
CS 61A Structure and Interpretation of Computer Programs
Spring 2013 Midterm 2

INSTRUCTIONS

• You have 2 hours to complete the exam.

• The exam is closed book, closed notes, closed computer, closed calculator, except one hand-written 8.5” × 11”
crib sheet of your own creation and the official 61A midterm 2 study guide attached to the back of this exam.

• Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a
brief explanation.

Last name

First name

SID

Login

TA & section time

Name of the person to
your left

Name of the person to
your right

All the work on this exam
is my own. (please sign)

For staff use only

Q. 1 Q. 2 Q. 3 Q. 4 Q. 5 Total

/15 /12 /6 /6 /11 /50

2

1. (15 points) You Will Be Baked. And Then There Will Be Cake.

(a) Assume that you have started Python 3 and executed the following statements:

the_cake = [1, 2, [3], 4, 5]

a_lie = the_cake [1:4]

the_cake = the_cake [1:4]

great = a_lie

delicious = the_cake

moist = great [:-1]

For each of the following expressions, write the value to which it evaluates. If the value is a method value,
write Method. If it is a function value, write Function. If evaluation causes an error, write Error.
If evaluation would run forever, write Forever. Otherwise, write the resulting value as the interactive
interpreter would display it.

Expression Evaluates to

the_cake

the_cake is a_lie

the_cake == great

the_cake is delicious

the_cake == moist + 4

the_cake.append

the_cake.append == a_lie.append

the_cake[1] is a_lie[1]

Login: 3

(b) The following is the recursive list abstract data type from lecture:

empty_rlist = None

def rlist(first , rest):

""" Creates an rlist from the element first and the rlist rest."""

return (first , rest)

def first(s):

""" Returns the first element of the rlist s"""

return s[0]

def rest(s):

""" Returns the rest (itself an rlist) of s."""

return s[1]

def len_rlist(s):

""" Returns the length of the rlist s."""

if s == empty_rlist:

return 0

return 1 + len_rlist(rest(s))

def getitem_rlist(s, i):

""" Returns the element at index i in rlist s."""

if i == 0:

return first(s)

return getitem_rlist(rest(s), i - 1)

For each of the following pieces of code, circle Y if the code contains at least one data abstraction violation,
and N if the code contains no data abstraction violations. Do not guess; leave the answer blank if
you do not know it. We will award one point for each correct answer, no points for an incorrect answer,
and 0.5 points for each answer left blank.

Y N rlist(4, rlist(5, None))

Y N rlist(1, (2, (3, empty_rlist)))

Y N rlist(rlist(1, empty_rlist), rlist(2, empty_rlist))

Y N first(rest((1, (2, (3, empty_rlist)))))

Y N x = rlist(5, rlist((4, 3, 2), rlist(1, empty_rlist)))

first(rest(x))[1]

Y N rlist(empty_rlist, empty_rlist)

Y N len(rlist(3, rlist(4, empty_rlist)))

4

2. (12 points) Environmental Disaster

(a) (6 pt) Fill in the environment diagram that results from executing the code below until the entire program
is finished, an error occurs, or all frames are filled. You need only show the final state of each frame. You
may not need to use all of the spaces or frames.

A complete answer will:

• Add all missing names, labels, and parent annotations to all local frames.

• Add all missing values created during execution.

• Show the return value for each local frame.

Global frame

box func box()

Return Value

Return Value

Return Value

def box():
 toy = 0
 def disp(f, box):
 nonlocal toy
 if f == 0:
 toy += box
 elif f == 1:
 toy *= box
 return toy
 return disp
toybox = box()
toybox(0, 2)
toybox(0, 3)
toybox(1, 4)

Return Value

Login: 5

(b) (6 pt) Fill in the environment diagram that results from executing the code below until the entire program
is finished, an error occurs, or all frames are filled. You need only show the final state of each frame. You
may not need to use all of the spaces or frames.

A complete answer will:

• Add all missing names, labels, and parent annotations to all local frames.

• Add all missing values created during execution.

• Show the return value for each local frame.

Global frame

thrace
def thrace(x):
 def star(y):
 print(x, y)
 return x(y)
 return star

def kara(x):
 if x > 7:
 return x
 return kara(x * 2)

kara = thrace(kara)
buck = kara(5)

Return Value

Return Value

Return Value

Return Value

Return Value

func thrace(x)

6

3. (6 points) Cue the Queue that Starts with a Q

For each of the following, cross out any incorrect or unnecessary lines in the following code so that the doctests
pass for both classes. Do not cross out class declarations, doctests, or docstrings. You can cross out
anything else, including method declarations, and your final code should make as much use of inheritance as
possible. Make sure to cross out the entire line for anything you wish to remove.

Note: The pop method of a list removes the item at the given position and returns it.

(a) class Queue(object):

""" Creates a Queue , which is like a list that supports 2

operations: enqueue (adding an item to the back of the queue) and

dequeue (removing an item from the front of the queue).

>>> q = Queue()

>>> q.enqueue (5)

>>> q.enqueue (3)

>>> q.enqueue (2)

>>> q.dequeue ()

5

"""

self.items = []

def __init__(self , items):

def __init__(self):

self.enqueue(items)

self.items = []

def enqueue(item):

def enqueue(self , item):

items.append(self , item)

self.items.append(item)

items += item

self.items += item

def dequeue ():

def dequeue(self):

self.items.pop (0)

self.items.pop(len(self.items) - 1)

return self.items.pop (0)

return self.items.pop(len(self.items) - 1)

Login: 7

(b) class PriorityQueue(Queue):

"""A PriorityQueue is like a sorted list that supports two

operations: enqueue (adding an item to the PriorityQueue) and

dequeue (removing the smallest item from the PriorityQueue).

>>> p = PriorityQueue ()

>>> p.enqueue (5)

>>> p.enqueue (3)

>>> p.enqueue (2)

>>> p.dequeue ()

2

"""

self.items = []

def __init__(self , items):

def __init__(self):

Queue.__init__ ()

Queue.__init__(self)

PriorityQueue.__init__ ()

PriorityQueue.__init__(self)

self.items = []

self.items.sort()

def enqueue(item):

def enqueue(self , item):

self.enqueue(item)

Queue.enqueue(self , item)

PriorityQueue.enqueue(self , item)

items.append(self , item)

self.items.append(item)

items += item

self.items += item

self.items.sort()

def dequeue ():

def dequeue(self):

return self.dequeue ()

return Queue.dequeue(self)

return PriorityQueue.dequeue(self)

8

4. (6 points) Prime RBIs

The Cal Mathletic Club is a group of math enthusiasts who compete in mathematical competitions. Since a
sharp mind requires a sharp body, they also field an intramural baseball team. Unfortunately, this team has
not been very good in recent years. In fact, they only had 2 runs batted in (RBIs) in all of 2010! The next two
years were nearly as dreadful, with 3 RBIs in 2011, and 5 RBIs in 2012.

Being mathletes, they notice that their RBI totals have been consecutive prime numbers in each of the last
three years. Being mathletes, they decide they should continue this trend, slowly improving their play each
year by batting in the next prime number of runs.

Help the mathletes to determine their long-term goals by writing a higher-order function make_prime_generator

that returns a function to generate primes. The latter function should return 2 the first time it is called, 3 the
next time, then 5, 7, 11, and so on, returning the next prime number each time it is called.

(For the non-mathletic, a prime number can be defined as an integer greater than 1 that is not divisible by any
other integer greater than 1. Thus, a prime number p’s only positive divisors are 1 and p.)

def make_prime_generator ():

""" Return a function that computes the next prime number each time it

is called.

>>> gen = make_prime_generator ()

>>> gen(), gen(), gen()

(2, 3, 5)

>>> [gen() for _ in range (10)]

[7, 11, 13, 17, 19, 23, 29, 31, 37, 41]

"""

Login: 9

5. (11 points) Mutation: It is the Key to Our Evolution

The following is an object-oriented recursive list implementation:

class Rlist(object):

"""A recursive list consisting of a first element and the rest."""

class EmptyList(object):

def __len__(self):

return 0

empty = EmptyList ()

def __repr__(self):

f = repr(self.first)

if self.rest is Rlist.empty:

return ’Rlist ({0})’.format(f)

else:

return ’Rlist ({0}, {1})’.format(f, repr(self.rest))

def __init__(self , first , rest=empty):

self.first = first

self.rest = rest

def __len__(self):

return 1 + len(self.rest)

def __getitem__(self , i):

if i == 0:

return self.first

return self.rest[i - 1]

(a) Implement a mutating_map method that takes in a function and applies it to each element in an Rlist.
This method should mutate the list in place, replacing each element with the result of applying the function
to it. Do not create any new objects. You may assume that the input Rlist contains at least one element.

def mutating_map(self , fn):

""" Mutate this Rlist by applying fn to each element.

>>> r = Rlist(1, Rlist(2, Rlist (3)))

>>> r.mutating_map(lambda x: x + 1)

>>> r

Rlist(2, Rlist(3, Rlist (4)))

"""

10

(b) The sieve of Eratosthenes is an ancient algorithm for finding prime numbers. It starts with a sequence
of numbers between 2 and n, in order. The first number is a prime, and the algorithm removes all
larger multiples of that number from the sequence. Then the next remaining number is a prime, and the
algorithm removes all larger multiples of that number from the sequence, and so on, until the end of the
sequence is reached. At that point, all remaining numbers in the sequence are prime.

Here is a more concrete illustration of this process:

Initial sequence: 2, 3, 4, 5, 6, 7, 8, 9, 10
Remove larger multiples of 2: 2, 3, 5, 7, 9
Remove larger multiples of 3: 2, 3, 5, 7
Remove larger multiples of 5: 2, 3, 5, 7
Remove larger multiples of 7: 2, 3, 5, 7
Done.

In this problem, you will implement this algorithm on Rlists. Assume that you have map_rlist and
filter_rlist functions with the following signatures and docstrings:

def map_rlist(s, fn):

""" Return an Rlist resulting from mapping fn over the elements of s.

>>> map_rlist(Rlist(1, Rlist(2, Rlist (3))), lambda x: x * x)

Rlist(1, Rlist(4, Rlist (9)))

"""

def filter_rlist(s, fn):

""" Filter the elements of s by predicate fn.

>>> filter_rlist(Rlist(1, Rlist(2, Rlist (3))), lambda x: x % 2 == 1)

Rlist(1, Rlist (3))

"""

i. First, write a function sequence_to_rlist that converts a Python sequence into an Rlist. Elements
in the resulting Rlist should be in the same order as in the original sequence.

def sequence_to_rlist(seq):

""" Converts a sequence to an Rlist , preserving order.

>>> sequence_to_rlist ((3, 2, 1))

Rlist(3, Rlist(2, Rlist (1)))

"""

Login: 11

ii. Now fill in the following function prime_sieve that implements the sieve of Eratosthenes algorithm.
This function takes in an Rlist of numbers between 2 and n and removes all composite numbers from
the Rlist. You may assume that the input Rlist has at least one element. You may leave the last
line blank if you do not need it.

def prime_sieve(rlst):

""" Remove all composite numbers from the input Rlist. Assumes

that the input contains the numbers from 2 to len(rlst), in

order.

>>> seq = sequence_to_rlist(range(2, 15))

>>> prime_sieve(seq)

>>> seq

Rlist(2, Rlist(3, Rlist(5, Rlist(7, Rlist (11, Rlist (13))))))

"""

while rlst.rest != __:

func = lambda x: __

rlst.rest = ___

rlst = rlst.rest

12

(This page intentionally left blank)

CS 61A Midterm 1 Study Guide – Page 1

208
mul(add(2, mul(4, 6)), add(3, 5))

add(2, mul(4, 6))
26mul

add 2
mul(4, 6)

mul 4 6

24

add(3, 5)

add 3 5

8

-2
2

-2
None

abs(number):

print(...):

display “-2”

2, 10
1024

pow(x, y):

Pure Functions

Non-Pure Functions

A name evaluates to the value bound to that name in the
earliest frame of the current environment in which that
name is found.

Defining:

Call expression:

square(x):

return mul(x, x)

>>> def

square(2+2)

Calling/Applying: square(x):

return mul(x, x)

Def
statement

Formal parameter

Body

Return
expression

(return statement)

operand: 2+2
argument: 4operator: square

function: square

Intrinsic name

4

16Argument

Return value

 <header>:
 <statement>
 <statement>
 ...
 <separating header>:
 <statement>
 <statement>
 ...
 ...

Compound statement

Suite

Clause

def cube(k):
 return pow(k, 3)

def summation(n, term):
 """Sum the first n terms of a sequence.

 >>> summation(5, cube)
 255
 """
 total, k = 0, 1
 while k <= n:
 total, k = total + term(k), k + 1
 return total

Each clause is considered in order.
1.Evaluate the header's expression.
2.If it is a true value, execute the suite, then skip the
remaining clauses in the statement.

1. Evaluate the header’s expression.
2. If it is a true value, execute the (whole) suite, then
return to step 1.

Execution rule for while statements:

Execution rule for def statements:

Execution rule for assignment statements:

Evaluation rule for call expressions:

Execution rule for conditional statements:

Function of a single
argument (not called term)

A formal parameter that
will be bound to a function

The function bound to term
gets called here

The cube function is passed
as an argument value

0 + 13 + 23 + 33 + 43 + 55

Higher-order function: A function that takes a function as an
argument value or returns a function as a return value

Nested def statements: Functions defined within other
function bodies are bound to names in the local frame

Evaluation rule for or expressions:

Evaluation rule for and expressions:

Evaluation rule for not expressions:

Applying user-defined functions:

1.Evaluate the operator and operand subexpressions.
2.Apply the function that is the value of the operator
subexpression to the arguments that are the values of the
operand subexpressions.

1.Create a new local frame with the same parent as the
function that was applied.

2.Bind the arguments to the function's formal parameter
names in that frame.

3.Execute the body of the function in the environment
beginning at that frame.

1.Create a new function value with the specified name,
formal parameters, and function body.

2.Its parent is the first frame of the current environment.
3.Bind the name of the function to the function value in the
first frame of the current environment.

1.Evaluate the expression(s) on the right of the equal sign.
2.Simultaneously bind the names on the left to those values,
in the first frame of the current environment.

1.Evaluate the subexpression <left>.
2.If the result is a false value v, then the expression
evaluates to v.

3.Otherwise, the expression evaluates to the value of the
subexpression <right>.

1.Evaluate the subexpression <left>.
2.If the result is a true value v, then the expression
evaluates to v.

3.Otherwise, the expression evaluates to the value of the
subexpression <right>.

1.Evaluate <exp>; The value is True if the result is a false
value, and False otherwise.

A name is bound to a value

In a frame, there is at most
one binding per name

Statements and expressions
Red arrow points to next line.
Gray arrow points to the line
just executed

Frames:Code:

Import statement

Assignment statement

Name Value

Binding

Local frame

Intrinsic name of
function called

Formal parameter
bound to argument Return value is

not a binding!

Built-in function

User-defined
function

2

1

“mul” is
not found

2

1

3

1

2 1

Always
extends

When a frame or
function has no label

[parent=___]

 then its parent is
always the global

frame

Always
extends

A three-frame
environment

A two-frame
environment

The global environment:
 the environment with only the global frame

A frame extends the environment that begins with its parent

2

1

“y” is
not found

“y” is
not found

Error

 def abs_value(x):

 if x > 0:
 return x
 elif x == 0:
 return 0
 else:
 return -x

1 statement,
3 clauses,
3 headers,
3 suites,
2 boolean
 contexts

•An environment is a
sequence of frames

•An environment for a non-
nested function (no def
within def) consists of
one local frame, followed
by the global frame

Name

def make_adder(n):
 """Return a function that takes one argument k and returns k + n.

 >>> add_three = make_adder(3)
 >>> add_three(4)
 7
 """
 def adder(k):
 return k + n
 return adder

CS 61A Midterm 1 Study Guide – Page 2

A function that returns a function

A local
def statement

The name add_three is
bound to a function

Can refer to names in
the enclosing function

square = lambda x,y: x * y

and body "return x * y"
with formal parameters x and y

A function

Must be a single expression

square = lambda x: x * x def square(x):
 return x * xVS

• Both create a function with the same arguments & behavior

• Both of those functions are associated with the environment
in which they are defined

• Both bind that function to the name "square"

• Only the def statement gives the function an intrinsic name

No
• Square takes one argument.
• Square has the intrinsic name square.
• Square computes the square of a number.
• Square computes the square by calling mul.

Yes
What does sum_squares need to know about square?

def square(x):
 return mul(x, x)

def sum_squares(x, y):
 return square(x)+square(y)

Yes
No

Begin with a function f and
an initial guess x

 (x, f(x))

-f(x)/f'(x)

-f(x)

�� ���)

�����

>>> f = lambda x: x*x - 2
>>> find_zero(f, 1)
1.4142135623730951

How to find the square root of 2?

1. Compute the value of f at the guess: f(x)
2. Compute the derivative of f at the guess: f'(x)
3. Update guess to be:

def iter_improve(update, done, guess=1, max_updates=1000):
 """Iteratively improve guess with update until done returns a true value.

 >>> iter_improve(golden_update, golden_test)
 1.618033988749895
 """
 k = 0
 while not done(guess) and k < max_updates:
 guess = update(guess)
 k = k + 1
 return guess

def newton_update(f):
 """Return an update function for f using Newton's method."""
 def update(x):
 return x - f(x) / approx_derivative(f, x)
 return update

def approx_derivative(f, x, delta=1e-5):
 """Return an approximation to the derivative of f at x."""
 df = f(x + delta) - f(x)
 return df/delta

def find_root(f, guess=1):
 """Return a guess of a zero of the function f, near guess.

 >>> from math import sin
 >>> find_root(lambda y: sin(y), 3)
 3.141592653589793
 """
 return iter_improve(newton_update(f), lambda x: f(x) == 0, guess)

2

1

3

1

2

3

• Every user-defined function has a
parent frame

• The parent of a function is the
frame in which it was defined

• Every local frame has a parent
frame

• The parent of a frame is the
parent of the function called

A function’s signature
has all the information
to create a local frame

make_adder(1)(2)

make_adder(1) (2)

Operand	
 0Operator

An expression that
evaluates to a function

value
An expression that

evaluates to any value

Facts about print
•Non-pure function
•Returns None
•Multiple arguments are
 printed with a space
 between them
>>> print(4, 2)
4 2

def factorial(n):
 if n == 0 or n == 1:
 return 1
 return n * factorial(n - 1)

factorial(4)

1
2
3
4
5
6

A function is recursive if the body calls the function
itself, either directly or indirectly
Recursive functions have two important components:
1. Base case(s), where the function directly computes
an answer without calling itself
2. Recursive case(s), where the function calls itself
as part of the computation

. . .

CS 61A Midterm 2 Study Guide – Page 1

for <name> in <expression>:
 <suite>
1. Evaluate the header <expression>, which must yield an

iterable value.
2. For each element in that sequence, in order:

A. Bind <name> to that element in the local environment.
B. Execute the <suite>.

A range is a sequence of consecutive integers.*

..., -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, ...

range(-2, 2)
>>> city = 'Berkeley'
>>> len(city)
8
>>> city[3]
'k'

Length. A sequence has a finite length.

Element selection. A sequence has an element
corresponding to any non-negative integer index less
than its length, starting at 0 for the first element.

An element of a string
is itself a string!

(<map exp> for <name> in <iter exp> if <filter exp>)
• Evaluates to an iterable object.
• <iter exp> is evaluated when the generator expression
is evaluated.

• Remaining expressions are evaluated when elements are
accessed.

x = 2
Status Effect

•No nonlocal statement
•"x" is not bound locally

Create a new binding from name "x"
to object 2 in the first frame of
the current environment.

•No nonlocal statement
•"x" is bound locally

Re-bind name "x" to object 2 in the
first frame of the current env.

•nonlocal x
•"x" is bound in a non-local frame
•"x" also bound locally

SyntaxError: name 'x' is parameter
and nonlocal

•nonlocal x
•"x" is not bound in a non-local
frame

SyntaxError: no binding for nonlocal
'x' found

•nonlocal x
•"x" is bound in a non-local frame
(but not the global frame)

Re-bind "x" to 2 in the first non-
local frame of the current
environment in which it is bound.

fib(6)

fib(4)

fib(2)

1

fib(5)

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Call to fib
Found in cache

R(n) = �(f(n))

k1 · f(n) � R(n) � k2 · f(n)

n: size of the problem
R(n): Measurement of some resource used (time or space)

means that there are constants k1 and k2 such that

for sufficiently large values of n.
�(n2)�(n3)�(bn) �(n) �(log n) �(1)

>>> suits = ['heart', 'diamond', 'spade', 'club']
>>> from unicodedata import lookup
>>> [lookup('WHITE ' + s.upper() + ' SUIT') for s in suits]
['♡', '♢', '♤', '♧']

[<map exp> for <name> in <iter exp> if <filter exp>]

Short version: [<map exp> for <name> in <iter exp>]

Unlike generator expressions, the map expression is
evaluated when the list comprehension is evaluated.

A function with a
parent frame

The parent contains
local state

Every call changes
the balance

• Tuples are immutable sequences.
• Lists are mutable sequences.
• Dictionaries are unordered collections

of key-value pairs.
Dictionary keys do have two restrictions:
• A key of a dictionary cannot be an object of a

mutable built-in type.
• Two keys cannot be equal. There can be at most

one value for a key.

Generator expressions

List comprehensions

From the Python 3 language reference:

Names listed in a nonlocal statement must refer to
pre-existing bindings in an enclosing scope.

Names listed in a nonlocal statement must not collide
with pre-existing bindings in the local scope.

Effect: Future assignments to that name change its
pre-existing binding in the first non-local frame of
the current environment in which that name is bound.

nonlocal <name> , <name 2>, ...

Python Docs: an
"enclosing scope"

Python pre-computes which frame contains each name before
executing the body of a function.
Therefore, within the body of a function, all instances of a
name must refer to the same frame.

Local assignment

Mutable values can be changed without a nonlocal statement.

Name-value binding
cannot change

Mutable value
can change

>>> a = Account('Jim')
>>> b = Account('Jack')

>>> a is a
True
>>> a is not b
True

Every object that is an instance of a user-defined class
has a unique identity:

Identity testing is performed by "is" and "is not" operators.
Binding an object to a new name using assignment does not create
a new object: >>> c = a

>>> c is a
True

 def pig_latin(w):
 if starts_with_a_vowel(w):
 return w + 'ay'
 return pig_latin(w[1:] + w[0])

 def starts_with_a_vowel(w):
 return w[0].lower() in 'aeiou'

• The def statement header is
similar to other functions

• Conditional statements check
for base cases

• Base cases are evaluated
without recursive calls

• Typically, all other cases are
evaluated with recursive calls

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0)fib(1)

01

fib(2)

fib(0)fib(1)

01

fib(3)

fib(1)

1

fib(2)

fib(0)fib(1)

01

def fib(n):
 if n == 0:
 return 0
 if n == 1:
 return 1
 return fib(n-1) + fib(n-2)

def make_withdraw(balance):
 def withdraw(amount):
 nonlocal balance
 if amount > balance:
 return ‘No funds’
 balance -= amount
 return withdraw

withdraw = make_withdraw(100)
withdraw(25)
withdraw(25)

CS 61A Midterm 2 Study Guide – Page 2

•A class statement creates a new class and binds that class to
<name> in the first frame of the current environment.

•Statements in the <suite> create attributes of the class.

class <name>(<base class>):
 <suite>

<expression> . <name>To evaluate a dot expression:
1. Evaluate the <expression> to the left of the dot, which yields

the object of the dot expression.
2. <name> is matched against the instance attributes of that object;

if an attribute with that name exists, its value is returned.
3. If not, <name> is looked up in the class, which yields a class

attribute value.
4. That value is returned unless it is a function, in which case a

bound method is returned instead.

 class Account(object):

 interest = 0.02

 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

 def deposit(self, amount):
 self.balance = self.balance + amount
 return self.balance

 def withdraw(self, amount):
 if amount > self.balance:
 return 'Insufficient funds'
 self.balance = self.balance - amount
 return self.balance

Class attribute Constructor

Methods

Assignment statements with a dot expression on their left-hand
side affect attributes for the object of that dot expression
• If the object is an instance, then assignment sets an

instance attribute
• If the object is a class, then assignment sets a class

attribute

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02
>>> tom_account.interest
0.02
>>> Account.interest = 0.04
>>> tom_account.interest
0.04

>>> jim_account.interest = 0.8
>>> jim_account.interest
0.8
>>> tom_account.interest
0.04
>>> Account.interest = 0.05
>>> tom_account.interest
0.05
>>> jim_account.interest
0.8

 class CheckingAccount(Account):
 withdraw_fee = 1
 interest = 0.01
 def withdraw(self, amount):
 return Account.withdraw(self, amount + self.withdraw_fee)

Base class

To look up a name in a class:
1.If it names an attribute in the

class, return the attribute value.
2.Otherwise, look up the name in the

base class, if there is one.

>>> ch = CheckingAccount('T')
>>> ch.interest
0.01
>>> ch.deposit(20)
20
>>> ch.withdraw(5)
14 class SavingsAccount(Account):

 deposit_fee = 2
 def deposit(self, amount):
 return Account.deposit(self, amount - self.deposit_fee)

 class AsSeenOnTVAccount(CheckingAccount, SavingsAccount):
 def __init__(self, account_holder):
 self.holder = account_holder
 self.balance = 1 # A free dollar!

 class ComplexRI(object):
 def __init__(self, real, imag):
 self.real = real
 self.imag = imag
 @property
 def magnitude(self):
 return (self.real ** 2 + self.imag ** 2) ** 0.5

Special decorator: "Call this
function on attribute look-up"

Type dispatching: Define a different function for each
possible combination of types for which an operation is valid

 def iscomplex(z):
 return type(z) in (ComplexRI, ComplexMA)

 def isrational(z):
 return type(z) == Rational

 def add_complex_and_rational(z, r):
 return ComplexRI(z.real + r.numer/r.denom, z.imag)

 def add_by_type_dispatching(z1, z2):
 """Add z1 and z2, which may be complex or rational."""
 if iscomplex(z1) and iscomplex(z2):
 return add_complex(z1, z2)
 elif iscomplex(z1) and isrational(z2):
 return add_complex_and_rational(z1, z2)
 elif isrational(z1) and iscomplex(z2):
 return add_complex_and_rational(z2, z1)
 else:
 add_rational(z1, z2)

Converted to a
real number (float)

 def coerce_apply(operator_name, x, y):
 tx, ty = type_tag(x), type_tag(y)
 if tx != ty:
 if (tx, ty) in coercions:
 tx, x = ty, coercions[(tx, ty)](x)
 elif (ty, tx) in coercions:
 ty, y = tx, coercions[(ty, tx)](y)
 else:
 return 'No coercion possible.'
 key = (operator_name, tx)
 return coerce_apply.implementations[key](x, y)

1. Attempt to coerce arguments into values of the same type
2. Apply type-specific (not cross-type) operations

 class Rlist(object):

 class EmptyList(object):
 def __len__(self):
 return 0

 empty = EmptyList()

 def __init__(self, first, rest=empty):
 self.first = first
 self.rest = rest

 def __len__(self):
 return 1 + len(self.rest)

 def __getitem__(self, i):
 if i == 0:
 return self.first
 return self.rest[i-1]

A recursive
call

The base
case

 class Tree(object):
 def __init__(self, entry,
 left=None,
 right=None):
 self.entry = entry
 self.left = left
 self.right = right

def count_entries(tree):
 if tree is None:
 return 0
 left = count_entries(tree.left)
 right = count_entries(tree.right)
 return 1 + left + right

 def map_rlist(s, fn):
 if s is Rlist.empty:
 return s
 rest = map_rlist(s.rest, fn)
 return Rlist(fn(s.first),rest)

When a class is called:
1. A new instance of that class is created:
2. The constructor __init__ of the class is called with the

new object as its first argument (called self), along with
additional arguments provided in the call expression.

>>> a = Account('Jim')

 class Account(object):
 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

To look up a name in a class.
1. If it names an attribute in the class, return the attribute value.
2. Otherwise, look up the name in the base class, if there is one.

tom_account.interest = 0.08

But the name (“interest”)
is not looked up

Attribute
assignment

statement adds
or modifies

the “interest”
attribute of
tom_account

Instance
Attribute

Assignment
:

This expression
evaluates to an object

 def make_instance(cls):
 def get_value(name):
 if name in attributes:
 return attributes[name]
 else:
 value = cls['get'](name)
 return bind_method(value, instance)
 def set_value(name, value):
 attributes[name] = value
 attributes = {}
 instance = {'get': get_value, 'set': set_value}
 return instance

The class of the instance

Look up the name
in the class

Match name against
instance attributes

Assignment affects
instance attributes

 def bind_method(value, instance):
 if callable(value):
 def method(*args):
 return value(instance, *args)
 return method
 else:
 return value
 def make_class(attributes={}, base_class=None):
 def get_value(name):
 if name in attributes:
 return attributes[name]
 elif base_class is not None:
 return base_class['get'](name)
 def set_value(name, value):
 attributes[name] = value
 def new(*args):
 return init_instance(cls, *args)
 cls = {'get': get_value, 'set': set_value, 'new': new}
 return cls

Class attribute lookup

Common dispatch
dictionary pattern

 def init_instance(cls, *args):
 instance = make_instance(cls)
 init = cls['get']('__init__')
 if init is not None:
 init(instance, *args)
 return instance

Special constructor
name is fixed here

Dispatch dictionary

def make_account_class():
 interest = 0.02
 def __init__(self, account_holder):
 self['set']('holder', account_holder)
 self['set']('balance', 0)
 def deposit(self, amount):
 new_balance = self['get']('balance') + amount
 self['set']('balance', new_balance)
 return self['get']('balance')
 ...
 return make_class(locals())
Account = make_account_class()

Valid if these
are None or a
Tree instance

A valid
tree has
no cycles!

def mutable_rlist():
 contents = empty_rlist
 def dispatch(message, value=None):
 nonlocal contents
 if message == 'len':
 return len_rlist(contents)
 elif message == 'getitem':
 return getitem_rlist(contents, value)
 elif message == 'push_first':
 contents = make_rlist(value, contents)
 elif message == 'pop_first':
 f = first(contents)
 contents = rest(contents)
 return f
 elif message == 'str':
 return str(contents)
 return dispatch

def account(balance):
 def withdraw(amount):
 if amount > dispatch['balance']:
 return 'Insufficient funds'
 dispatch['balance'] -= amount
 return dispatch['balance']
 def deposit(amount):
 dispatch['balance'] += amount
 return dispatch['balance']
 dispatch = {'balance': balance, 'withdraw': withdraw,
 'deposit': deposit}
 return dispatch

def container(contents):
 def get():
 return contents
 def put(value):
 nonlocal contents
 contents = value
 return put, get

A mutable Rlist implementation using message passing

A bank account implemented using dispatch dictionaries

A simple container implemented using two accessor methods

