Topic Based OH - Final Review - CS61A - Sp. 2013

Higher-order functions

1. Define a higher-order function piecewise that returns a piecewise-defined function. piecewise
takes as argument cutoff, lower, and upper and returns a function that is equivalent to lower

when its input is below cutoff, and equivalent to upper when its input is at or above cutoff.

def piecewise(cutoff, lower, upper):
"""YOUR CODE HERE"""

2. Define a higher-order function integrate that, given a function f, a lower bound a, and an upper
bound b, returns an approximation of \int_a”b f dx. Hint: you can approximate integration as
many small sums, ie f(a) + f(a + dx) + f(a + 2dx) + ... + f(b)

def integrate(f, a, b):
“*¥**YOUR CODE HERE***”»

return ©

Now, use your integrate function to approximate pi. We will use this relation: \int_{-1}*1
sqrt{1-x"2} dx = \pi / 2.

Codes

pi = 0 # Codes

Lambda expressions
1. Fill in the blanks so each of the following expressions evaluate to 6:

a. (lambda : ([e, 1, 2, 3])
b. (lambda _ :)(3)(2)
c. (lambda _ :)Y(lambda ___ :)(3)
2. Draw environment diagrams for the following:

a.

y =5

def f(g, x):

y =4

return g(x + y)
f(lambda x: x + vy, 2)

g = lambda f: lambda x: lambda y: f(x, y)
g(lambda x, y: x*y)(3)(4)

lterative improvement
1. Using Newton's method, write a function that calculates the fifth root of a number x:
def fifth_root(x):
"""Calculates the fifth root of x.

>>> fifth_root(32)
2

Environment diagrams
1. Draw an environment diagram for the following code:
def julia(julia):
julia = julia(julia)
def julia():
return julia

return (lambda julia: julia)(julia())
julia(lambda julia:julia)

solution

http://www.google.com/url?q=http%3A%2F%2Finst.eecs.berkeley.edu%2F~cs61a-py%2FOnlinePythonTutor%2Fv3%2Ftutor.html%23code%3Ddef%2Bjulia(julia)%253A%250A%2B%2B%2B%2Bjulia%2B%253D%2Bjulia(julia)%250A%2B%2B%2B%2Bdef%2Bjulia()%253A%250A%2B%2B%2B%2B%2B%2B%2B%2Breturn%2Bjulia%250A%2B%2B%2B%2Breturn%2B(lambda%2Bjulia%253A%2Bjulia)(julia())%250Ajulia(lambda%2Bjulia%253Ajulia)%26mode%3Ddisplay%26cumulative%3Dtrue%26py%3D3%26curInstr%3D0&sa=D&sntz=1&usg=AFQjCNHsECL4U9Gv9Mti4FleUZhTct-B3g

Sequences, nested tuples
1. Write a method that reverses an rlist. (multiple ways to do this. Assume that the Rlist
class definition is defined)
def reverse_recur(r):
#reverses an rlist recursively in place.
if r.rest != Rlist.empty:
first, second = r, r.rest
r = reverse(second)
first.rest, second.rest = Rlist.empty, first
return r
def reverse_iter(r):
if r != Rlist.empty:
rlist = Rlist(r.first)
while r.rest!= Rlist.empty:
rlist = Rlist(r.rest.first, rlist)

r = r.rest

return rlist

return r

def reverse rlist(r):

def helper_rlist(rlist, sofar):
if(len(rlist)==0):
return sofar
else:
return helper rlist(rlist.rest,

Rlist(rlist.first,sofar))

return helper_rlist(r, Rlist.empty)

Lists and dictionaries

1. Draw the environment diagram for the following:
x=10,1, 2, 3]
x[1]1 =10, 1, 2, 3]
X[0] = x
y = x[]
2. What do each of the following list methods do?
a. append
b. extend

C. pop
d. remove
3. Define a function remove_all that removes all instances of a given element x from a list
1st
def remove_all(lst, x):

Removes all instances of x from lst.

>>> 1st = [1, 1, 4, 2, 1]
>>> remove_all(lst, 1)

>>> 1st

Non-local assignment
1. Define a function make_every_other such that the doctests would pass.
def make_every other():

Doctests:

>>> e_o = make_every_other()
>>> e_o(1)

1

>>> e_0(2000)

"NO"

>>> e_o('hello there!"’
"hello there!'

>>> e_o0(-10)

"NO"

2. Taken from Albert's Nonlocal exam questions: Implement a function sentence_buffer
which returns another one-argument function. This function will take in a word at a time,
and it saves all the words that it has seen so far. If takes in a word that ends in a period
("."), that denotes the end of a sentence, and the function returns all the words in the
sentence. It will also clear its memory, so that it no longer remembers any words.

def sentence_buffer():
"""Returns a function that will return entire sentences when it
receives a string that ends in a period.

>>> buffer = sentence_buffer()
>>> buffer("This")

>>> buffer("is")

>>> buffer("Spot.")

'This is Spot.'

>>> buffer("See")

>>> buffer("Spot")

>>> buffer("run.")

'See Spot run.'

Dispatch functions and dictionaries

1. Let’'s implement dictionaries using dispatch dictionaries! Dictionaries should support the set
and get operations, and use lists to store the data. Do not worry about duplicate keys.

def dict():
>>> d = dict()
>>> d[‘'set’](‘hi’, 5)
>>> d['get](‘hi’)
5

[131L1)

“"YOUR CODE HERE™”

2. Let’'s implement a multi-child tree data type! Each tree can have multiple children which can

be added with the add_child method. Each tree will also support a get_child method which gets
the child at a given index, in addition to having an entry attribute, which will be the entry for the
given tree node. Use dispatch functions.

def tree(entry):
>>> t = tree(5)
>>> x = tree(4)
>>> x(‘add_child’)(t)
>>> x(‘entry’)
4
>>> x(‘get_child’)(0)(‘entry’)
5

[131LL

“”YOUR CODE HERE™”

Identity, equality, and mutable values

1. Assume the following statements are executed in order. Fill in the blanks with True or False.
>>>a =[1, 2, [3], 4, 5]

>>>h = a[1:4]
>>>3 = a[1:4]
>>>b is a

>>>p[1] is a[1]

>>>c =3
>>>cis a

>>>c[1][0] = 10
>>>b[1] == a[1]

>>>p[1] is a[1]

>>>a[1] = [11]
>>>c[1] is a[1]

>>>c[1] is b[1]

>>>Ist =[1, 2, 3, 4, 5]
>>>[st[2] = Ist
>>>|st[2] == Ist

>>>|st[2] is Ist

>>>|st[2][2] is Ist

2. Suppose we have the following definitions of classes A and B:
class C:
x=1[1, 2]

def y(self):
return 5

class D(C):
def z(self):
return 6
Now we execute the following statements. Fill in the blanks:
>>>0 = C()
>>>d = D()
>>>C.x is D.x
>>>c.x is d.x

>>>C.yis D.y

>>>cyisd.y

Classes, instances, and inheritance
1. Suppose we have the following class definitions. What would Python print?

class S:
def __init__ (self):
self.lst =[]

def m(self, t):
self.f = t.x

def n(self):
self.f()

def p(self):
self.f(self)

class T:
def __init__ (self):
self.lst =[]

def x(self):
self.list.append(1)

>>>g = §()
>>>t = T()
>>>s.m(t)
>>>s.n()
>>>s Ist, t.Ist

>>>s.m(type(t))
>>>S.p()
>>>g |st, t.Ist

2. Given below is an incomplete definition of the Parrot and SuperParrot class. Parrot should
implement a repeat method, which causes the Parrot to speak the last phrase it said (if
repeat is called without calling speak first, the Parrot should speak the default phrase,
‘Squawk!”?).

class Parrot:

def __init__(self, name):
self.phrase = ‘Squawk!
self.name = name

def speak(self, phrase):
print self.name + ‘says: ‘ + phrase
“”YOUR CODE HERE™”

def repeat(self):
“”YOUR CODE HERE™”

SuperParrot inherits from Parrot and implements one additional method - repeat_all, which

should cause the SuperParrot to speak every unique phrase it has ever said. Use inheritance
whenever possible!

class SuperParrot:
“”YOUR CODE HERE™”

Dot expressions and bound methods

class Owner(object):
all =[]

def __init__ (self, name):
self.name = name
self.pets = []
Owner.all.append(self)

def add_pet(self, pet):
self.pets.append(pet)

def __repr__(self):
return 'Owner(' + self.name + ')’

class Pet(object):
all =[]

def __init__(self, name, weight, height):
self.name = name
self.weight = weight
self.height = height
Pet.all.append(self)

@property
def bmi(self):
return self.weight / (self.height * self.height)

def __repr__ (self):
return 'Pet(' + self.name + ")’

QUESTIONS

>>> bob = Owner('bob")

>>> joe = Owner('joe")

>>> bob.all #1

>>> bob.all.append(bob)
>>> joe.all #2

>>> type(joe.add_pet) #3
>>> type(Owner.add_pet) #4

>>> harry = Pet('harry', 50, 50)
>>> type(harry.bmi) #5

>>> joe.pets.append(harry)
>>> bob.add_pet(harry)
>>> bob.pets[0].all #6

>>> bob.pets.append(Pet('jimmy', 40, 10))

>>> bob.pets[1].owner #7
>>> Pet.all #8

>>> jimmy #9

ANSWERS

1) [Owner(bob), Owner(joe)]
2) [Owner(bob), Owner(joe), Owner(bob)]

3) <class 'method'>

)
)
)
4) <class 'function">
5) <class 'float'>
6) [Pet(harry)]
7) Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'Pet' object has no attribute 'owner’
8) [Pet(harry), Pet(jimmy)]
9) Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NameError: name 'jimmy" is not defined

Type dispatching and coercion
from types import GeneratorType

def make_natural_numbers_generator():
i=0
while True:
yield i
i+=1

def make_natural_numbers_stream(first=0):
def compute_rest():
return make_natural_numbers_stream(first + 1)
return Stream(first, compute_rest)

class NaturalNumberslIterator(object):
def __init__(self):
self.current = 0

def __next__ (self):
next = self.current
self.current += 1
return next

def __iter__ (self):
return self

def type_tag(x):
return type_tag.tags[type(x)]

type_tag.tags = {GeneratorType: 'generator’, NaturalNumbers: 'iterator', Stream: 'stream'}

def add(seql, seq2):

types = (type_tag(seql), type_tag(seq2))
return add.impl[types](seql, seq2)

def add_generators(genl, gen2):
while True:
yield next(genl) + next(gen2)

def add_generator_and_iterator(gen, iterator):
while True:
yield next(gen) + next(iterator)

def add_generator_and_stream(gen, stream):
while True:

yield next(gen) + stream.first
stream = stream.rest

def add_iterator_and_stream(iterator, stream):
while True:
yield next(iterator) + stream.first
stream = stream.rest

def add_iterators(il, i2):
while True:
yield next(il) + next(i2)

def add_streams(sl, s2):
while True:
yield s1.first + s2.first
sl, s2 = sl.rest, s2.rest

add.impl = {('generator', 'generator') : add_generators,
(‘generator’, 'iterator') : add_generator_and_.iterator,
(‘generator’, 'stream') : add_generator_and_stream,
(‘iterator’, 'stream') : add_iterator_and_stream,
(‘iterator’, 'iterator') : add_iterators,
('stream’, 'stream') : add_streams,
(‘stream’, 'generator') : lambda s, g: add_generator_and_stream(g, s),
(‘iterator', 'generator') : lambda i, g: add_generator_and_iterator(g, i),
(‘stream’, 'iterator') : lambda s, i: add_iterator_and_stream(i, s)

Recursion
def binary_search(item, Ist):

>>>1=1]1,4,5,8, 10, 12]
>>> binary_search(4, |)
True
>>> binary_search(9, |)
False
def helper(item, Ist, low, high):
if low >= high:
return False
mid = (low + high) // 2
if item == Ist[mid]:
return True
if item < Ist[mid]:
return binary_search(item, Ist, low, mid - 1)
if item > Ist[mid]:
return binary_search(item, Ist, mid + 1, high)
return helper(item, Ist, 0, len(lst))

def find_secret(secret, sentence):
If the individual letters of the secret are in order within the sentence,
then the function reutrns the list of indices of those letters. If not, it returns False.

>>> secret = "mark"
>>> sentence = "hi my name is ridiculously karl."
>>> find_secret(secret, sentence)
[3, 7, 14, 27]
>>> find_secret("hello", sentence)
False
def helper(secret, sentence, indices, index):
if len(secret) ==
return indices
if len(sentence) ==
return False
if secret[0] == sentence[0]:
return helper(secret[1:], sentence[1:], indices + [index], index + 1)
return helper(secret, sentence[1:], indices, index + 1)
return helper(secret, sentence, [], 0)

def mutable_reverse(lst):
>>>1=1[1,4,5,1, 4]
>>> mutable_reverse(l)
>>> |
[4,1,5,4,1]
>>>1=1[1,4,5,1, 4, 5]
>>> mutable_reverse(l)
>>> |
[5,4,1,5, 4, 1]
def helper(index, Ist):
if len(lst) % 2 == 0 and index == len(lst) // 2 or len(Ist) % 2 == 1 and index == len(lst)
// 2+ 1:
return
Ist[index], Ist[len(lst) - 1 - index] = Ist[len(lst) - 1 - index], Ist[index]
helper(index + 1, Ist)
helper(0, Ist)

def mutable_reverse(lst):
>>>1|=1[1,4,5,1, 4]
>>> mutable_reverse(l)
>>> |
[4,1,5,4,1]
>>>1=1[1,4,5,1, 4, 5]
>>> mutable_reverse(l)
>>> |
[5,4,1,5,4,1]
if len(Ist) > 0:
item = Ist.pop()
mutable_reverse(lst)
Ist.insert(0, item)

Recursive Data Structures
1. Given the immutable, tuple-representation of RLists, construct the following rlists.

a. <1»>

empty_rlist = None
def rlist(first, rest):
return (first, rest)
def first(rlist):
return rlist[9]
def rest(rlist):

return rlist[1]

rlist(1, empty rlist)
2, 3>
rlist(1, rlist(2, rlist(3, empty rlist)))
<2, 3>, 4> # <2, 3> is a nested rlist
rlist(1, rlist(rlist(2, rlist(3, empty rlist)), rlist(4,
empty rlist)))
(2, 3), 4> # (2, 3) is a tuple
rlist(1, rlist((2, 3) , rlist(4, empty rlist)))

2. Write a function that, given a rlist, returns a sorted rlist. You may want to use insertion
sort.
def sort_rlist(r):

Sort an rlist in ascending order.

This is done by taking one element at a time out of r and
placing it into a sorted rlist that you build up from an empty
rlist.

It starts like this:
r = stuff
sorted = empty

Take first(r) and place it in sorted, in sorted order:
r = rest(stuff)
sorted = rlist(first(stuff), empty rlist)

Take first(r) and place it in sorted, in sorted order:
r = rest(rest(stuff))
sorted = place the next element in the correct position in

the previous sorted

Repeat until r is empty

>>> r = rlist(3, rlist(5, rlist(1, rlist(9, rlist(7,
empty rlist)))))
>>> sort_rlist(r)

(1, (3, (5, (7, (9, None)))))
if r == empty_rlist:
return r

return insert(first(r), sort_rlist(rest(r)))

https://www.google.com/url?q=https%3A%2F%2Fwww.khanacademy.org%2Fscience%2Fcomputer-science%2Fv%2Finsertion-sort-algorithm&sa=D&sntz=1&usg=AFQjCNFylNbBgWiG2_C8amI1xVe8wxYO0w
https://www.google.com/url?q=https%3A%2F%2Fwww.khanacademy.org%2Fscience%2Fcomputer-science%2Fv%2Finsertion-sort-algorithm&sa=D&sntz=1&usg=AFQjCNFylNbBgWiG2_C8amI1xVe8wxYO0w

def insert(item, r):
""" Inserts item into r in sorted order. Assume that r is

sorted.

>>> r = rlist(4, rlist(6, rlist(8, None)))

>>> insert(5, r)

(4, (5, (6, (8, None))))
if r == empty rlist:

return rlist(item, empty rlist)
if item <= first(r):

return rlist(item, r)

return rlist(first(r), insert(item, rest(r)))

Given the mutable, object-oriented representation of RLists (shown on the Midterm 2
Study Guide), write the following Rlist constructors.
a. <>
Rlist(1)
b. <1, 2, 3>
Rlist(1, Rlist(2, R1list(3)))
c. <1, <2, 3>, 4> # <2, 3> is a nested rlist
Rlist(1, Rlist(R1list(2, R1list(3)), Rlist(4)))
d. <1, (2, 3), 4> # (2, 3) is a tuple
Rlist(1, Rlist((2, 3) , Rlist(4)))
Immutable vs. Mutable Rlists. For comparison, implement the following things, one for
tuple Rlists, and another as a mutating function for object oriented Rlists.
a. Change the first item of the rlist to something else
rist = rlist(4, empty_rlist)
rist = rlist(2, rest(rlst))

rist2 = Rlist(4)
rlst2.first =5
b. Add one item to the front of the rlist
rist = rlist(4, empty_rlist)
rist = rlist(3, rist)

rist2 = Rlist(4)
rist2.rest = Rlist(rlst2.first, rlst2.rest)
rist2.first = item

5. Given an Rlist, write a function that eliminates successive repeated elements.
def squish(r):

Given an Rlist, use mutation to eliminate repeat elements

Hint: Look at 'Yummy in my Summy" from Summer 2012 Midterm 2.

>>> r = sequence_to_rlist((1, 1, 2, 3, 3, 3, 4, 4))
this function should look familiar.

>>> squish(r)
>>>r
RList(1, RList(2, RList(3, RList(4))))
prev = r
curr = r.rest
while curr is not Rlist.empty:
if curr.first == prev.first:
prev.rest = curr.rest
else:
prev = curr

curr = curr.rest

Trees and Tree-Structured Sets

1. Looking at the given code for a Tree class on the Midterm 2 Study Guide, write the
constructor you would use to construct each of the given trees.

a (1)
Tree(1)
b. (2)
/ \
(1) (3)
Tree(2, Tree(1l), Tree(3))
C. (2)
/
(1)

Tree(2, Tree(l))
Also acceptable: Tree(2, Tree(l), None) ---> Why?

d. (1)
\
(3)
Tree(1l, None, Tree(3))

2. Review the notes on sets on the Final Exam Study Guide. (Warmup: write a function that
implements membership testing in tree sets, aka binary search trees.) Write a function,
build_binary, that will build a binary search tree out of a list of elements, eliminating

repeats. This is also the same as converting a list into a tree-set.
def build binary(ls):
Write a function that will build a binary _search_ tree

out of a list of elements. (Which is also a tree set)

Hint: you may want to write a helper function for adjoining
an element to a tree.
>>> build_binary([2, 1, 3])
Tree(2, Tree(1l, None, None), Tree(3, None, None))
tree = None
for elem in 1ls:
tree = adjoin(tree, elem)

return tree

Helper for Exercise 1
def adjoin(tree, elem):
Returns a new tree with the given element adjoined to the
given tree. Does not mutate the original tree.
if tree == None:
return Tree(elem)
if tree.entry == elem:
return tree
if tree.entry > elem:

return Tree(tree.entry,

adjoin(tree.left, elem), tree.right)

return Tree(tree.entry, tree.left, adjoin(tree.right, elem))

3. Look at Fall 2011 Midterm 2, for “pruned,” and solve that one first.
a. Write a function that will return whether or not a given tree is a subtree of another
tree.
def isSubtree(s, t):

Return whether or not Tree s is a subtree of Tree t.
The entries must match, and the subtree can be anywhere
in the tree (think of it this way: you must be able to
take some branch of t, and are allowed to trim it, that
is identical to s).

Assume no repeated elements in either of the trees.

>>> tree = build_binary([2,4,7,1,3,5])
>>> subtree = build_binary([7, 5])

>>> isSubtree(subtree, tree)

True

>>> isSubtree(tree, subtree)

False
>>> t1 = build_binary([5, 2, 1, 4, 3, 8, 7, 12, 9, 15])
>>> t2 = build_binary([2, 8])

>>> isSubtree(t2, t1)

False

>>> t2 = build_binary([100, 101])
>>> isSubtree(t2, t1)

False

>>> isSubtree(tl, t2)

False

nnn

if s == None:
return True
if t == None:
return False
if s.entry == t.entry:
return isSubtree(s.left, t.left) and
isSubtree(s.right, t.right)
if s.entry < t.entry:
subtree must be on the left side
return isSubtree(s, t.left)

return isSubtree(s, t.right)

b. Like part a, write a function that will return whether or not a given tree is a subtree,
but the subtree must be identical to one of the children in the first tree.
def is_subtree(s, t):
Return whether or not Tree s is a subtree of Tree t. The
entries must match, and the subtree can be anywhere in the
tree (think of it this way: you must be able to take some
branch of t, without trimming it, that is identical to s).

Assume no repeated elements in either of the trees.

>>> tree = build_binary([2,4,7,1,3,5])
>>> subtree = build_binary([7, 5])

>>> is_subtree(subtree, tree)

True

>>> is_subtree(tree, subtree)

False
>>> t1 = build_binary([5, 2, 6])
>>> t2 = build_binary([5, 2])

>>> is_subtree(t2, t1)

False

>>> t2 = build_binary([5, 2, 3])
>>> is_subtree(t2, t1)

False

>>> is _subtree(tl, t2)
False
if s == None:
return True
if t == None:
return False
if s.entry == t.entry:
return tree equal(s.left, t.left) and
tree_equal(s.right, t.right)
if s.entry < t.entry:
return is_subtree(s, t.left)

return is_subtree(s, t.right)

Exercise 2 helper
def tree_equal(t, s):
if s == None and t == None:
return True
if s == None or t == None:
return False
if t.entry == s.entry:
return tree_equal(t.left, s.left) and
tree_equal(t.right, s.right)
return False

Orders of Growth

1. Give a ® approximation for each of the following expressions.

a.

®ao00oT

3x% +2x — 100
3 +3x°+x
38

log(x) + log(x*) + log(x*)
log(x*)

2. State whether the following expressions are true.
a. ntle®mn+2)
b. n% e ®\n)
c. e 0n’o
d. ne BO(nlog(n))
e. nleB®@m")
3. Analyze the runtime of the following program:
def mysteryl(l, x, y, z):

ify«< z:
return False
w=<(y+2z)// 2
if 1[w] > x:
return mysteryl(l, x, y, w-1)
if 1[w] < x:
return mysteryl(l, x, w+l, z)

return True

4. Analyze the runtime of the following program. Hint: t is a tree. Write the answer in terms
of n, the number of nodes in the tree.
def mystery2(t, v):
q =[]
g.append(v)

while q:
s = q.pop(@)
if s == v:

return True
for child in s.children:
g.append(v)
return False
5. Analyze the runtime of the following program. Hint: t is a tree. Write the answer in terms

of n, the number of nodes in the tree.
def mystery3(t, v):
if not t:
return False
if t.val == v:
return True
for child in t.children:
if mystery3(child, v):
return True
return False

Scheme

1. Write a scheme function that sums the values of all vertices in a binary tree given the
following implementation:
(define (tree val left right)

(list val left right))
(define (val tree)
(car tree))
(define (left-child tree)
(cadr tree))
(define (right-child tree)
(caddr tree))
(define (sum-vertices tree)
(if (null? tree)
0
(+ (val tree)
(sum-vertices (left-child tree))
(sum-vertices (right-child tree)))))

2. Now write a scheme function that finds the average value of all vertices in a binary tree.
(define (count-vertices tree)

(if (null? tree)
0
(+ 1
(count-vertices (left-child tree))
(count-vertices (right-child tree)))))
(define (average-value tree)
(if (null? tree)
0

(/ (sum-vertices tree) (count-vertices tree))))

Scheme lists and parsing

(see http://www-inst.eecs.berkeley.edu/~cs61a-tk/finalreview.html for answers to this section)

1) What are the following in standard scheme list notation:

stk> Y(1 . (2 . ((4 . (3 . (2 . O))) « ((2 . (4 . 2)) . (3
())))))

stk> Y(1 23 . ((4 .5 . (56 .17))

>>> P = Pair #for brevity

>>> P(1, P(2, P(3, P(P(4, P(5, nil)), P(P(6, P(7, nil)),
nil)))))

2) Write a scheme function "deep-map" that takes a scheme list
which contains elements that may be lists themselves, and maps
the function f on each element (and sub-element) of the list.

(define (deep-map lst f)
;7; YOUR CODE HERE ;;;
)
;7 test code
(print (deep-map '(1 2 (3 4 (5 6) 7) 8 9) (lambda (x) (* x
x))))
;;:;should print (1 4 (9 16 (25 36) 49) 64 81)
(print 'done)
(exit)

http://www.google.com/url?q=http%3A%2F%2Fwww-inst.eecs.berkeley.edu%2F~cs61a-tk%2Ffinalreview.html&sa=D&sntz=1&usg=AFQjCNFCjDSZzK_pf-Hx9yFclz3Wd3hgqA

Tail calls

(see http://www-inst.eecs.berkeley.edu/~cs61a-tk/finalreview.html for answers to this section)

1) Write the following python function tail-recursively in scheme:

def blum (i) :
n =23

(define (blum 1)
;5 ;YOUR CODE HERE; ; ;

2) Consider the following series that converges to pi:

4 4 4 4 4 4 4
T==—-4-==-4 =

1 3 s 7o T3

Now write a function that calculates the sum of n terms of this series tail recursively
(define (calc-pi n)
; 7, YOUR CODE HERE ;;;

http://www.google.com/url?q=http%3A%2F%2Fwww-inst.eecs.berkeley.edu%2F~cs61a-tk%2Ffinalreview.html&sa=D&sntz=1&usg=AFQjCNFCjDSZzK_pf-Hx9yFclz3Wd3hgqA

3) Which of

the following are tail-recursive?

(define (f x)
(begin
(display x)
(1f (= x 0)
(display 'blastoff)
(f (= x 1))
)
)
)
(define (g x)
(if (= x 0) (display 'blastoff)
(display (f (- x 1)))
)
)
(define (h x)
(if (= x 0) (display 'blastoff)
(begin (display x) (f (- x 1)))

Parallelism & MapReduce

1. Let's say two threads running in parallel both try to execute code that accesses and
writes to the same variable. Give the possible outcomes for the print statement.
X =0
Thread 1: x += 1
Thread 2: x += 2
print(x)
1, 2, or 3

2. Explain how you would use MapReduce to implement a filter. Just explain conceptually

what the mapper and the reducer would do. (There are multiple possibilities.)
mapper:

for every value in the sequence:

if pred_function(value):
emit(value, 0)

reducer:

nothing
*Note that the mapper emits a (key, value) pair. The value actually isn't needed, so | just
put 0 as a placeholder.

3.

[Challenge Question] Now let's analyze friend relationships on Facebook. More
importantly, given a dictionary of users and their friends, give a dictionary of pairs of
users and their mutual friends. The output dictionary should only contain pairs of users
who are already friends.

For example, given:

{A: (B, C, D),

B: (A, C, D, E),
C: (A, B, D, E),
D: (A, B, C, E),
E: (B, C, D)}

the output of MapReduce should be
{(A, B): (C, D),

(A, C): (B, D),

(A, D): (B, C),

(B, C): (A, D, E),

(B, D): (A, C, E),

(B, E): (C, D),
(C, D): (A, B, E),
(C, E): (B, D),
(D, E): (B, O)}
pseudocode given
mapper:
for every input user, tuple_of_friends in input:
for every friend in tuple_of _friends:
emit(sort(user, friend), tuple_of_friends)
reducer:
for every friends_pair, tuple_of_friends_iterator in input:
emit(friends_pair, intersection(tuple_of friends))
The mapper emits every possible (friend1, friend2) pair twice, with the pair serving as the
key. The value is going to be either the tuple of friend1's friends, or friend2's friends.
Thus, | should see (friend1, friend2) appear twice in the output of the mapper.
The reducer then takes the intersection of the list of friends because the intersection is
necessarily the mutual friends of friend1 and friend2. For a more detailed explanation,
visit this awesome website: http://stevekrenzel.com/finding-friends-with-mapreduce

http://www.google.com/url?q=http%3A%2F%2Fstevekrenzel.com%2Ffinding-friends-with-mapreduce&sa=D&sntz=1&usg=AFQjCNGzXYoVoKFCwdgMNB8nm0vv_UaeKQ

Generators and generator functions

1. Write a generator that takes in two arguments a and b, and returns the sequence that starts
with 1,1 and has the recurrence relation: x_n = a*x_{n-2} + b*x_{n-1}

def recurrence gen(a,b):
#Begin Solution
yield 1
prev, curr = 1,1
while True:
yield curr
prev, curr = curr, prev*a + curr*b
#End Solution

2. Write a generator that takes in an iterator and goes over it twice. If the original iterator’s next
calls return 1,2,3,4, this generator should return 1,1,2,2,3,3,4,4.

def twice iter (iterator):
#Begin Solution
while True:
a = next (iterator)
yield a
yield a

3. Given an iterator, write a generator that yields the first n elements of the iterator in a list. The
first value of this generator should be the empty list.

def list gen(iterator):
#Begin Solution
a = list ()
while True:
yield a
a.append (next (iterator))

Streams

1. Write a function that takes in an iterator and outputs a stream that lists the elements of the
iterator in order.

def iter to stream(iterator):
#Begin Solution
def compute rest():
return iter to stream(iterator)
try:
return Stream(next (iterator), compute rest)
except:
return Stream.empty
#End Solution

2. Write a function that takes in a stream, a combiner function of 2 arguments and a starting
value and returns a stream that uses the combiner to combine the first k elements of the
sequence. For example, if the iterator returns the elements 1,2,3, and 4, your combiner is “add”
and your start value is 0, the stream should be a stream of 1,3,6,10.

def combine stream(combiner, stream, start):
#Begin Solution
def compute rest():
return combine stream(combiner, stream.rest, first)
if stream != Stream.empty:
first = combiner (stream.first, start)
return Stream(first, compute rest)
return Stream.empty

Logic http://bit.ly/sp13finalLogic

Learning stuff

In Logic, there are 2 things we can do.
We can either establish facts about our “universe”, or we can issue queries about the “universe”.
All of this is done using Scheme syntax.

Facts

We define facts using the following syntax:
(define (fact <conclusion>) <hypothesis> ...)

For example:
(fact (parent abraham barack))

(fact (parent abraham clinton))
(fact (parent fillmore abraham))

These are simple facts, which means that they are “naively” true. We don’t have to satisfy any
hypotheses for them to be true. All these facts say is that the parent relation is true for the
symbols “delano” and “herbert”, in that order, and “abraham” and “barack”, again in that order.
We can also have complex facts. These are facts which have 1 or more hypotheses.
For example:
(fact (grandparent ?x ?y)

(parent ?x ?z)

(parent ?z ?y))
This fact states that two things (call them x and y) satisfy the grandparent relation iff the
hypotheses hold. These hypotheses state that there must be some variable z who's parent is x,
and who is the parent of y.

Queries

Using the previously defined facts, we can then ask the interpreter questions about the
“‘universe” we’ve defined, and it will try to answer them for us.

The format of a query is

(query <relationl> <relation2> ...)

So, we can use our previously defined facts to ask the interpreter some questions:
logic> (query (parent abraham ?who))

Success!
who: barack
who: clinton

logic> (query (parent ?who clinton))

http://www.google.com/url?q=http%3A%2F%2Fbit.ly%2Fsp13finalLogic&sa=D&sntz=1&usg=AFQjCNFiy3eg3cEk6AUMKRsxLQ7c7Gu5GQ

Success!

who: abraham

logic> (query (grandparent ?x ?y))
Success!

x: fillmore y: barack

x: fillmore y: clinton

logic> (query (grandparent fillmore ?who))
Success!

who: barack

who: clinton

logic> (query (parent ?x ?z) (parent ?z ?y))
Success!

x: fillmore z: abraham y: barack

x: fillmore z: abraham y: clinton

Problems

1. Repeat (from the Summer 2012 CS61A final)

For this problem, we will use the unary representation of numbers as described in homework,
where a number is represented as a list of the same number of a’s. So, for example, the number
3 is represented as <a a a> and the number 0 is represented as <>. Write the rules and
associated facts for repeat, which relates three lists in the following manner:

logic> (query (repeat (foo bar) ((a a a) (a a)) (foo foo foo bar bar)))

Success!

logic> (query (repeat (foo bar garply) ((a a) () (a a a)) ?what))
Success!

what: (foo foo garply garply garply)

logic> (query (repeat (foo bar) ?what (foo bar bar bar bar)))
Success!

what: ((a) (a a a a))

logic> (query (repeat (foo bar) ?what (bar foo foo))

Failed.

2. Reversed and Palindrome (Fall 2012 final)
Fill in two facts below to complete the definitions of the relations reversed and palindrome. The
reversed relation indicates that the first list contains the same elements as the second, but in

reversed order. The palindrome relation indicates that a list is the same backward and forward.
logic > (fact (append-to-form () ?x ?x))

logic > (fact (append-to-form (?a . ?r) ?y (?a . ?z))
(append-to-form ?r ?y ?z))

logic > (fact (reversed () ()))

logic > (fact (reversed (?a . ?r) ?s)

(reversed ?r ?rev)

)
logic > (query (reversed ?x (a b c d)))
Success!
x: (d ¢ b a)
logic > (fact (palindrome ?s)
)

logic > (query (palindrome (a b ?x d e ?y ?z))
Success!

X: ey: bz: a

3. Pig Latin!
def pig latin(w):

Return the Pig Latin equivalent of English word w.

if starts_with_a vowel(w):

return w + 'ay

return pig latin(w[1:] + w[@])

def starts _with_a vowel(w):

Return whether w begins with a vowel."""

return w[@].lower() in 'aeiou'

Our version of pig latin says that, if a word starts with a vowel, we stick “ay” on the end, and if it
doesn’t, we stick the first character at the end and try again. Now, we want to write this using
Logic!

We’'ll represent words in Logic as lists of single characters. Assume that you have an
append-to-form that works correctly. You will need to come up with a way to decide if a letter is

a vowel or consonant. You don’t need to write these all out, just describe what they would look
like. We want the following queries to work:
logic> (query (pig-latin (b i g) ?what))

Success!

what: (i g b a y)

logic> (query (pig-latin (i g) ?what))
Success!

what: (i g ay)

Iterators and lterables

1. I want an iterator that when each next method is called, returns an iterator over natural
numbers starting with next number in the iteration.

>>> a = NaturallteratorIterator (4)

>>> b = next(a)

>>> next (b)

1

>>> next (b)

>>> b = next(a)
>>> next (b)

>>> next (next (a))

>>> next (next (a))

class NaturallteratorIterator:
W77YOUR CODE HERE””"”

2. Write a generator function that returns a building list of natural numbers and terminates after
hitting a given number.

def natural list gen(end):
>>> n = natural list gen(2)
>>> next (n)
[1]
>>> next (n)
[1 2]
>>> next (n)
Traceback (most recent call last):

Stoplteration

>>> for 1 in natural list gen(3):
print (i)

(1]

[1 2]

[1 2 3]

NN/ a4

W77YOUR CODE HERE”"”

3. Write a generator function that returns the intersection of two given ascending iterators.

def intersect iterators(iterl, iter2):
>>> nl = Naturallterator() #1,2,3,...
>>> def n2(): #0,2,4,6,...
count = 0
while True:
yield count * 2
count += 1
>>> 1 = intersect iterators(nl, n2)
>>> next (1)

>>> next (1)
4

NN/ a4

A\W/4 //YOUR CODE HERE// m”irr

