
CS 61A Structure and Interpretation of Computer Programs
Spring 2013 Midterm 1

INSTRUCTIONS

• You have 2 hours to complete the exam.

• The exam is closed book, closed notes, closed computer, closed calculator, except one hand-written 8.5” × 11”
crib sheet of your own creation and the official 61A midterm 1 study guide attached to the back of this exam.

• Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a
brief explanation.

Last name

First name

SID

Login

TA & section time

Name of the person to
your left

Name of the person to
your right

All the work on this exam
is my own. (please sign)

For staff use only

Q. 1 Q. 2 Q. 3 Q. 4 Q. 5 Total

/12 /12 /6 /12 /8 /50

2

1. (12 points) Call Me Maybe

For each of the following call expressions, write the value to which it evaluates and what would be output by
the interactive Python interpreter. The first two rows have been provided as examples.

• In the Evaluates to column, write the value to which the expression evaluates. If it evaluates to a
function value, write Function. If evaluation causes an error, write Error.

• In the column labeled Interactive Output, write all output that would be displayed during an interactive
session, after entering each call expression. This output may have multiple lines. Whenever the interpreter
would report an error, write Error. You should include any lines displayed before an error.

Assume that you have started Python 3 and executed the following statements:

from operator import add , mul

def mulled(x, y):

return mul(x, add(y, x))

def fauxpose(f, g):

print(’maybe ’)

def h(x, y):

f(x, y)

return g(x, y)

return h

Expression Evaluates to Interactive Output

mulled(5, 5) 50 50

1/0 Error Error

mulled(4, 1)

add(mulled(3, 2), print(4))

print(3, print(5, print(1)))

fauxpose(add, mul)(3, 2)

fauxpose(mul, print)(4, 1)

fauxpose(fauxpose, mulled)(2, 5)

Login: 3

2. (12 points) We Are All Environmentalists

(a) (6 pt) Fill in the environment diagram that results from executing the code below until the entire program
is finished, an error occurs, or all frames are filled. You need only show the final state of each frame. You
may not need to use all of the spaces or frames.

A complete answer will:

• Add all missing names, labels, and parent annotations to all local frames.

• Add all missing values created during execution.

• Show the return value for each local frame.

Global frame

maybe func maybe(x)
def maybe(x):
 next = lambda y: y - 1
 x += 3
 def year(z):
 return next(z + x) * 2
 return year

x = maybe(2)(4)

Return Value

Return Value

Return Value

Return Value

4

(b) (6 pt) Fill in the environment diagram that results from executing the code below until the entire program
is finished, an error occurs, or all frames are filled. You need only show the final state of each frame. You
may not need to use all of the spaces or frames.

A complete answer will:

• Add all missing names, labels, and parent annotations to all local frames.

• Add all missing values created during execution.

• Show the return value for each local frame.

Global frame

snow func snow(snow, x)

Return Value

Return Value

Return Value

Return Value

def snow(snow, x):
 if snow(x, x) == x:
 def x(x):
 return 32
 return x(x)
 else:
 return snow(snow, x)

def flake(x, y):
 return y + x - 1

griffin = snow(flake, 1)

Login: 5

3. (6 points) A Higher Order of Protection

Louis Reasoner is making a web application, and he wants to secure it. (Good for him!) One of the ways he
wants to secure it is through checking to make sure that the user is an admin when it tries to visit certain
confidential pages. So, being a silly programmer, he does the following.

def delete_everything(is_admin , request):

if not is_admin:

print(’ERROR: not admin ’)

return

confirmation = do_bad_stuff(request) # BAD STUFF HAPPENS HERE

return confirmation

def steal_credit_card_info(is_admin , request):

if not is_admin:

print(’ERROR: not admin ’)

return

cc_info = hack_a_shaq(request) # DO SOME 1337 HAXORING

return cc_info

However, Alyssa P. Hacker comes across this code, and realizes that there is a better way to do this using
higher-order functions! She modifies the above as follows.

def delete_everything(request):

confirmation = do_bad_stuff(request) # BAD STUFF HAPPENS HERE

return confirmation

delete_everything = protect_me(delete_everything)

def steal_credit_card_info(request):

cc_info = hack_a_shaq(request) # DO SOME 1337 H4X0RING

return cc_info

steal_credit_card_info = protect_me(steal_credit_card_info)

Help her to complete the code by filling in the function below. The new code should provide the same
functionality as the original code. For example, calling delete_everything(True, my_request) should have
the same effect in both versions of the code.

You may leave lines blank if you do not need them.

def protect_me(fn):

__

if not is_admin:

print(’ERROR: not admin ’)

return

return __

__

6

4. (12 points) Da Visors Provide Protection from Puns

An integer d is a divisor of another integer n if it evenly divides n, i.e. the remainder is 0 when dividing n by
d. The divisors of n include 1 and n itself.

(a) Complete the function below to compute the number of positive divisors of a positive integer. Fill in the
blanks. You may leave a line blank if you do not need it.

__

def num_divisors(n):

""" Computes the number of positive divisors of a positive integer.

>>> num_divisors (4) # 1, 2, and 4

3

"""

i, count = 1, 0

while __:

if ___:

count = count + 1

return count

(b) Write a function that computes the sum of the positive divisors of a positive integer.

def sum_divisors(n):

""" Computes the sum of the positive divisors of a positive integer.

>>> sum_divisors (4) # 1 + 2 + 4

7

"""

(Continued on next page)

Login: 7

(c) A positive integer n is called abundant if the sum of its divisors (except n itself) is strictly larger than n.
It is called perfect if the sum of its divisors (except n itself) is exactly equal to n. Finally, n is deficient
if the sum of its divisors (excluding n) is strictly less than n. Write a function that returns the string
’abundant’ if the input n is abundant, ’perfect’ if n is perfect, and ’deficient’ if n is deficient. You
may call sum_divisors and assume that it works correctly.

def describe(n):

""" Returns whether n is abundant , perfect , or deficient.

>>> describe (4) # 1 + 2 < 4

’deficient ’

"""

8

5. (8 points) Lambda the Free

Assume that you have started Python 3 and executed the following statements:

square = lambda x: x * x

def muckluck(x):

square(square(x))

def apply(f, x):

return f(x)

def apply_many(f, x, n):

while n > 0:

x = f(x)

return x

def wut(f):

return lambda f: f(x)

def pair(x, y):

return lambda k: x if k == 0 else y

For each of the following call expressions, write the value to which it evaluates. If the value is a function value,
write Function. If evaluation causes an error, write Error. If evaluation would run forever, write Forever.

Expression Evaluates to

square

muckluck(2)

apply(pair, 3)

wut(square)

pair(3, 4)(1)

pair(apply, square)(0)

apply_many(square, 3, 0)

apply_many(square, 3, 2)

Login: 9

(This page intentionally left blank)

10

(This page intentionally left blank)

CS 61A Midterm 1 Study Guide – Page 1

208
mul(add(2, mul(4, 6)), add(3, 5))

add(2, mul(4, 6))
26mul

add 2
mul(4, 6)

mul 4 6

24

add(3, 5)

add 3 5

8

-2
2

-2
None

abs(number):

print(...):

display “-2”

2, 10
1024

pow(x, y):

Pure Functions

Non-Pure Functions

A name evaluates to the value bound to that name in the
earliest frame of the current environment in which that
name is found.

Defining:

Call expression:

square(x):

return mul(x, x)

>>> def

square(2+2)

Calling/Applying: square(x):

return mul(x, x)

Def
statement

Formal parameter

Body

Return
expression

(return statement)

operand: 2+2
argument: 4operator: square

function: square

Intrinsic name

4

16Argument

Return value

 <header>:
 <statement>
 <statement>
 ...
 <separating header>:
 <statement>
 <statement>
 ...
 ...

Compound statement

Suite

Clause

def cube(k):
 return pow(k, 3)

def summation(n, term):
 """Sum the first n terms of a sequence.

 >>> summation(5, cube)
 255
 """
 total, k = 0, 1
 while k <= n:
 total, k = total + term(k), k + 1
 return total

Each clause is considered in order.
1.Evaluate the header's expression.
2.If it is a true value, execute the suite, then skip the
remaining clauses in the statement.

1. Evaluate the header’s expression.
2. If it is a true value, execute the (whole) suite, then
return to step 1.

Execution rule for while statements:

Execution rule for def statements:

Execution rule for assignment statements:

Evaluation rule for call expressions:

Execution rule for conditional statements:

Function of a single
argument (not called term)

A formal parameter that
will be bound to a function

The function bound to term
gets called here

The cube function is passed
as an argument value

0 + 13 + 23 + 33 + 43 + 55

Higher-order function: A function that takes a function as an
argument value or returns a function as a return value

Nested def statements: Functions defined within other
function bodies are bound to names in the local frame

Evaluation rule for or expressions:

Evaluation rule for and expressions:

Evaluation rule for not expressions:

Applying user-defined functions:

1.Evaluate the operator and operand subexpressions.
2.Apply the function that is the value of the operator
subexpression to the arguments that are the values of the
operand subexpressions.

1.Create a new local frame with the same parent as the
function that was applied.

2.Bind the arguments to the function's formal parameter
names in that frame.

3.Execute the body of the function in the environment
beginning at that frame.

1.Create a new function value with the specified name,
formal parameters, and function body.

2.Its parent is the first frame of the current environment.
3.Bind the name of the function to the function value in the
first frame of the current environment.

1.Evaluate the expression(s) on the right of the equal sign.
2.Simultaneously bind the names on the left to those values,
in the first frame of the current environment.

1.Evaluate the subexpression <left>.
2.If the result is a false value v, then the expression
evaluates to v.

3.Otherwise, the expression evaluates to the value of the
subexpression <right>.

1.Evaluate the subexpression <left>.
2.If the result is a true value v, then the expression
evaluates to v.

3.Otherwise, the expression evaluates to the value of the
subexpression <right>.

1.Evaluate <exp>; The value is True if the result is a false
value, and False otherwise.

A name is bound to a value

In a frame, there is at most
one binding per name

Statements and expressions
Red arrow points to next line.
Gray arrow points to the line
just executed

Frames:Code:

Import statement

Assignment statement

Name Value

Binding

Local frame

Intrinsic name of
function called

Formal parameter
bound to argument Return value is

not a binding!

Built-in function

User-defined
function

2

1

“mul” is
not found

2

1

3

1

2 1

Always
extends

When a frame or
function has no label

[parent=___]

 then its parent is
always the global

frame

Always
extends

A three-frame
environment

A two-frame
environment

The global environment:
 the environment with only the global frame

A frame extends the environment that begins with its parent

2

1

“y” is
not found

“y” is
not found

Error

 def abs_value(x):

 if x > 0:
 return x
 elif x == 0:
 return 0
 else:
 return -x

1 statement,
3 clauses,
3 headers,
3 suites,
2 boolean
 contexts

•An environment is a
sequence of frames

•An environment for a non-
nested function (no def
within def) consists of
one local frame, followed
by the global frame

Name

def make_adder(n):
 """Return a function that takes one argument k and returns k + n.

 >>> add_three = make_adder(3)
 >>> add_three(4)
 7
 """
 def adder(k):
 return k + n
 return adder

CS 61A Midterm 1 Study Guide – Page 2

A function that returns a function

A local
def statement

The name add_three is
bound to a function

Can refer to names in
the enclosing function

square = lambda x,y: x * y

and body "return x * y"
with formal parameters x and y

A function

Must be a single expression

square = lambda x: x * x def square(x):
 return x * xVS

• Both create a function with the same arguments & behavior

• Both of those functions are associated with the environment
in which they are defined

• Both bind that function to the name "square"

• Only the def statement gives the function an intrinsic name

No
• Square takes one argument.
• Square has the intrinsic name square.
• Square computes the square of a number.
• Square computes the square by calling mul.

Yes
What does sum_squares need to know about square?

def square(x):
 return mul(x, x)

def sum_squares(x, y):
 return square(x)+square(y)

Yes
No

Begin with a function f and
an initial guess x

 (x, f(x))

-f(x)/f'(x)

-f(x)

�� ���)

�����

>>> f = lambda x: x*x - 2
>>> find_zero(f, 1)
1.4142135623730951

How to find the square root of 2?

1. Compute the value of f at the guess: f(x)
2. Compute the derivative of f at the guess: f'(x)
3. Update guess to be:

def iter_improve(update, done, guess=1, max_updates=1000):
 """Iteratively improve guess with update until done returns a true value.

 >>> iter_improve(golden_update, golden_test)
 1.618033988749895
 """
 k = 0
 while not done(guess) and k < max_updates:
 guess = update(guess)
 k = k + 1
 return guess

def newton_update(f):
 """Return an update function for f using Newton's method."""
 def update(x):
 return x - f(x) / approx_derivative(f, x)
 return update

def approx_derivative(f, x, delta=1e-5):
 """Return an approximation to the derivative of f at x."""
 df = f(x + delta) - f(x)
 return df/delta

def find_root(f, guess=1):
 """Return a guess of a zero of the function f, near guess.

 >>> from math import sin
 >>> find_root(lambda y: sin(y), 3)
 3.141592653589793
 """
 return iter_improve(newton_update(f), lambda x: f(x) == 0, guess)

2

1

3

1

2

3

• Every user-defined function has a
parent frame

• The parent of a function is the
frame in which it was defined

• Every local frame has a parent
frame

• The parent of a frame is the
parent of the function called

A function’s signature
has all the information
to create a local frame

make_adder(1)(2)

make_adder(1) (2)

Operand	
 0Operator

An expression that
evaluates to a function

value
An expression that

evaluates to any value

Facts about print
•Non-pure function
•Returns None
•Multiple arguments are
 printed with a space
 between them
>>> print(4, 2)
4 2

def factorial(n):
 if n == 0 or n == 1:
 return 1
 return n * factorial(n - 1)

factorial(4)

1
2
3
4
5
6

A function is recursive if the body calls the function
itself, either directly or indirectly
Recursive functions have two important components:
1. Base case(s), where the function directly computes
an answer without calling itself
2. Recursive case(s), where the function calls itself
as part of the computation

