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Announcements

Ants project due tonight

O HW8 due Wednesday at 7pm

O Midterm 2 Thursday at 7pm

See course website for more information



Closure Property of Data @

A tuple can contain another tuple as an element.

Pairs are sufficient to represent sequences.

Recursive list representation of the sequence 1, 2, 3, 4:

— 1 —r—> 2 ——> 3 ——| 4 | None

Recursive lists are recursive: the rest of the list is a list.

Nested pairs (old): (1, (2, (3, (4, None))))

Rlist class (new): Rlist(1, Rlist(2, Rlist(3, Rlist(4))))



Recursive List Class

Methods can be recursive as well!

class RIist(object):
class EmptyList(object):

-------------------------------------------------------

‘def __Ien__(self):@ There's the
] return O ;
....................................................... base Case!

empty = EmptyList()

def init_ (self, Tirst, rest=empty):
self.first = first
self.rest = rest

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

‘def _ len_ (self): : : :
return 1 + len(self.rest) i Yes, this call is j

def_getitem_(se|f, ..... i): ............ recursive

it 1 ==
return self._first
return self._rest[1 - 1]
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Recursive Operations on Rlists @

Recursive list processing almost always involves a recursive call
on the rest of the list.

>>> s = Rlist(1, Rlist(2, Rlist(3)))

>>> s.rest
Rlist(2, Rlist(3))

>>> extend rlist(s.rest, s)
Rlist(2, Rlist(3, Rlist(1, Rlist(2, Rlist(3)))))

def extend rlist(sl, s2):
IT s1 is Rlist.empty:
return s2
return RIist(sl.first, extend rlist(sl.rest, s2))
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return s
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Map and Filter on Rlists @

We want operations on a whole list, not an element at a time.

def map_rlist(s, fn):
iIT s 1s Rlist.empty:
return s
return RIist(fn(s.first), map rlist(s.rest, fn))

def filter_rlist(s, fn):
iIT s 1s Rlist.empty:
return s
rest = Tilter rlist(s.rest, fn)
IT fn(s.first):
return Rlist(s.first, rest)
return rest
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Tree Structured Data

Nested Sequences are Hierarchical Structures.

((1, 2), (3, 4), 5)

In every tree, a vast forest

Example: http://go0.gl/0h6n5
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return 1
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Recursive Tree Processing @

Tree operations typically make recursive calls on branches

def count_leaves(tree):
1T type(tree) = tuple:
return 1
return sum(map(count_leaves, tree))

def map_tree(tree, fn):
1T type(tree) = tuple:
return fn(tree)
return tuple(map tree(branch, fn)
for branch iIn tree)
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Trees with Internal Node Values @

Trees can have values at internal nodes as well as their leaves.

fib(6)
fib(4) fib(5)
/ N
fib(2) fib(3)

| . / T\ fib(3) fib(4)
1 fib(1) fib(2) // . 4 AN

| ‘ fib(1) fib(2) fib(2) fib(3)

’ ' \ \ SN

%) 1 1 fib(1) fib(2)

(7 1
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The Consumption of Time @

Implementations of the same functional abstraction can require
different amounts of time to compute their result.

def count_factors(n): Time (remainders)

factors = 0
for k in range(l, n + 1):
iITn % k == 0: 1
factors += 1
return factors

sqrt_n = sgrt(n)
k, factors =1, O
while k < sqgrt _n:
iITn% k == 0:
factors += 2 n
L V7]
iT k * k == n:
factors += 1
return factors
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Order of Growth @

A method for bounding the resources used by a function as the
"size" of a problem increases

n: size of the problem

R(n): Measurement of some resource used (time or space)

R(n) =0©(f(n))

means that there are positive constants ki and k2 such that
ki-f(n) < R(n) < k- f(n)

for sufficiently large values of n.
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Constant Time: O(1)

Time does not depend on input size.

def g(n):
return 42

def foo(n):
baz = 7
it n>5:
baz += 5
return baz

def 1s_even(n):
return n %9 2 == 0
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Iteration vs. Tree Recursion (Time) @

Iterative and recursive implementations are not the same.
Time

def Fib_iter(n): @(n)
prev, curr = 1, 0O
for _ 1n range(n - 1):
prev, curr = curr, prev + curr
return curr

def Fib(n): (—)(Qﬁ”)
ifn==1: |
return O
iIT n ==
return 1
return fib(n - 2) + fib(n - 1)

Next time, we will see how to make recursive version faster.
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The Consumption of Time @

Implementations of the same functional abstraction can require
different amounts of time to compute their result.

def count_factors(n): Time
factors = 0O —) (
for k in range(l1, n + 1): ()(TL)
iITn%k == 0:

factors += 1
return factors

sqrt_n = sgrt(n)
k, factors =1, O — :
while k < sqgrt _n: ()(\/;{)
1ITn% k == 0:
factors += 2
k += 1
iIT k * k == n:

factors += 1
return factors
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return 1
return b * exp(b, n - 1)

def square(x):
return x * x
b'n
def fast exp(b, n):
iT n == 0:
return 1

1

if n=20

b-b* 1  otherwise
\.

1
(b%n)2
b.bn—l

if n
if n

1f n

1S

1S

0
even

odd



Exponentiation @

Goal: one more multiplication lets us double the problem size.

def exp(b, n): i o
eI ol b”:<1 ifn=0
return 1 b-b" 1 otherwise
return b * exp(b, n - 1) \
def square(x): 1 ifn =0
return x * x )
b" = < (b2™)*  if n is even
def fast exp(b, n): . .
if n == 0: b-bv" 1 if nis odd

return 1
elif n% 2 == 0:



Exponentiation

(af

Goal: one more multiplication lets us double the problem size.

def exp(b, n): [ S
P, b”:<1 if n=2~0
return 1 b-b" ! otherwise
return b * exp(b, n - 1) \
def square(x): 1 ifn =0
return x * X 1
b" = < (b2™)*  if n is even
def fast_exp(b, n): ) .
if n == 0: b-b" 1 if nis odd
return 1
elitT n% 2 == 0:

return square(fast exp(b, n 7/ 2))



Exponentiation @

Goal: one more multiplication lets us double the problem size.

def exp(b, n): [ S
P, b”:<1 if n=2~0
return 1 b-b" ! otherwise
return b * exp(b, n - 1) \
def square(x): 1 ifn =0
return x * X 1
b" = < (b2™)*  if n is even
def fast_exp(b, n): ) .
if n == 0: b-b" 1 if nis odd
return 1
elitT n% 2 == 0:

return square(fast exp(b, n 7/ 2))
else:



Exponentiation @
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def exp(b, n): [ ] —
o b”:<1 itn=0
return 1 b-b" 1 otherwise
return b * exp(b, n - 1) \
def square(x): 1 if n =0

return X * x
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Goal: one more multiplication lets us double the problem size.

Time Space

def exp(b, n):
iT n == 0:
return 1
return b * exp(b, n - 1)
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Exponentiation @

Goal: one more multiplication lets us double the problem size.

Time Space

def ?;pgb:_n)z G)(n) ()(n)

return 1
return b * exp(b, n - 1)

def square(x):
return x * x O(logn) O(logn)

def fast exp(b, n):
iT n == 0:
return 1
elitf n% 2 == 0:
return square(fast exp(b, n 7/ 2))
else:
return b * fast exp(b, n - 1)
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The Consumption of Space

Which environment frames do we need to keep during
evaluation?

Each step of evaluation has a set of active environments.
Values and frames in active environments consume memory.

Memory used for other values and frames can be reclaimed.

Active environments:

® Environments for any statements currently being executed

® Parent environments of functions named in active
environments
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Implementations of the same functional abstraction can require
different amounts of time to compute their result.

def count_factors(n): Time Space
factors = 0 ayYy -
for k in range(l, n + 1): ()(’l) ()(1)
iIT n% k == 0:

factors += 1
return factors

sqrt_n = sgrt(n)
k, factors =1, O - ; Al
while k < sqgrt _n: ()(\/;E) C)(l)
1ITn% k == 0:
factors += 2
k += 1
iIT k * k == n:

factors += 1
return factors
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reached this step
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Has an active environment
Can be reclaimed

/ fib(6) \Hasn't yet been created
fib(4) fib(5)
/ AN
£ib(2) £ib(3)
| . / \ fib(3) fib(4)
1 fib(1) fib(2) / . V4 AN
| | fib(1)  ifib(2); fib(2)  fib(3)
° ' SN
0 L1 1 fib(1)  fib(2)

*
--------------- | |

Assume we have 0 1
reached this step
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Ilteration vs. Tree Recursion @

Iterative and recursive implementations are not the same.

Time Space

def Fib_iter(n): O(n) O(1)
prev, curr = 1, 0O
for _ 1n range(n - 1):
prev, curr = curr, prev + curr
return curr

def Fib(n): O(¢") ©O(n)
ifn==1:
return O
iIT n ==
return 1
return fib(n - 2) + fib(n - 1)

Next time, we will see how to make recursive version faster.



Comparing Orders of Growth (nis problem size) @




Comparing Orders of Growth (nis problem size) @

O(b")



Comparing Orders of Growth (nis problem size) @

O(b™) Exponential growth! Recursive fib takes

14+ /5

O(¢") steps, where ¢ = S 1.61828




Comparing Orders of Growth (nis problem size) @

O(b™) Exponential growth! Recursive fib takes

14+ /5

O(¢") steps, where ¢ = S 1.61828

Incrementing the problem scales R(n) by a factor.



Comparing Orders of Growth (nis problem size) @

O(b™) Exponential growth! Recursive fib takes

14+ /5

O(¢") steps, where ¢ = S 1.61828

Incrementing the problem scales R(n) by a factor.

O(n?)



Comparing Orders of Growth (nis problem size) @

O(b™) Exponential growth! Recursive fib takes

14+ /5

O(¢") steps, where ¢ = S 1.61828

Incrementing the problem scales R(n) by a factor.

@('TZ-Q) Quadratic growth. E.g., operations on all pairs.



Comparing Orders of Growth (nis problem size) @

O(b™) Exponential growth! Recursive fib takes

14+ /5

O(¢") steps, where ¢ = 5~ 1.61828

Incrementing the problem scales R(n) by a factor.

@("HQ) Quadratic growth. E.g., operations on all pairs.

Incrementing n increases R(n) by the problem size n.



Comparing Orders of Growth (nis problem size) @

O(b™) Exponential growth! Recursive fib takes

14+ /5

O(¢") steps, where ¢ = 5~ 1.61828

Incrementing the problem scales R(n) by a factor.

@("HQ) Quadratic growth. E.g., operations on all pairs.

Incrementing n increases R(n) by the problem size n.

O(n)



Comparing Orders of Growth (nis problem size) @

O(b™) Exponential growth! Recursive fib takes

14+ /5

O(¢") steps, where ¢ = 5~ 1.61828

Incrementing the problem scales R(n) by a factor.

@("HQ) Quadratic growth. E.g., operations on all pairs.

Incrementing n increases R(n) by the problem size n.

©(n) Linear growth. Resources scale with the problem.



Comparing Orders of Growth (nis problem size) @

O(b")

O(n?)

O(n)

O(logn)

Exponential growth! Recursive fib takes

14+ /5

O(¢") steps, where ¢ = 5~ 1.61828

Incrementing the problem scales R(n) by a factor.

Quadratic growth. E.g., operations on all pairs.

Incrementing n increases R(n) by the problem size n.

Linear growth. Resources scale with the problem.



Comparing Orders of Growth (nis problem size) @

O(b")

O(n?)

O(n)

O(logn)

Exponential growth! Recursive fib takes

14+ /5

O(¢") steps, where ¢ = 5~ 1.61828

Incrementing the problem scales R(n) by a factor.

Quadratic growth. E.g., operations on all pairs.

Incrementing n increases R(n) by the problem size n.

Linear growth. Resources scale with the problem.

Logarithmic growth. These processes scale well.



Comparing Orders of Growth (nis problem size) @

O(b")

O(n?)

O(n)

O(logn)

Exponential growth! Recursive fib takes

14+ /5

O(¢") steps, where ¢ = 5~ 1.61828

Incrementing the problem scales R(n) by a factor.

Quadratic growth. E.g., operations on all pairs.

Incrementing n increases R(n) by the problem size n.

Linear growth. Resources scale with the problem.

Logarithmic growth. These processes scale well.

Doubling the problem only increments R(n).



Comparing Orders of Growth (nis problem size) @

O(b")

O(n?)

O(n)

O(logn)

Exponential growth! Recursive fib takes

14+ /5

O(¢") steps, where ¢ = 5~ 1.61828

Incrementing the problem scales R(n) by a factor.

Quadratic growth. E.g., operations on all pairs.

Incrementing n increases R(n) by the problem size n.

Linear growth. Resources scale with the problem.

Logarithmic growth. These processes scale well.

Doubling the problem only increments R(n).



Comparing Orders of Growth (nis problem size) @

O(b")

O(n?)

O(n)

O(logn)

o(1)

Exponential growth! Recursive fib takes

14+ /5

O(¢") steps, where ¢ = 5~ 1.61828

Incrementing the problem scales R(n) by a factor.

Quadratic growth. E.g., operations on all pairs.

Incrementing n increases R(n) by the problem size n.

Linear growth. Resources scale with the problem.

Logarithmic growth. These processes scale well.

Doubling the problem only increments R(n).

Constant. The problem size doesn't matter.



Comparing Orders of Growth (nis problem size) @

O(b")

O(n?)

O(n)

O(logn)

o(1)

Exponential growth! Recursive fib takes

14+ /5

O(¢") steps, where ¢ = 5~ 1.61828

Incrementing the problem scales R(n) by a factor.

Quadratic growth. E.g., operations on all pairs.

Incrementing n increases R(n) by the problem size n.

Linear growth. Resources scale with the problem.

Logarithmic growth. These processes scale well.

Doubling the problem only increments R(n).

Constant. The problem size doesn't matter.



Comparing Orders of Growth (nis problem size) @

O(b"™) / Exponential growth! Recursive fib takes
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O(¢") steps, where ¢ = 5~ 1.61828

Incrementing the problem scales R(n) by a factor.

@("HQ) Quadratic growth. E.g., operations on all pairs.

Incrementing n increases R(n) by the problem size n.

©(n)  Linear growth. Resources scale with the problem.

O(logn) = Logarithmic growth. These processes scale well.
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O(b")

Exponential growth! Recursive fib takes

14+ /5

O(¢") steps, where ¢ = 5~ 1.61828

Incrementing the problem scales R(n) by a factor.

Quadratic growth. E.g., operations on all pairs.

Incrementing n increases R(n) by the problem size n.

Linear growth. Resources scale with the problem.

Logarithmic growth. These processes scale well.

Doubling the problem only increments R(n).

Constant. The problem size doesn't matter.



