
CS 61A Structure and Interpretation of Computer Programs

Fall 2012 Alternate Midterm 2

INSTRUCTIONS

• You have 2 hours to complete the exam.

• The exam is closed book, closed notes, closed computer, closed calculator, except one hand-written 8.5” ⇥ 11”
crib sheet of your own creation and the two o�cial 61A midterm study guides attached to the back of this
exam.

• Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a
brief explanation.

Last name

First name

SID

Login

TA & section time

Name of the person to
your left

Name of the person to
your right

All the work on this exam

is my own. (please sign)

For sta↵ use only

Q. 1 Q. 2 Q. 3 Q. 4 Total

/16 /12 /14 /8 /50

2

THIS PAGE INTENTIONALLY LEFT BLANK

Login: 3

1. (16 points) Expressionism

(a) (8 pt) For each of the following expressions, write the repr string of the value to which the expression
evaluates. Special cases: If an expression evaluates to a function, write Function. If evaluation would
never complete, write Forever. None of these expressions cause an error.

Assume that the expressions are evaluated in order. Evaluating the first may a↵ect the
value of the second, etc.

Assume that you have started Python 3 and executed the following statements:

def fruit(y):

def ninja(angry):

nonlocal y

if y < len(angry):

return angry

y = y - 2

return pig(angry)

def pig(bird):

bird.append(y)

return ninja(bird)

return pig

slingshot = fruit (5)

green = lambda x: fruit(x)([x])

Expression

Evaluates to

5*5

25

slingshot([1, 2, 3, 4])

green(5)

slingshot([6, 7])

green(8)

4

(b) (8 pt) For each of the following expressions, write the repr string of the value to which the expression
evaluates. Special cases: If an expression evaluates to a function, write Function. If evaluation would
never complete, write Forever. None of these expressions cause an error.

Assume that the expressions are evaluated in order. Evaluating the first may a↵ect the
value of the second, etc.

Assume that you have started Python 3 and executed the following statements:

class Student(object):

def __init__(self , s):

if len(s) < 2:

self.s = s

else:

self.s = Student(s[1:])

def __repr__(self):

return ’Student(’ + repr(self.s) + ’)’

def learn(self):

if hasattr(self , ’teach’):

return self.teach ()

while type(self.s) == Student:

self.s = self.s.s

return self.s

class Teacher(Student):

def teach(self):

return ’Good Job’

luke = Student ([1, 3])

yoda = Teacher ([5, luke])

Expression

Evaluates to

5*5

25

luke.learn()

luke

yoda

Student.learn(yoda)

Login: 5

2. (12 points) Picture Frame

(a) (5 pt) Fill in the environment diagram that results from executing the code below until the entire program
is finished, an error occurs, or all frames are filled. You may not need to use all of the spaces or frames.

A complete answer will:

• Add all missing names, labels, and parent annotations to all local frames.

• Add all missing values created during execution.

• Show the return value for each local frame.

Global frame

make func make(up)

def make(up):
 exam = [2012]
 def wed():
 nonlocal exam
 if exam[0] >= up:
 return list(exam)
 a = exam[0] + 1
 exam = [a, exam]
 return wed()
 return wed()

make(2014)
Return Value

Return Value

Return Value

Return Value

(b) (1 pt) Circle True or False: This diagram would change if the nonlocal statement were removed.

6

(c) (5 pt) Fill in the environment diagram that results from executing the code below until the entire program
is finished, an error occurs, or all frames are filled. You may not need to use all of the spaces or frames.

A complete answer will:

• Add all missing names, labels, and parent annotations to all local frames.

• Add all missing values created during execution.

• Show the return value for each local frame.

Global frame

beep func beep(oo)

Return Value

Return Value

def beep(oo):
 b[b[oo]] = [b[ee], oo, b[ee]]
 return b[len(b)-1]

b = list(range(3, 7))
ee = 1
beep(0).append('not found')

(d) (1 pt) What will print(b) output after executing this code?

Login: 7

3. (14 points) Objets d’Art

(a) (6 pt) Cross out whole lines in the implementation below so that the doctests for Vehicle pass. In
addition, cross out all lines that have no e↵ect. Don’t cross out docstrings, doctests, or decorators.

class Vehicle(object):

"""

>>> c = Car(’John ’, ’CS61A ’)

>>> c.drive(’John ’)

John is driving

>>> c.drive(’Jack ’)

Car stolen: John CS61A

>>> c.pop_tire ()

3

>>> c.pop_tire ()

2

>>> c.fix()

>>> c.pop_tire ()

3

"""

def __init__(self , owner):

self.owner = owner

def move(self):

print(self.owner + ’ is driving ’)

class Car(Vehicle):

tires = 4

Car.tires = 4

def __init__(self , owner , license_plate):

Vehicle.__init__(owner)

Vehicle.__init__(self , owner)

self.plate = license_plate

self.tires = tires

self.tires = Car.tires

def drive(self , person):

if person != self.owner:

if self.person != self.owner:

print(’Car stolen: ’ + identification)

print(’Car stolen: ’ + identification ())

print(’Car stolen: ’ + self.identification)

print(’Car stolen: ’ + self.identification ())

else:

Car.move(self)

@property

def identification(self):

return self.owner + ’ ’ + self.plate

def pop_tire(self):

self.tires -= 1

return self.tires

def fix(self):

setattr(Car , ’tires’, self.tires)

setattr(Car , ’tires’, Car.tires)

setattr(self , ’tires’, self.tires)

setattr(self , ’tires’, type(self). tires)

setattr(self , ’tires’, self.Car.tires)

8

(b) (4 pt) The max path function takes an instance of the Tree class from Study Guide 2. It is meant to
return the maximal sum of internal entry values on a path from the root to a leaf of the tree.

def max_path(tree):

""" Return the sum of entries in a maximal path from the root to a leaf.

>>> max_path(Tree(3, Tree(4), Tree(-2, Tree(8), Tree (3))))

9

>>> max_path(Tree(9, None , Tree(1, Tree(-2, Tree(5), Tree (2)), None)))

13

"""

paths = [0]

if tree.right is not None:

paths.append(max_path(tree.right))

if tree.left is not None:

paths.append(max_path(tree.left))

if min(paths) < 0:

return tree.entry + max([p for p in paths if p < 0])

return tree.entry + max(paths)

Circle True or False to indicate whether each of the following statements about max path is true.

i. (True/False) It returns the correct result for all doctests shown.

ii. (True/False) It returns the correct result for all valid trees with integer entries.

(c) (4 pt) Define a function coerce that takes a Tree instance and returns a dispatch dictionary representing
the same tree using messages left, right, and entry. The base case has been provided for you.

def coerce(tree):

""" Return a dispatch dictionary representing the tree.

>>> t = Tree(4, None , Tree(5, None , Tree(1, Tree(3, Tree(5), Tree (2)))))

>>> d = coerce(t)

>>> d[’entry ’]

4

>>> d[’left ’] is None

True

>>> d[’right ’][’right ’][’left ’][’entry ’]

3

"""

if tree is None:

return None

Login: 9

4. (8 points) Form and Function

(a) (4 pt) You have been hired to work on AI at UnitedPusherElectric, the leading manufacturer of Pusher
Bots. The latest model, PusherBot 5, keeps pushing people down stairs when it gets lost. Fix it!

Assume that you have an abstract data type position that combines x and y coordinates (in meters).

>>> pos = position(3, 4)

>>> x(pos)

3

>>> y(pos)

4

pathfinder should return a visit function that takes a position argument. visit returns True unless:

i. Its argument position is more than 6 meters from position(0, 0), or

ii. Its argument position has been visited before.

The implementation below is incorrect. Cross out each line (or part of a line) that must change and write
a revised version next to it, so that pathfinder is correct and does not depend on the implementation
of position. Assume your corrections have the same indentation as the lines they replace. You may not
add or remove lines. Make as few changes as necessary.

from math import sqrt

def equal(position , other):

return x(position) == x(other) and y(position) == y(other)

def pathfinder ():

""" Return a visit function to help with path -finding.

>>> visit1 , visit2 = pathfinder (), pathfinder ()

>>> visit1(position(3, 4))

True

>>> visit1(position(5, 12)) # Too far away

False

>>> visit1(position(3, 4)) # Already visited

False

>>> visit2(position(3, 4))

True

"""

visited = ()

def visit(pos):

if sqrt(x(pos)*x(pos) + y(pos)*y(pos)) > 6:

return False

for p in visit:

if p == pos:

return True

visited.append(pos)

return True

return visited

10

(b) (4 pt) Fill in missing expressions in the implementation for subwords, which lists all of the n letter
subwords of a given word w. A subword consists of some subset of the letters in a word, in their original
order. You may assume that the word has no repeated letters. Some hints about string slicing appear in
the doctest.

def subwords(w, n):

""" List all subwords of word w that have length n.

>>> ’conc’ + ’atenate ’

’concatenate ’

>>> w = ’spot’

>>> w[len(w):]

’’

>>> subwords(w, 2)

[’sp’, ’so’, ’st’, ’po’, ’pt’, ’ot ’]

>>> subwords(w, 3)

[’spo ’, ’spt ’, ’sot ’, ’pot ’]

"""

if n == 0:

return __

if w == ’’:

return __

r = [w[0] + x for x in __]

return r + __

(c) (0 pt) Draw a picture of PusherBot 5.

CS 61A Midterm 1 Study Guide – Page 1

208
mul(add(2, mul(4, 6)), add(3, 5))

add(2, mul(4, 6))
26mul

add 2
mul(4, 6)

mul 4 6

24

add(3, 5)

add 3 5

8

-2
2

-2
None

abs(number):

print(...):

display “-2”

2, 10
1024

pow(x, y):

Pure Functions

Non-Pure Functions

A name evaluates to the value bound to that name in the
earliest frame of the current environment in which that
name is found.

Defining:

Call expression:

square(x):

return mul(x, x)

>>> def

square(2+2)

Calling/Applying: square(x):

return mul(x, x)

Def
statement

Formal parameter

Body

Return
expression

(return statement)

operand: 2+2
argument: 4operator: square

function: square

Intrinsic name

4

16Argument

Return value

 <header>:
 <statement>
 <statement>
 ...
 <separating header>:
 <statement>
 <statement>
 ...
 ...

Compound statement

Suite

Clause

Each clause is considered in order.
1.Evaluate the header's expression.
2.If it is a true value, execute the suite, then skip the
remaining clauses in the statement.

1. Evaluate the header’s expression.
2. If it is a true value, execute the (whole) suite, then
return to step 1.

Execution rule for while statements:

Execution rule for def statements:

Execution rule for assignment statements:

Evaluation rule for call expressions:

Execution rule for conditional statements: hof.py Page 2

 return total

def identity(k):
 return k

def cube(k):
 return pow(k, 3)

def summation(n, term):
 """Sum the first n terms of a sequence.

 >>> summation(5, cube)
 225
 """
 total, k = 0, 1
 while k <= n:
 total, k = total + term(k), k + 1
 return total

def pi_term(k):
 return 8 / (k * 4 − 3) / (k * 4 − 1)

Local function definitions; returning functions

def make_adder(n):
 """Return a function that takes one argument k and returns k + n.

 >>> add_three = make_adder(3)
 >>> add_three(4)
 7
 """
 def adder(k):
 return k + n
 return adder

def compose1(f, g):
 """Return a function that composes f and g.

 f, g −− functions of a single argument
 """
 def h(x):
 return f(g(x))
 return h

@main
def run():
 interact()

Function of a single
argument (not called term)

A formal parameter that
will be bound to a function

The function bound to term
gets called here

The cube function is passed
as an argument value

0 + 13 + 23 + 33 + 43 + 55

Higher-order function: A function that takes a function as an
argument value or returns a function as a return value

Nested def statements: Functions defined within other
function bodies are bound to names in the local frame

Evaluation rule for or expressions:

Evaluation rule for and expressions:

Evaluation rule for not expressions:

Applying user-defined functions:

1.Evaluate the operator and operand subexpressions.
2.Apply the function that is the value of the operator
subexpression to the arguments that are the values of the
operand subexpressions.

1.Create a new local frame with the same parent as the
function that was applied.

2.Bind the arguments to the function's formal parameter
names in that frame.

3.Execute the body of the function in the environment
beginning at that frame.

1.Create a new function value with the specified name,
formal parameters, and function body.

2.Its parent is the first frame of the current environment.
3.Bind the name of the function to the function value in the
first frame of the current environment.

1.Evaluate the expression(s) on the right of the equal sign.
2.Simultaneously bind the names on the left to those values,
in the first frame of the current environment.

1.Evaluate the subexpression <left>.
2.If the result is a false value v, then the expression
evaluates to v.

3.Otherwise, the expression evaluates to the value of the
subexpression <right>.

1.Evaluate the subexpression <left>.
2.If the result is a true value v, then the expression
evaluates to v.

3.Otherwise, the expression evaluates to the value of the
subexpression <right>.

1.Evaluate <exp>; The value is True if the result is a false
value, and False otherwise.

A name is bound to a value

In a frame, there is at most
one binding per name

Statements and expressions
Red arrow points to next line.
Gray arrow points to the line
just executed

Frames (right):Code (left):

Import statement

Assignment statement

Name Value

Binding

Local frame

Intrinsic name of
function called

Formal parameter
bound to argument Return value is

not a binding!

Built-in function

User-defined
function

2

1

“mul” is
not found

2

1

3

1

2 1

Always
extends

When a frame or
function has no label

[parent=___]

 then its parent is
always the global

frame

Always
extends

A three-frame
environment

A two-frame
environment

The global environment:
 the environment with only the global frame

A frame extends the environment that begins with its parent

2

1

“y” is
not found

“y” is
not found

Error

 def abs_value(x):

 if x > 0:
 return x
 elif x == 0:
 return 0
 else:
 return -x

1 statement,
3 clauses,
3 headers,
3 suites,
2 boolean
 contexts

•An environment is a
sequence of frames

•An environment for a non-
nested function (no def
within def) consists of
one local frame, followed
by the global frame

def make_adder(n):
 """Return a function that takes one argument k and returns k + n.

 >>> add_three = make_adder(3)
 >>> add_three(4)
 7
 """
 def adder(k):
 return k + n
 return adder

from operator import floordiv, mod
def divide_exact(n, d):
 """Return the quotient and remainder of dividing N by D.

 >>> q, r = divide_exact(2012, 10)
 >>> q
 201
 >>> r
 2
 """
 return floordiv(n, d), mod(n, d)

CS 61A Midterm 1 Study Guide – Page 2

A function that returns a function

A local
def statement

The name add_three is
bound to a function

Can refer to names in
the enclosing function

square = lambda x,y: x * y

and body "return x * y"
with formal parameters x and y

A function

Must be a single expression

square = lambda x: x * x def square(x):
 return x * xVS

• Both create a function with the same arguments & behavior

• Both of those functions are associated with the environment
in which they are defined

• Both bind that function to the name "square"

• Only the def statement gives the function an intrinsic name

@trace1
def triple(x):
 return 3 * x

is identical to

def triple(x):
 return 3 * x
triple = trace1(triple)

No
• Square takes one argument.
• Square has the intrinsic name square.
• Square computes the square of a number.
• Square computes the square by calling mul.

Yes
What does sum_squares need to know about square?

def square(x):
 return mul(x, x)

def sum_squares(x, y):
 return square(x)+square(y)

Yes
No

• Compound objects combine objects together
• An abstract data type lets us manipulate compound objects as units
• Programs that use data isolate two aspects of programming:

 How data are represented (as parts)
 How data are manipulated (as units)

• Data abstraction: A methodology by which functions enforce an
abstraction barrier between representation and use

Begin with a function f and
an initial guess x

 (x, f(x))

-f(x)/f'(x)

-f(x)

�� ���)
�����

>>> f = lambda x: x*x - 2
>>> find_zero(f, 1)
1.4142135623730951

How to find the square root of 2?

1. Compute the value of f at the guess: f(x)
2. Compute the derivative of f at the guess: f'(x)
3. Update guess to be:

Multiple return values,
separated by commas

Multiple assignment
to two names

def mul_rational(x, y):
 return rational(numer(x) * numer(y), denom(x) * denom(y))

Constructor Selectors

def add_rational(x, y):
 nx, dx = numer(x), denom(x)
 ny, dy = numer(y), denom(y)
 return rational(nx * dy + ny * dx, dx * dy)
def eq_rational(x, y):
 return numer(x) * denom(y) == numer(y) * denom(x)

def rational(n, d):
 """Construct a rational number x that represents n/d."""
 return (n, d)

from operator import getitem
def numer(x):
 """Return the numerator of rational number x."""
 return getitem(x, 0)

def denom(x):
 """Return the denominator of rational number x."""
 return getitem(x, 1)

def pair(x, y):
 """Return a functional pair."""
 def dispatch(m):
 if m == 0:
 return x
 elif m == 1:
 return y
 return dispatch
def getitem_pair(p, i):
 """Return the element at index i of pair p."""
 return p(i)

This function
represents a pair

def iter_improve(update, done, guess=1, max_updates=1000):
 """Iteratively improve guess with update until done returns a true value.

 >>> iter_improve(golden_update, golden_test)
 1.618033988749895
 """
 k = 0
 while not done(guess) and k < max_updates:
 guess = update(guess)
 k = k + 1
 return guess

def newton_update(f):
 """Return an update function for f using Newton's method."""
 def update(x):
 return x - f(x) / approx_derivative(f, x)
 return update

def approx_derivative(f, x, delta=1e-5):
 """Return an approximation to the derivative of f at x."""
 df = f(x + delta) - f(x)
 return df/delta

def find_root(f, guess=1):
 """Return a guess of a zero of the function f, near guess.

 >>> from math import sin
 >>> find_root(lambda y: sin(y), 3)
 3.141592653589793
 """
 return iter_improve(newton_update(f), lambda x: f(x) == 0, guess)

2

1

3

1

2

3

• Every user-defined function has a
parent frame

• The parent of a function is the
frame in which it was defined

• Every local frame has a parent
frame

• The parent of a frame is the
parent of the function called

A
recursive
list is a

pair
The first element of
the pair is the first
element of the list

The second element of
the pair is the rest

of the list

None
represents
the empty

list

empty_rlist = None
def rlist(first, rest):
 """Make a recursive list from its first element and the rest."""
 return (first, rest)
def first(s):
 """Return the first element of a recursive list s."""
 return s[0]
def rest(s):
 """Return the rest of the elements of a recursive list s."""
 return s[1]

If a recursive list s is constructed from a first element f and
a recursive list r, then
• first(s) returns f, and
• rest(s) returns r, which is a recursive list.

Length. A sequence has
a finite length.

Element selection. A
sequence has an
element corresponding
to any non-negative
integer index less
than its length,
starting at 0 for the
first element.

def len_rlist(s):
 """Return the length of recursive list s."""
 length = 0
 while s != empty_rlist:
 s, length = rest(s), length + 1
 return length

def getitem_rlist(s, i):
 """Return the element at index i of rlist s."""
 while i > 0:
 s, i = rest(s), i - 1
 return first(s)

A function’s signature
has all the information
to create a local frame

. . .

CS 61A Midterm 2 Study Guide – Page 1

for <name> in <expression>:
 <suite>
1. Evaluate the header <expression>, which must yield an

iterable value.
2. For each element in that sequence, in order:

A. Bind <name> to that element in the local environment.
B. Execute the <suite>.

A range is a sequence of consecutive integers.*

..., -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, ...

range(-2, 2)
>>> city = 'Berkeley'
>>> len(city)
8
>>> city[3]
'k'

Length. A sequence has a finite length.

Element selection. A sequence has an element
corresponding to any non-negative integer index less
than its length, starting at 0 for the first element.

An element of a string
is itself a string!

(<map exp> for <name> in <iter exp> if <filter exp>)
• Evaluates to an iterable object.
• <iter exp> is evaluated when the generator expression
is evaluated.

• Remaining expressions are evaluated when elements are
accessed.

x = 2
Status Effect

•No nonlocal statement
•"x" is not bound locally

Create a new binding from name "x"
to object 2 in the first frame of
the current environment.

•No nonlocal statement
•"x" is bound locally

Re-bind name "x" to object 2 in the
first frame of the current env.

•nonlocal x
•"x" is bound in a non-local frame
•"x" also bound locally

SyntaxError: name 'x' is parameter
and nonlocal

•nonlocal x
•"x" is not bound in a non-local
frame

SyntaxError: no binding for nonlocal
'x' found

•nonlocal x
•"x" is bound in a non-local frame
(but not the global frame)

Re-bind "x" to 2 in the first non-
local frame of the current
environment in which it is bound.

fib(6)

fib(4)

fib(2)

1

fib(5)

fib(3)

fib(1) fib(2)

0 1

fib(3)

fib(1) fib(2)

0 1

fib(4)

fib(2)

1

fib(3)

fib(1) fib(2)

0 1

Call to fib
Found in cache

R(n) = �(f(n))

k1 · f(n) � R(n) � k2 · f(n)

n: size of the problem
R(n): Measurement of some resource used (time or space)

means that there are constants k1 and k2 such that

for sufficiently large values of n.
�(n2)�(n3)�(bn) �(n) �(log n) �(1)

>>> suits = ['heart', 'diamond', 'spade', 'club']
>>> from unicodedata import lookup
>>> [lookup('WHITE ' + s.upper() + ' SUIT') for s in suits]
['♡', '♢', '♤', '♧']

[<map exp> for <name> in <iter exp> if <filter exp>]

Short version: [<map exp> for <name> in <iter exp>]

Unlike generator expressions, the map expression is
evaluated when the list comprehension is evaluated.

A function with a
parent frame

The parent contains
local state

Every call changes
the balance

• Tuples are immutable sequences.
• Lists are mutable sequences.
• Dictionaries are unordered collections

of key-value pairs.
Dictionary keys do have two restrictions:
• A key of a dictionary cannot be an object of a

mutable built-in type.
• Two keys cannot be equal. There can be at most

one value for a key.

Generator expressions

List comprehensions

From the Python 3 language reference:

Names listed in a nonlocal statement must refer to
pre-existing bindings in an enclosing scope.

Names listed in a nonlocal statement must not collide
with pre-existing bindings in the local scope.

Effect: Future assignments to that name change its
pre-existing binding in the first non-local frame of
the current environment in which that name is bound.

nonlocal <name> , <name 2>, ...

Python Docs: an
"enclosing scope"

Python pre-computes which frame contains each name before
executing the body of a function.
Therefore, within the body of a function, all instances of a
name must refer to the same frame.

Local assignment

Mutable values can be changed without a nonlocal statement.

Name-value binding
cannot change

Mutable value
can change

>>> a = Account('Jim')
>>> b = Account('Jack')

>>> a is a
True
>>> a is not b
True

Every object that is an instance of a user-defined class
has a unique identity:

Identity testing is performed by "is" and "is not" operators.
Binding an object to a new name using assignment does not create
a new object: >>> c = a

>>> c is a
True

 def pig_latin(w):
 if starts_with_a_vowel(w):
 return w + 'ay'
 return pig_latin(w[1:] + w[0])

 def starts_with_a_vowel(w):
 return w[0].lower() in 'aeiou'

• The def statement header is
similar to other functions
• Conditional statements check
for base cases
• Base cases are evaluated
without recursive calls
• Typically, all other cases are
evaluated with recursive calls

CS 61A Midterm 2 Study Guide – Page 2

•A class statement creates a new class and binds that class to
<name> in the first frame of the current environment.

•Statements in the <suite> create attributes of the class.

class <name>(<base class>):
 <suite>

<expression> . <name>To evaluate a dot expression:
1. Evaluate the <expression> to the left of the dot, which yields

the object of the dot expression.
2. <name> is matched against the instance attributes of that object;

if an attribute with that name exists, its value is returned.
3. If not, <name> is looked up in the class, which yields a class

attribute value.
4. That value is returned unless it is a function, in which case a

bound method is returned instead.

 class Account(object):

 interest = 0.02

 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

 def deposit(self, amount):
 self.balance = self.balance + amount
 return self.balance

 def withdraw(self, amount):
 if amount > self.balance:
 return 'Insufficient funds'
 self.balance = self.balance - amount
 return self.balance

Class attribute Constructor

Methods

Assignment statements with a dot expression on their left-hand
side affect attributes for the object of that dot expression
• If the object is an instance, then assignment sets an

instance attribute
• If the object is a class, then assignment sets a class

attribute

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02
>>> tom_account.interest
0.02
>>> Account.interest = 0.04
>>> tom_account.interest
0.04

>>> jim_account.interest = 0.8
>>> jim_account.interest
0.8
>>> tom_account.interest
0.04
>>> Account.interest = 0.05
>>> tom_account.interest
0.05
>>> jim_account.interest
0.8

 class CheckingAccount(Account):
 withdraw_fee = 1
 interest = 0.01
 def withdraw(self, amount):
 return Account.withdraw(self, amount + self.withdraw_fee)

Base class

To look up a name in a class:
1.If it names an attribute in the

class, return the attribute value.
2.Otherwise, look up the name in the

base class, if there is one.

>>> ch = CheckingAccount('T')
>>> ch.interest
0.01
>>> ch.deposit(20)
20
>>> ch.withdraw(5)
14 class SavingsAccount(Account):

 deposit_fee = 2
 def deposit(self, amount):
 return Account.deposit(self, amount - self.deposit_fee)

 class AsSeenOnTVAccount(CheckingAccount, SavingsAccount):
 def __init__(self, account_holder):
 self.holder = account_holder
 self.balance = 1 # A free dollar!

 class ComplexRI(object):
 def __init__(self, real, imag):
 self.real = real
 self.imag = imag
 @property
 def magnitude(self):
 return (self.real ** 2 + self.imag ** 2) ** 0.5

Special decorator: "Call this
function on attribute look-up"

Type dispatching: Define a different function for each
possible combination of types for which an operation is valid

 def iscomplex(z):
 return type(z) in (ComplexRI, ComplexMA)

 def isrational(z):
 return type(z) == Rational

 def add_complex_and_rational(z, r):
 return ComplexRI(z.real + r.numer/r.denom, z.imag)

 def add_by_type_dispatching(z1, z2):
 """Add z1 and z2, which may be complex or rational."""
 if iscomplex(z1) and iscomplex(z2):
 return add_complex(z1, z2)
 elif iscomplex(z1) and isrational(z2):
 return add_complex_and_rational(z1, z2)
 elif isrational(z1) and iscomplex(z2):
 return add_complex_and_rational(z2, z1)
 else:
 add_rational(z1, z2)

Converted to a
real number (float)

 def coerce_apply(operator_name, x, y):
 tx, ty = type_tag(x), type_tag(y)
 if tx != ty:
 if (tx, ty) in coercions:
 tx, x = ty, coercions[(tx, ty)](x)
 elif (ty, tx) in coercions:
 ty, y = tx, coercions[(ty, tx)](y)
 else:
 return 'No coercion possible.'
 key = (operator_name, tx)
 return coerce_apply.implementations[key](x, y)

1. Attempt to coerce arguments into values of the same type
2. Apply type-specific (not cross-type) operations

 class Rlist(object):

 class EmptyList(object):
 def __len__(self):
 return 0

 empty = EmptyList()

 def __init__(self, first, rest=empty):
 self.first = first
 self.rest = rest

 def __len__(self):
 return 1 + len(self.rest)

 def __getitem__(self, i):
 if i == 0:
 return self.first
 return self.rest[i-1]

A recursive
call

The base
case

 class Tree(object):
 def __init__(self, entry,
 left=None,
 right=None):
 self.entry = entry
 self.left = left
 self.right = right

 def count_leaves(tree):
 if type(tree) != tuple:
 return 1
 return sum(map(count_leaves, tree))

 def map_rlist(s, fn):
 if s is Rlist.empty:
 return s
 rest = map_rlist(s.rest, fn)
 return Rlist(fn(s.first),rest)

When a class is called:
1. A new instance of that class is created:
2. The constructor __init__ of the class is called with the

new object as its first argument (called self), along with
additional arguments provided in the call expression.

>>> a = Account('Jim')

 class Account(object):
 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

To look up a name in a class.
1. If it names an attribute in the class, return the attribute value.
2. Otherwise, look up the name in the base class, if there is one.

tom_account.interest = 0.08

But the name (“interest”)
is not looked up

Attribute
assignment

statement adds
or modifies

the “interest”
attribute of
tom_account

Instance
Attribute

Assignment
:

This expression
evaluates to an object

 def make_instance(cls):
 def get_value(name):
 if name in attributes:
 return attributes[name]
 else:
 value = cls['get'](name)
 return bind_method(value, instance)
 def set_value(name, value):
 attributes[name] = value
 attributes = {}
 instance = {'get': get_value, 'set': set_value}
 return instance

The class of the instance

Look up the name
in the class

Match name against
instance attributes

Assignment affects
instance attributes

 def bind_method(value, instance):
 if callable(value):
 def method(*args):
 return value(instance, *args)
 return method
 else:
 return value
 def make_class(attributes={}, base_class=None):
 def get_value(name):
 if name in attributes:
 return attributes[name]
 elif base_class is not None:
 return base_class['get'](name)
 def set_value(name, value):
 attributes[name] = value
 def new(*args):
 return init_instance(cls, *args)
 cls = {'get': get_value, 'set': set_value, 'new': new}
 return cls

Class attribute lookup

Common dispatch
dictionary pattern

 def init_instance(cls, *args):
 instance = make_instance(cls)
 init = cls['get']('__init__')
 if init is not None:
 init(instance, *args)
 return instance

Special constructor
name is fixed here

Dispatch dictionary

def make_account_class():
 interest = 0.02
 def __init__(self, account_holder):
 self['set']('holder', account_holder)
 self['set']('balance', 0)
 def deposit(self, amount):
 new_balance = self['get']('balance') + amount
 self['set']('balance', new_balance)
 return self['get']('balance')
 ...
 return make_class(locals())
Account = make_account_class()

