

2.Apply the function that is the value of the operator subexpression to the arguments that are the values of the operand subexpressions.

Applying user-defined functions:

- 1.Create a new local frame with the same parent as the function that was applied.
- 2.Bind the arguments to the function's formal parameter names in that frame.
- 3.Execute the body of the function in the environment beginning at that frame.

Execution rule for def statements:

- 1.Create a new function value with the specified name, formal parameters, and function body.
- 2.Its parent is the first frame of the current environment.
 3.Bind the name of the function to the function value in the

Execution rule for assignment statements:

first frame of the current environment.

- 1.Evaluate the expression(s) on the right of the equal sign.
- 2. Simultaneously bind the names on the left to those values, in the first frame of the current environment.

Execution rule for conditional statements:

- Each clause is considered in order.
- 1. Evaluate the header's expression.
- 2.If it is a true value, execute the suite, then skip the remaining clauses in the statement.

Evaluation rule for or expressions:

- 1.Evaluate the subexpression <left>.
- 2.If the result is a true value v, then the expression evaluates to v.
- 3.Otherwise, the expression evaluates to the value of the subexpression <right>.

Evaluation rule for and expressions:

- 1.Evaluate the subexpression <left>.
- 2.If the result is a false value v, then the expression evaluates to v.
- 3.Otherwise, the expression evaluates to the value of the subexpression <right>.

Evaluation rule for not expressions:

1.Evaluate <exp>; The value is True if the result is a false
value, and False otherwise.

Execution rule for while statements:

- 1. Evaluate the header's expression.
- 2. If it is a true value, execute the (whole) suite, then return to step 1.

lested def statements: Functions defined within other unction bodies are bound to names in the local frame

gher-order function: A function that takes a function as gument value or returns a function as a return value

CS 61A Midterm 1 Study Guide — Page 2

```
square = lambda x,y: x * y
    A function
       with formal parameters x and y
            and body "return x * y;"
Must be a single expression
```

```
Facts about print
 Non-pure function
 • Returns None
 Multiple arguments are
  printed with a space
 between them
>>> print(4, 2)
4 2
```

```
A function that returns a function
def make_adder(n)
    ""Return a function that takes one argument k and returns k + n.
   >>> add_three = make_adder(3),
                                       The name add_three is
                                        bound to a function
    >>> add_three(4)
                           A local
    1111111
                        def statement
   def adder(k):
        return k +(n)
                         Can refer to names in
    return adder
                        the enclosing function
```

```
make_adder(1)(2)
         make_adder(1)
            Operator
                              Operand 0
  An expression that
                               An expression that
evaluates to a function
                             evaluates to any value
         value
```

```
def square(x):
                    def sum_squares(x, y):
    return mul(x, x)
                        return square(x)+square(y)
What does sum_squares need to know about square?
```

Square takes one argument. Yes

→func factorial(n)

Global frame

n 1

Return

value

- Square has the intrinsic name square. No
- Square computes the square of a number. Yes
- Square computes the square by calling mul. No

```
factorial
                 def factorial(n):
                      if n == 0 or n == 1:
factorial
                          return 1
 Return 24
                      return n * factorial(n - 1)
  value '
            → 6 factorial(4)
factorial
           A function is recursive if the body calls the function
  Return
           itself, either directly or indirectly
   value
           Recursive functions have two important components:
           1. Base case(s), where the function directly computes
factorial
           an answer without calling itself
           2. Recursive case(s), where the function calls itself
  Return 2
  value
           as part of the computation
factorial
```

```
def square(x):
                             VS
square = lambda x: x * x
                                           return x * x
```

- Both create a function with the same arguments & behavior
- Both of those functions are associated with the environment in which they are defined
- Both bind that function to the name "square"
- Only the def statement gives the function an intrinsic name

```
How to find the square root of 2?
                                        -f(x)/f'(x)
>>> f = lambda x: x*x - 2
>>> find_zero(f, 1)
1.4142135623730951
                                  -f(x)
Begin with a function f and
                                         (x, f(x))
```

an initial guess x

- Compute the value of f at the guess: f(x)
- Compute the derivative of f at the guess: f'(x)

```
Update guess to be: x - \frac{f(x)}{f'(x)}
```

```
def iter_improve(update, done, guess=1, max_updates=1000):
    """Iteratively improve guess with update until done returns a true value.
    >>> iter_improve(golden_update, golden_test)
    1.618033988749895
    k = 0
    while not done(guess) and k < max_updates:</pre>
        guess = update(guess)
        k = k + 1
    return guess
def newton_update(f):
    """Return an update function for f using Newton's method."""
    def update(x):
        return x - f(x) / approx_derivative(f, x)
    return update
def approx_derivative(f, x, delta=1e-5):
    """Return an approximation to the derivative of f at x."""
    df = f(x + delta) - f(x)
    return df/delta
def find_root(f, guess=1):
    """Return a guess of a zero of the function f, near guess.
    >>> from math import sin
    >>> find_root(lambda y: sin(y), 3)
    3.141592653589793
    return iter_improve(newton_update(f), lambda x: f(x) == 0, quess)
```

