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Overview 

• We evaluate the productivity and performance of three 
implementations of miniGMG, a multigrid benchmark 

• The three implementations use different communication 
strategies enabled by the PGAS model 

1.  Fine-grained communication, at the natural 
granularity of the algorithm 

2.  Bulk communication, with manual packing and 
unpacking by the user 
•  One-sided analogue of message passing 

3.  Higher-level array-based communication that 
offloads the work to an array library 
•  Still semantically one-sided 

• We evaluate performance on two current platforms 
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Implementation Strategy 

• We use UPC++ to implement the three algorithms 
- C++ library that implements the PGAS model 
- Provides UPC-like shared arrays, which simplify 

coordination between ranks but can still scale to 
hundreds of thousands of ranks 
- Includes a multidimensional array library that 

supports fine-grained and bulk remote access 
- Seamlessly interoperates with OpenMP, MPI, and 

other parallel libraries 
• We do not claim in this work that UPC++ is superior to 

MPI or any other system 
- Main focus is to evaluate alternative communication 

algorithms 
- Results applicable to other PGAS implementations 
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Multigrid Overview 

•  Linear Solvers (Ax=b) are ubiquitous in scientific computing 
- Combustion, Climate, Astrophysics, Cosmology, etc.  

•  Multigrid exploits the nature of elliptic PDEs to provide a 
hierarchical approach with O(N) computational complexity 

•  Geometric Multigrid is specialization in which the linear 
operator (A) is simply a stencil on a structured grid (i.e. 
matrix-free) 
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miniGMG Overview 

•  3D Geometric Multigrid benchmark designed 
to proxy MG solves in BoxLib and 
 CHOMBO-based AMR applications 

•  Defines a cubical problem domain 
-  Decomposed into cubical subdomains (boxes) 
-  Rectahedral collections of subdomains are assigned 

to processes 
-  Decomposition preserved across all levels of V-Cycle 

•  MPI+OpenMP parallelization 
•  Configured to use… 

-  Fixed 10 U-Cycles (V-Cycle truncated when boxes are coarsened to 43) 
-  7-pt stencil with Gauss Seidel Red-Black (GSRB) smoother that requires 

nearest-neighbor communication for each smooth or residual calculation. 
-  BiCGStab coarse-grid (bottom) solver 

•  Communication pattern is thus… 
-  Fixed 6 nearest-neighbor communication 
- Message sizes vary greatly as one descends through the V-Cycle 

(128KB -> 128 bytes -> 128KB) 
-  Requires neighbor synchronization on each step (e.g. two-sided MPI) 5!



UPC++ Overview 

• A C++ PGAS extension that combines features from: 
- UPC: dynamic global memory management and one-

sided communication (put/get) 
- Titanium/Chapel/ZPL: multidimensional arrays 
- Phalanx/X10/Habanero: async task execution 

• Execution model: SPMD + Aysnc  

• Good interoperability with existing programming systems 
- 1-to-1 mapping between MPI rank and UPC++ rank 
- OpenMP and CUDA can be easily mixed with UPC++ 

in  the same way as MPI+X 
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Related Work 

• PGAS variants and extensions 
- AGAS, APGAS, APGNS, HPGAS… 

• PGAS languages 
- CAF, Chapel, Habanero, X10, XscaleMP, UPC 

• PGAS libraries 
- ARMCI, GASNet, Global Arrays, GASPI/GPI,  

MPI-3 RMA, OpenSHMEM, XPI 

• Parallel C++ libraries (distributed-memory) 
- Charm++, Co-Array C++, DASH, HPX, HTA, 

Phalanx,  STAPL… 

• Parallel C++ libraries (shared-memory) 
- TBB, Thrust and many more 
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A “Compiler-Free” Approach for PGAS 

•  Leverage C++ standards and compilers 
- Implement UPC++ as a C++ template library 
- C++ templates can be used as a mini-language to 

extend C++ syntax 

• New features in C++11 are very useful 
- E.g., type inference, variadic templates, lambda 

functions, Rvalue references  
- C++11 is well-supported by major compilers 
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UPC++ Software Stack 

GASNet Communication Library  

Network Drivers and OS Libraries 

C++ Compiler  

C/C++ Apps 

UPC++ 
Runtime 

UPC++ 
Template 
Header 
Files 

UPC 
Runtime 

UPC 
Apps 

UPC 
Compiler 

C11 standard: 701 pages 
C++11: 1334 pages 
C++14: 1352 pages 
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C++ Generic Programming for PGAS 

• C++ templates enable generic programming 
- Parametric template definition 
!template<class!T>!struct!array!{!

!!!T!*elements;!

!!!size_t!sz;!

!}; 

- Template instantiation 
!array<double>!A;!

!array<complex>!B; 

• UPC++ uses templates to express shared data 
!shared_var<int>!s;!!//!shared!int!s!in!UPC!

!shared_array<int>!sa(8);!//!shared!int!sa[8]!!

!!!!!!!!!!!!!!!!!!!!!!!!!!//!in!UPC 10!



UPC++ Translation Example 

shared_array)<int>)sa(8);)
sa[0])=)1;))//)“[]”)and)“=”)overloaded)
)

C++#Compiler#

UPC++#Run0me#

Local#Access#

Is#tmp_ref!
local?#

Yes No 

tmp_ref)=)sa.operator)[])(0);)
tmp_ref.operator)=)(1);)

Remote#Access#
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Runtime 
Address 
Translation 
Overheads 



One-Sided Data Transfer Functions 

//!Copy!count!elements!of!T!from!src!to!dst!
upcxx::copy<T>(global_ptr<T>!src,!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!global_ptr<T>!dst,!
!!!!!!!!!!!!!!!size_t!count);!

!

//!NonNblocking!version!of!copy!

upcxx::async_copy<T>(global_ptr<T>!src,!
!!!!!!!!!!!!!!!!!!!!!global_ptr<T>!dst,!
!!!!!!!!!!!!!!!!!!!!!size_t!count);!

!

//!Synchronize!all!previous!asyncs!

upcxx::async_wait();!

Similar to upc_memcpy_nb extension in UPC 1.3 
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UPC++ Equivalents for UPC Users 

UPC UPC++ 

Num. of ranks THREADS! THREADS!or!ranks()!

My ID MYTHREAD! MYTHREAD!or!myrank()!!

Shared variable shared!Type!s! shared_var<Type>!s!

Shared array shared![bf]!Type!
A[sz]!

shared_array<Type>!A!
A.init(sz,!bf)!

Pointer-to-shared shared!Type!*ptr! global_ptr<Type>!ptr!

Dynamic memory 
allocation 

shared!void!*!
upc_alloc(nbytes)!

global_ptr<Type>!!!
allocate<Type>(place,!count)!

Bulk data transfer upc_memcpy(dst,!
src,!sz)!

copy<Type>(src,!dst,!count)!

Affinity query  upc_threadof(ptr)! ptr.where()!

Synchronization upc_lock_t!! shared_lock!

upc_barrier! barrier()!
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Multidimensional Arrays 

• Multidimensional arrays are a common data structure in 
HPC applications 

• However, they are poorly supported by the C family of 
languages, including UPC 
- Layout, indexing must be done manually by the user 
- No built-in support for subviews 

• Remote copies of array subsets pose an even greater 
problem 
- Require manual packing at source, unpacking at 

destination 
- In PGAS setting, remote copies that are logically 

one-sided require two-sided coordination by the user 
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UPC++ Multidimensional Arrays 

• True multidimensional arrays with sizes specified at 
runtime 

• Support subviews without copying (e.g. view of interior) 

• Can be created over any rectangular index space, with 
support for strides 

•  Local-view representation makes locality explicit and 
allows arbitrarily complex distributions 
- Each rank creates its own piece of the global data 

structure 

• Allow fine-grained remote access as well as one-sided 
bulk copies 
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Overview of UPC++ Array Library 

• A point is an index, consisting of a tuple of integers 

• A rectangular domain is an index space, specified with a 
lower bound, upper bound, and optional stride 

• An array is defined over a rectangular domain and 
indexed with a point 

• One-sided copy operation copies all elements in the 
intersection of source and destination domains 

16!

ndarray<double, 2> A(r); A[lb] = 3.14; 

point<2> lb = {{1, 1}}, ub = {{10, 20}}; 

rectdomain<2> r(lb, ub); 

ndarray<double, 2, global> B = ...; 
B.async_copy(A); // copy from A to B 
async_wait(); // wait for copy completion 



Arrays in Adaptive Mesh Refinement 

• AMR starts with a coarse grid 
over the entire domain 

• Progressively finer AMR 
levels added as needed over 
subsets of the domain 

• Finer level composed of 
union of regular subgrids, 
but union itself may not be 
regular 

•  Individual subgrids can be 
represented with UPC++ 
arrays 

• Directory structure can be used to represent union of all 
subgrids 
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Example: Ghost Exchange in AMR 
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foreach (l, my_grids.domain()) 
 foreach (a, all_grids.domain()) 

  if (l != a) 

   my_grids[l].copy(all_grids[a].shrink(1)); 

 

Proc 0 Proc 1 

my_grids 

all_grids 

• Can allocate arrays in a global index space 
• Let library compute intersections 

"ghost" cells 

Avoid null copies!

Copy from interior of other grid!



Array Creation in miniGMG 

void!create_grid(...,!int!li,!int!lk,!int!lk,!int!szi,!

!!!!!!!!!!!!!!!!!int!szj,!int!szk,!int!ghosts)!{!

!!...!

!!double!*grid!=!upcxx::allocate<double>(...);!

!

!!rectdomain<3>!rd(PT(liNghosts,!ljNghosts,!lkNghosts),!

!!!!!!!!!!!!!!!!!!!PT(li+szi+ghosts,!lj+szj+ghosts,!

!!!!!!!!!!!!!!!!!!!!!!lk+szk+ghosts));!

!!point<3>!padding!=!...;!

!!ndarray<double,!3>!garray(grid,!rd,!true,!padding);!

!!...!

}!

19!

Existing Grid Creation Code 

Logical Domain of Grid 

Padding of Grid Dimensions 

Create Array Descriptor 
over Existing Grid Memory!

Grid Domain!

Column-Major 
Layout!

Padding!



Communication Setup for miniGMG Arrays 

point<3>!dirs!=!{{!di,!dj,!dk!}},!p0!=!{{!0,!0,!0!}};!

for!(int!d!=!1;!d!<=!3;!d++)!{!

!!if!(dirs[d]!!=!0)!

!!!!dst!=!dst.border(ghosts,!Nd!*!dirs[d],!0);!

!!if!(dirs[d]!==!N1!&&!src.domain().lwb()[d]!<!0)!

!!!!src!=!src.translate(p0.replace(d,!dst.domain().upb()[d]!N!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!ghosts));!

!!else!if!(dirs[d]!==!1!&&!dst.domain().lwb()[d]!<!0)!

!!!!src!=!src.translate(p0.replace(d,!Nsrc.domain().upb()[d]!+!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!ghosts));!

}!

!

rectdomain<3>!isct!=!dst.domain()*src.domain().shrink(ghosts);!

!

send_arrays[PT(level,!g,!nn,!i,!j,!k)]!=!src.constrict(isct);!

recv_arrays[PT(level,!g,!nn,!i,!j,!k)]!=!dst.constrict(isct);!

20!

Circular Domain Shift 
 at Boundaries 

Compute Intersection 

Save Views of Source and Destination Restricted to Intersection 



Bulk Communication Strategy 

• Bulk version uses manual packing/unpacking 
- Similar to MPI code, but with one-sided puts instead 

of two-sided messaging 

21!i (unit stride)! i (unit stride)!

send 
buffers 

recv 
buffer 

box 2 
(remote) 

box 0 
(local) 

box 3 
(remote) 

1 3 2 4 
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buffer 



Fine-Grained Communication Strategy 

• Fine-Grained version does multiple one-sided puts of 
contiguous data 
- Puts are at natural granularity of the algorithm 

22!i (unit stride)! i (unit stride)!

box 2 
(remote) 

box 0 
(local) 

box 3 
(remote) 

2 box 1 
(remote) 
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Array Communication Strategy 

• Array version logically copies entire ghost zones, 
delegating actual procedure to array library 
- Copies have one-sided semantics 
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Communication Coordination 

• Shared array used to coordinate communication 
shared_array<global_ptr<subdomain_type>,!1>!
global_boxes;!

• Bulk version must carefully coordinate send and receive 
buffers between ranks 
- Must ensure right buffers are used, same ordering 

for packing and unpacking elements 
- Special cases for ghost zones at faces, edges, and 

corners 
- Most difficult part of code 

• Minimal coordination required for fine-grained and array 
- Only need to obtain location of target grid from 

shared array 
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Ghost-Zone Exchange Algorithms 

• Pack/unpack parallelized using OpenMP in bulk version 
- Effectively serialized in fine-grained and array 25!

Bulk Fine-Grained Array 

Barrier Yes Yes Yes 

Pack Yes No No 

Async Puts/
Copies 

1 per 
neighboring rank 

1 for each 
contiguous 

segment 

1 per 
neighboring grid 

Async Wait Yes Yes Yes 

Barrier Yes Yes Yes 

Unpack Yes No No 

~ Line Count of 
Setup + Exchange 884 537 399 



Bulk Copy Code 

• Packing/unpacking code in bulk version: 
!!...!

!!for!(int!k!=!0;!k!<!dim_k;!k++)!{!

!!!!for!(int!j!=!0;!j!<!dim_j;!j++)!{!

!!!!!!for!(int!i!=!0;!i!<!dim_i;!i++)!{!

!!!!!!!!int!read_ijk!!=!(i+!read_i)!+!(j+!read_j)*!

!!!!!!!!!!!read_pencil!+!(k+!read_k)*!read_plane;!

!!!!!!!!int!write_ijk!=!(i+write_i)!+!(j+write_j)*!

!!!!!!!!!!write_pencil!+!(k+write_k)*write_plane;!

!!!!!!!!write[write_ijk]!=!read[read_ijk];!!

!!!!!!}!

!!!!}!

!!}!

• Code must be run on both sender and receiver 
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Fine-Grained Copy Code 

• Fine-grained code matches shared-memory code, but 
with async_copy instead of memcpy: 

!!...!

!!for!(int!k!=!0;!k!<!dim_k;!k++)!

!!!!for!(int!j!=!0;!j!<!dim_j;!j++)!{!

!!!!!!int!roff!=!recv_i!+!(j+recv_j)*rpencil!+!

!!!!!!!!(k+recv_k)*rplane;!

!!!!!!int!soff!=!send_i!+!(j+send_j)*spencil!+!

!!!!!!!!(k+send_k)*splane;!

!!!!!!async_copy(sbuf+soff,!rbuf+roff,!dim_i);!

!!!!}!

!!}!

• Takes advantage of fact that source and destination 
layouts match 
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Array Copy Code 

• Array version delegates actual copies to array library: 
!rcv!=!recv_arrays[PT(level,!g,!nn,!i,!j,!k)];!

!rcv.async_copy(send_arrays[PT(level,!g,!nn,!i,!j,!k)]); 

• Array library behavior for cases that occur in miniGMG: 
1.  If the source and destination are contiguous, then one-sided 

put directly transfers data 
2.  Otherwise, elements packed into contiguous buffer on source 

a)  If the elements and array metadata fit into a medium 
active message (AM), a medium AM is initiated 

–  AM handler on remote side unpacks into destination 
b)  Otherwise, a short AM is used to allocate a remote buffer 

–  Blocking put transfers elements to remote buffer 
–  Medium AM transfers array metadata 
–  AM handler on remote side unpacks and deallocates 

buffer  28!



Platforms and Experimental Setup 

• Cray XC30 (Edison), located at NERSC 
- Cray Aries Dragonfly network 
- Each node has two 12-core sockets 
- We use 8 threads/socket 

•  IBM Blue Gene/Q (Mira), located at Argonne 
- 5D torus network 
- Each node has 16 user cores, with 4 threads/core 
- We use 64 threads/socket 

• Fixed (weak-scaling) problem size of 1283 grid/socket  

• Two experiments on each platform 
- 1 MPI process, 8 or 64 OpenMP threads per socket  
- 8 MPI processes, 1 or 8 OpenMP threads per socket 
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Communication Histogram 
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• Histogram of message sizes per process, when using 1 
process/socket, for all three versions on Cray XC30 

1.E+00 

1.E+01 

1.E+02 

1.E+03 

1.E+04 

1.E+05 

1.E+06 

1.E+07 

4 16 64 256 1024 4096 16384 65536 

N
um

be
r o

f M
es

sa
ge

s 
Se

nt
 

Message Sizes (Bytes) 

 1 Process/Socket, 128^3/Process 

Bulk/MPI 

Fine-Grained 

Array 



Histogram of 1 MPI Process vs. 8/Socket  
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• Same overall problem size per socket 
• Fewer small messages per process when using 8 

processes, but more small messages per socket 
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Performance Results on Cray XC30 
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• Fine-grained and array versions do much better with 
higher injection concurrency 
- Array version does not currently parallelize packing/

unpacking, unlike bulk/MPI 
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Performance Results on IBM Blue Gene/Q 
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• Fine-grained does worse, array better on IBM than Cray 
• Using more processes improves fine-grained and array 

performance, but fine-grained still significantly slower 
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Summary of Results 

• Array abstraction can provide better productivity than 
even fine-grained, shared-memory-style code, while 
getting close to bulk performance 
- Unlike bulk, array code doesn’t require two-sided 

coordination 
- Further optimization (e.g. parallelize packing/unpacking) 

can reduce the performance gap between array and bulk 
- Existing code can be easily rewritten to take advantage of 

array copy facility, since changes localized to 
communication part of code 

• Fine-grained code not as bad as expected 
- 3x slowdown over bulk at scale on Cray XC30, 5x on IBM 

BG/Q, when using multiple processes/socket 
- On manycore machines, fine-grained performance will be 

crucial, since there will be significantly less memory/core 
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