:
return 1
elitf n% 2 == 0:
return square(fast exp(b, n 7/ 2))
else:
return b * fast exp(b, n - 1)

Exponentiation @

Goal: one more multiplication lets us double the problem size.

Time Space

def ?;pgb:_n)z G)(n) ()(n)

return 1
return b * exp(b, n - 1)

def square(x):
return x * x O(logn) O(logn)

def fast exp(b, n):
iT n == 0:
return 1
elitf n% 2 == 0:
return square(fast exp(b, n 7/ 2))
else:
return b * fast exp(b, n - 1)

The Consumption of Space

The Consumption of Space @

Which environment frames do we need to keep during
evaluation?

The Consumption of Space @

Which environment frames do we need to keep during
evaluation?

Each step of evaluation has a set of active environments.

The Consumption of Space @

Which environment frames do we need to keep during
evaluation?

Each step of evaluation has a set of active environments.

Values and frames in active environments consume memory.

The Consumption of Space @

Which environment frames do we need to keep during
evaluation?

Each step of evaluation has a set of active environments.
Values and frames in active environments consume memory.

Memory used for other values and frames can be reclaimed.

The Consumption of Space

Which environment frames do we need to keep during
evaluation?

Each step of evaluation has a set of active environments.
Values and frames in active environments consume memory.

Memory used for other values and frames can be reclaimed.

Active environments:

® Environments for any statements currently being executed

® Parent environments of functions named in active
environments

The Consumption of Space @

Implementations of the same functional abstraction can require
different amounts of time to compute their result.

def count_factors(n): Time Space

factors = 0
for k in range(l, n + 1):
iITn% k == 0:
factors += 1
return factors

sqrt_n = sgrt(n)

k, factors =1, O

while k < sqgrt _n:
iITn% k == 0:

factors += 2

k += 1

iT k * k == n:
factors += 1

return factors

The Consumption of Space @

Implementations of the same functional abstraction can require
different amounts of time to compute their result.

def count_factors(n): Time Space
factors = 0 (- -
for k in range(l, n + 1): ()(’1) ()(1)
iIT n% k == 0:

factors += 1
return factors

sqrt_n = sgrt(n)

k, factors =1, O

while k < sqgrt _n:
iITn% k == 0:

factors += 2

k += 1

iT k * k == n:
factors += 1

return factors

The Consumption of Space @

Implementations of the same functional abstraction can require
different amounts of time to compute their result.

def count_factors(n): Time Space
factors = 0 ayYy -
for k in range(l, n + 1): ()(’l) ()(1)
iIT n% k == 0:

factors += 1
return factors

sqrt_n = sgrt(n)
k, factors =1, O - ; Al
while k < sqgrt _n: ()(\/;E) C)(l)
1ITn% k == 0:
factors += 2
k += 1
iIT k * k == n:

factors += 1
return factors

Fibonacci Memory Consumption @

fib(6)
fib(4) fib(5)
/ N
fib(2) fib(3) /////

/ AN . .

J AN //flb(B)\\ //flb(4)\\\
| | fib(1) fib(2) Fib(2) fib(3)
0 1 | | | / N\

0 1 1 fib(1) fib(2)

%) 1

Fibonacci Memory Consumption @

fib(6)
fib(4) fib(5)
/ AN
fib(2) fib(3)
| . 4 F\ fib(3) fib(4)
1 fib(1) fib(2) / . V4 AN
| | fib(1) ifib(2)! fib(2) fib(3)
i 1 N A S B
0 L1 1 fib(1) fib(2)

*
--------------- | |

Assume we have 0 1
reached this step

Fibonacci Memory Consumption @

fib(6)
fib(4) £ib(5)
/ AN
fib(2) fib(3)
Y N\ Fib(3) fFib(4)
1 fib(1) fib(2) v . P .
| | fib(1) ifib(2); fib(2) fib(3)
’ ' N
0 L1 1 fib(1) fib(2)

*
--------------- | |

Assume we have 0 1
reached this step

Fibonacci Memory Consumption @

Has an active environment

£ib(6)
fib(4) fib(5)
/ AN
fib(2) fib(3)

/ AN . .

J Fib(1) Fib(2) /)Flb(3)\\ //flb(4) N
| | fib(1) ifib(2); fib(2) fib(3)
’ ' SN

0 L1 1 fib(1) fib(2)

*
--------------- | |

Assume we have 0 1
reached this step

Fibonacci Memory Consumption @

Has an active environment
Can be reclaimed

fib(6)
fib(4) £ib(5)
/ AN
fib(2) fib(3)
Y N\ Fib(3) fFib(4)
1 fib(1) fib(2) v . P .
| | fib(1) ifib(2); fib(2) fib(3)
’ ' N
0 L1 1 fib(1) fib(2)

*
--------------- | |

Assume we have 0 1
reached this step

Fibonacci Memory Consumption @

Has an active environment
Can be reclaimed

/ fib(6) \Hasn't yet been created
fib(4) fib(5)
/ AN
£ib(2) £ib(3)
| . / \ fib(3) fib(4)
1 fib(1) fib(2) / . V4 AN
| | fib(1) ifib(2); fib(2) fib(3)
° ' SN
0 L1 1 fib(1) fib(2)

*
--------------- | |

Assume we have 0 1
reached this step

Ilteration vs. Tree Recursion @

Iterative and recursive implementations are not the same.

Time Space

def Tib _1ter(n):
prev, curr = 1, 0O
for _ 1n range(n - 1):
prev, curr = curr, prev + curr
return curr

def fib(n):
iIT n ==
return O
iIT n ==
return 1
return fib(n - 2) + fib(n - 1)

Ilteration vs. Tree Recursion @

Iterative and recursive implementations are not the same.

Time Space

def fib_iter(n): @(’n,.)
prev, curr = 1, 0O
for _ 1n range(n - 1):
prev, curr = curr, prev + curr
return curr

def fib(n):
iIT n ==
return O
iIT n ==
return 1
return fib(n - 2) + fib(n - 1)

Ilteration vs. Tree Recursion @

Iterative and recursive implementations are not the same.

Time Space

def Fib_iter(n): O(n) O(1)
prev, curr = 1, 0O
for _ 1n range(n - 1):
prev, curr = curr, prev + curr
return curr

def fib(n):
iIT n ==
return O
iIT n ==
return 1
return fib(n - 2) + fib(n - 1)

Ilteration vs. Tree Recursion @

Iterative and recursive implementations are not the same.

Time Space

def Fib_iter(n): O(n) O(1)
prev, curr = 1, 0O
for _ 1n range(n - 1):
prev, curr = curr, prev + curr
return curr

def Fib(n): (—)(Qﬁ’”)
ifn==1: |
return O
it n == 2:
return 1
return fib(n - 2) + fib(n - 1)

Ilteration vs. Tree Recursion @

Iterative and recursive implementations are not the same.

Time Space

def Fib_iter(n): O(n) O(1)
prev, curr = 1, 0O
for _ 1n range(n - 1):
prev, curr = curr, prev + curr
return curr

def Fib(n): O(¢") ©O(n)
ifn==1:
return O
iIT n ==
return 1
return fib(n - 2) + fib(n - 1)

Ilteration vs. Tree Recursion @

Iterative and recursive implementations are not the same.

Time Space

def Fib_iter(n): O(n) O(1)
prev, curr = 1, 0O
for _ 1n range(n - 1):
prev, curr = curr, prev + curr
return curr

def Fib(n): O(¢") ©O(n)
ifn==1:
return O
iIT n ==
return 1
return fib(n - 2) + fib(n - 1)

Next time, we will see how to make recursive version faster.

Comparing Orders of Growth (nis problem size) @

Comparing Orders of Growth (nis problem size) @

O(b")

Comparing Orders of Growth (nis problem size) @

O(b™) Exponential growth! Recursive fib takes

14+ /5

O(¢") steps, where ¢ = S 1.61828

Comparing Orders of Growth (nis problem size) @

O(b™) Exponential growth! Recursive fib takes

14+ /5

O(¢") steps, where ¢ = S 1.61828

Incrementing the problem scales R(n) by a factor.

Comparing Orders of Growth (nis problem size) @

O(b™) Exponential growth! Recursive fib takes

14+ /5

O(¢") steps, where ¢ = S 1.61828

Incrementing the problem scales R(n) by a factor.

O(n?)

Comparing Orders of Growth (nis problem size) @

O(b™) Exponential growth! Recursive fib takes

14+ /5

O(¢") steps, where ¢ = S 1.61828

Incrementing the problem scales R(n) by a factor.

@('TZ-Q) Quadratic growth. E.g., operations on all pairs.

Comparing Orders of Growth (nis problem size) @

O(b™) Exponential growth! Recursive fib takes

14+ /5

O(¢") steps, where ¢ = 5~ 1.61828

Incrementing the problem scales R(n) by a factor.

@("HQ) Quadratic growth. E.g., operations on all pairs.

Incrementing n increases R(n) by the problem size n.

Comparing Orders of Growth (nis problem size) @

O(b™) Exponential growth! Recursive fib takes

14+ /5

O(¢") steps, where ¢ = 5~ 1.61828

Incrementing the problem scales R(n) by a factor.

@("HQ) Quadratic growth. E.g., operations on all pairs.

Incrementing n increases R(n) by the problem size n.

O(n)

Comparing Orders of Growth (nis problem size) @

O(b™) Exponential growth! Recursive fib takes

14+ /5

O(¢") steps, where ¢ = 5~ 1.61828

Incrementing the problem scales R(n) by a factor.

@("HQ) Quadratic growth. E.g., operations on all pairs.

Incrementing n increases R(n) by the problem size n.

©(n) Linear growth. Resources scale with the problem.

Comparing Orders of Growth (nis problem size) @

O(b")

O(n?)

O(n)

O(logn)

Exponential growth! Recursive fib takes

14+ /5

O(¢") steps, where ¢ = 5~ 1.61828

Incrementing the problem scales R(n) by a factor.

Quadratic growth. E.g., operations on all pairs.

Incrementing n increases R(n) by the problem size n.

Linear growth. Resources scale with the problem.

Comparing Orders of Growth (nis problem size) @

O(b")

O(n?)

O(n)

O(logn)

Exponential growth! Recursive fib takes

14+ /5

O(¢") steps, where ¢ = 5~ 1.61828

Incrementing the problem scales R(n) by a factor.

Quadratic growth. E.g., operations on all pairs.

Incrementing n increases R(n) by the problem size n.

Linear growth. Resources scale with the problem.

Logarithmic growth. These processes scale well.

Comparing Orders of Growth (nis problem size) @

O(b")

O(n?)

O(n)

O(logn)

Exponential growth! Recursive fib takes

14+ /5

O(¢") steps, where ¢ = 5~ 1.61828

Incrementing the problem scales R(n) by a factor.

Quadratic growth. E.g., operations on all pairs.

Incrementing n increases R(n) by the problem size n.

Linear growth. Resources scale with the problem.

Logarithmic growth. These processes scale well.

Doubling the problem only increments R(n).

Comparing Orders of Growth (nis problem size) @

O(b")

O(n?)

O(n)

O(logn)

Exponential growth! Recursive fib takes

14+ /5

O(¢") steps, where ¢ = 5~ 1.61828

Incrementing the problem scales R(n) by a factor.

Quadratic growth. E.g., operations on all pairs.

Incrementing n increases R(n) by the problem size n.

Linear growth. Resources scale with the problem.

Logarithmic growth. These processes scale well.

Doubling the problem only increments R(n).

Comparing Orders of Growth (nis problem size) @

O(b")

O(n?)

O(n)

O(logn)

o(1)

Exponential growth! Recursive fib takes

14+ /5

O(¢") steps, where ¢ = 5~ 1.61828

Incrementing the problem scales R(n) by a factor.

Quadratic growth. E.g., operations on all pairs.

Incrementing n increases R(n) by the problem size n.

Linear growth. Resources scale with the problem.

Logarithmic growth. These processes scale well.

Doubling the problem only increments R(n).

Constant. The problem size doesn't matter.

Comparing Orders of Growth (nis problem size) @

O(b")

O(n?)

O(n)

O(logn)

o(1)

Exponential growth! Recursive fib takes

14+ /5

O(¢") steps, where ¢ = 5~ 1.61828

Incrementing the problem scales R(n) by a factor.

Quadratic growth. E.g., operations on all pairs.

Incrementing n increases R(n) by the problem size n.

Linear growth. Resources scale with the problem.

Logarithmic growth. These processes scale well.

Doubling the problem only increments R(n).

Constant. The problem size doesn't matter.

Comparing Orders of Growth (nis problem size) @

O(b"™) / Exponential growth! Recursive fib takes

14+ /5

O(¢") steps, where ¢ = 5~ 1.61828

Incrementing the problem scales R(n) by a factor.

@("HQ) Quadratic growth. E.g., operations on all pairs.

Incrementing n increases R(n) by the problem size n.

©(n) Linear growth. Resources scale with the problem.

O(logn) = Logarithmic growth. These processes scale well.

Doubling the problem only increments R(n).

©(1) © Constant. The problem size doesn't matter.

Comparing Orders of Growth (nis problem size) @

O(b")

Exponential growth! Recursive fib takes

14+ /5

O(¢") steps, where ¢ = 5~ 1.61828

Incrementing the problem scales R(n) by a factor.

Quadratic growth. E.g., operations on all pairs.

Incrementing n increases R(n) by the problem size n.

Linear growth. Resources scale with the problem.

Logarithmic growth. These processes scale well.

Doubling the problem only increments R(n).

Constant. The problem size doesn't matter.

