
CS 61A Midterm 2 Review

Spring 2013

Outline

● Tuples, List, Dictionaries
● Recursion
● Nonlocal
● Environment Diagrams
● Equality vs. Identity
● Data Abstraction
● OOP
● Rlists

{1:2, 3:4, 5:6, 7:8}

(1,2,3,4,5,6,7,8,9)

Tuples, and Lists, and
Dictionaries

[1,
2,3

,4,
5,6

,7,
8,9

]

(oh my!)

Tuples, Lists, Dictionaries
● Tuples

○ Hold elements in an immutable data structure
● Lists

○ Hold elements in a mutable data structure
● Dictionaries

○ Hold key, value pairs in a mutable data structure
■ Keys must be immutable

What does Python Display? Write a function that takes in a
dictionary, mapping every person to
the list of their friends, and returns whether it is
possible to move from the person to the
person by following friend relationships.

Recursion

● Divide a problem into smaller subproblems
○ It's like divide and conquer!

● Figure out the base case(s)
● When calling the recursive function, assume

it works

Fibonacci Mutating Map

Define a function m_map() that will recursively
map a function to each element in a list,
mutating the original one. It can be done in
place.

Deep Map

Write a function which
applies a one-argument function onto every
element in the given list. If an element is itself a
list, then you should recursively apply the
function onto each of its elements. You should
NOT return anything—instead, mutate the
original list (and any nested lists).

● Tells Python that it is allowed to modify the
binding for a declared variable in a parent
frame
○ does not work for global variables

● Variable should already exist
● Python will not create a copy in the local

frame

Nonlocal What does this function do?

make_delayed_repeater()

Write a function that returns a function that returns the last
thing it received (the first time it's called, it returns '...')

>>>slowpoke = make_delayed_repeater()
>>>slowpoke("hi")
...
>>>slowpoke("hello?")
hi
>>>slowpoke("stop repeating what I'm saying")
hello?

Environment Diagrams

Environment Diagram

Python Tutor

Another Environment Diagram

Python Tutor

http://pythontutor.com/visualize.html#code=def+sillylist(mine,+next)%3A%0A+++def+cont()%3A%0A+++++++nonlocal+cont%0A+++++++cont+%3D+next%0A+++++++return+mine%0A+++return+cont%0A%0As+%3D+sillylist(1,+sillylist(5,+None))%0As()%0As()&mode=display&cumulative=true&heapPrimitives=false&drawParentPointers=false&textReferences=false&py=3&curInstr=0
http://pythontutor.com/visualize.html#code=def+sillylist(mine,+next)%3A%0A+++def+cont()%3A%0A+++++++nonlocal+cont%0A+++++++cont+%3D+next%0A+++++++return+mine%0A+++return+cont%0A%0As+%3D+sillylist(1,+sillylist(5,+None))%0As()%0As()&mode=display&cumulative=true&heapPrimitives=false&drawParentPointers=false&textReferences=false&py=3&curInstr=0
http://www.pythontutor.com/visualize.html#code=def+go()%3A%0A++++def+foo(a,+b,+c)%3A%0A++++++++return+foo(a,+b,+c)%0A++++def+bar(a,+b,+c)%3A%0A++++++++return+a%2Bb%2Bc%0A++++def+two()%3A%0A++++++++nonlocal+foo,+bar%0A++++++++foo,+bar+%3D+bar,+foo%0A++++++++return+2%0A++++return+foo(1,+two(),+3)%0Aprint(go())&mode=display&cumulative=true&heapPrimitives=false&drawParentPointers=false&textReferences=false&py=3&curInstr=14
http://www.pythontutor.com/visualize.html#code=def+go()%3A%0A++++def+foo(a,+b,+c)%3A%0A++++++++return+foo(a,+b,+c)%0A++++def+bar(a,+b,+c)%3A%0A++++++++return+a%2Bb%2Bc%0A++++def+two()%3A%0A++++++++nonlocal+foo,+bar%0A++++++++foo,+bar+%3D+bar,+foo%0A++++++++return+2%0A++++return+foo(1,+two(),+3)%0Aprint(go())&mode=display&cumulative=true&heapPrimitives=false&drawParentPointers=false&textReferences=false&py=3&curInstr=14

Equality vs. Identity

● Equality
○ checks if two items are equivalent
○ use the operator

■ internally, Python calls
● Identity

○ checks if two items are the same object
■ stronger condition than equality

○ use the operator
■ internally, Python calls

Equality vs. Identity

Equality vs. Identity
Data Abstraction

Data Abstraction

● We want to store data, i.e. numbers, strings,
etc. in an organized way that allows us (and
others!) to use it easily.

● Two major concerns:
○ How we store the data (lists, tuples, other data

structures)
○ How we use the data (constructors, selectors)

How do we represent data types?

● In Python, we have several ways
○ Object oriented programming
○ Data Abstraction with constructors and selectors
○ Dispatch Functions
○ ...

Data Abstraction Dispatch Functions

Object Oriented
Programming

The Donkey from Earlier as a Class

Create a new AdultDonkey class
that Implements Breeding

Name credit: http://www.wookeyfarm.com/2012/05/99-donkey-names/

Let's also make a that
can carry up to 100 things inclusive

http://www.wookeyfarm.com/2012/05/99-donkey-names/

Mutable Class

Mutable Class

Write a function that takes in an , an index,
and a value, inserting the value at the index position in the

. It should mutate the original .

Write a function to sort a given rlist in an
increasing order. You may assume that values
stored in the rlist are integers.

>>>sort_rlist(Rlist(1, Rlist (3, Rlist (2,None))))
Rlist(1, Rlist(2, (Rlist (3, None))))

