
Lawrence Berkeley National Laboratory

Evaluation of PGAS
Communication
Paradigms With

Geometric Multigrid
Hongzhang Shan, Amir Kamil,

Samuel Williams, Yili Zheng, and
Katherine Yelick

Lawrence Berkeley Lab
Berkeley, CA, USA
October 10, 2014

1!

Overview

• We evaluate the productivity and performance of three
implementations of miniGMG, a multigrid benchmark

• The three implementations use different communication
strategies enabled by the PGAS model

1.  Fine-grained communication, at the natural
granularity of the algorithm

2.  Bulk communication, with manual packing and
unpacking by the user
•  One-sided analogue of message passing

3.  Higher-level array-based communication that
offloads the work to an array library
•  Still semantically one-sided

• We evaluate performance on two current platforms
2!

Implementation Strategy

• We use UPC++ to implement the three algorithms
- C++ library that implements the PGAS model
- Provides UPC-like shared arrays, which simplify

coordination between ranks but can still scale to
hundreds of thousands of ranks
- Includes a multidimensional array library that

supports fine-grained and bulk remote access
- Seamlessly interoperates with OpenMP, MPI, and

other parallel libraries
• We do not claim in this work that UPC++ is superior to

MPI or any other system
- Main focus is to evaluate alternative communication

algorithms
- Results applicable to other PGAS implementations

3!

Multigrid Overview

•  Linear Solvers (Ax=b) are ubiquitous in scientific computing
- Combustion, Climate, Astrophysics, Cosmology, etc.

•  Multigrid exploits the nature of elliptic PDEs to provide a
hierarchical approach with O(N) computational complexity

•  Geometric Multigrid is specialization in which the linear
operator (A) is simply a stencil on a structured grid (i.e.
matrix-free)

4!

“MG V-Cycle”

miniGMG Overview

•  3D Geometric Multigrid benchmark designed
to proxy MG solves in BoxLib and
 CHOMBO-based AMR applications

•  Defines a cubical problem domain
-  Decomposed into cubical subdomains (boxes)
-  Rectahedral collections of subdomains are assigned

to processes
-  Decomposition preserved across all levels of V-Cycle

•  MPI+OpenMP parallelization
•  Configured to use…

-  Fixed 10 U-Cycles (V-Cycle truncated when boxes are coarsened to 43)
-  7-pt stencil with Gauss Seidel Red-Black (GSRB) smoother that requires

nearest-neighbor communication for each smooth or residual calculation.
-  BiCGStab coarse-grid (bottom) solver

•  Communication pattern is thus…
-  Fixed 6 nearest-neighbor communication
- Message sizes vary greatly as one descends through the V-Cycle

(128KB -> 128 bytes -> 128KB)
-  Requires neighbor synchronization on each step (e.g. two-sided MPI) 5!

UPC++ Overview

• A C++ PGAS extension that combines features from:
- UPC: dynamic global memory management and one-

sided communication (put/get)
- Titanium/Chapel/ZPL: multidimensional arrays
- Phalanx/X10/Habanero: async task execution

• Execution model: SPMD + Aysnc

• Good interoperability with existing programming systems
- 1-to-1 mapping between MPI rank and UPC++ rank
- OpenMP and CUDA can be easily mixed with UPC++

in the same way as MPI+X

6!

Related Work

• PGAS variants and extensions
- AGAS, APGAS, APGNS, HPGAS…

• PGAS languages
- CAF, Chapel, Habanero, X10, XscaleMP, UPC

• PGAS libraries
- ARMCI, GASNet, Global Arrays, GASPI/GPI,

MPI-3 RMA, OpenSHMEM, XPI

• Parallel C++ libraries (distributed-memory)
- Charm++, Co-Array C++, DASH, HPX, HTA,

Phalanx, STAPL…

• Parallel C++ libraries (shared-memory)
- TBB, Thrust and many more

7!

A “Compiler-Free” Approach for PGAS

•  Leverage C++ standards and compilers
- Implement UPC++ as a C++ template library
- C++ templates can be used as a mini-language to

extend C++ syntax

• New features in C++11 are very useful
- E.g., type inference, variadic templates, lambda

functions, Rvalue references
- C++11 is well-supported by major compilers

8!

UPC++ Software Stack

GASNet Communication Library

Network Drivers and OS Libraries

C++ Compiler

C/C++ Apps

UPC++
Runtime

UPC++
Template
Header
Files

UPC
Runtime

UPC
Apps

UPC
Compiler

C11 standard: 701 pages
C++11: 1334 pages
C++14: 1352 pages

9!

C++ Generic Programming for PGAS

• C++ templates enable generic programming
- Parametric template definition
!template<class!T>!struct!array!{!

!!!T!*elements;!

!!!size_t!sz;!

!};

- Template instantiation
!array<double>!A;!

!array<complex>!B;

• UPC++ uses templates to express shared data
!shared_var<int>!s;!!//!shared!int!s!in!UPC!

!shared_array<int>!sa(8);!//!shared!int!sa[8]!!

!!!!!!!!!!!!!!!!!!!!!!!!!!//!in!UPC 10!

UPC++ Translation Example

shared_array)<int>)sa(8);)
sa[0])=)1;))//)“[]”)and)“=”)overloaded)
)

C++#Compiler#

UPC++#Run0me#

Local#Access#

Is#tmp_ref!
local?#

Yes No

tmp_ref)=)sa.operator)[])(0);)
tmp_ref.operator)=)(1);)

Remote#Access#
11!

Runtime
Address
Translation
Overheads

One-Sided Data Transfer Functions

//!Copy!count!elements!of!T!from!src!to!dst!
upcxx::copy<T>(global_ptr<T>!src,!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!global_ptr<T>!dst,!
!!!!!!!!!!!!!!!size_t!count);!

!

//!NonNblocking!version!of!copy!

upcxx::async_copy<T>(global_ptr<T>!src,!
!!!!!!!!!!!!!!!!!!!!!global_ptr<T>!dst,!
!!!!!!!!!!!!!!!!!!!!!size_t!count);!

!

//!Synchronize!all!previous!asyncs!

upcxx::async_wait();!

Similar to upc_memcpy_nb extension in UPC 1.3
12!

UPC++ Equivalents for UPC Users

UPC UPC++

Num. of ranks THREADS! THREADS!or!ranks()!

My ID MYTHREAD! MYTHREAD!or!myrank()!!

Shared variable shared!Type!s! shared_var<Type>!s!

Shared array shared![bf]!Type!
A[sz]!

shared_array<Type>!A!
A.init(sz,!bf)!

Pointer-to-shared shared!Type!*ptr! global_ptr<Type>!ptr!

Dynamic memory
allocation

shared!void!*!
upc_alloc(nbytes)!

global_ptr<Type>!!!
allocate<Type>(place,!count)!

Bulk data transfer upc_memcpy(dst,!
src,!sz)!

copy<Type>(src,!dst,!count)!

Affinity query upc_threadof(ptr)! ptr.where()!

Synchronization upc_lock_t!! shared_lock!

upc_barrier! barrier()!
13!

Multidimensional Arrays

• Multidimensional arrays are a common data structure in
HPC applications

• However, they are poorly supported by the C family of
languages, including UPC
- Layout, indexing must be done manually by the user
- No built-in support for subviews

• Remote copies of array subsets pose an even greater
problem
- Require manual packing at source, unpacking at

destination
- In PGAS setting, remote copies that are logically

one-sided require two-sided coordination by the user

14!

UPC++ Multidimensional Arrays

• True multidimensional arrays with sizes specified at
runtime

• Support subviews without copying (e.g. view of interior)

• Can be created over any rectangular index space, with
support for strides

•  Local-view representation makes locality explicit and
allows arbitrarily complex distributions
- Each rank creates its own piece of the global data

structure

• Allow fine-grained remote access as well as one-sided
bulk copies

15!

Overview of UPC++ Array Library

• A point is an index, consisting of a tuple of integers

• A rectangular domain is an index space, specified with a
lower bound, upper bound, and optional stride

• An array is defined over a rectangular domain and
indexed with a point

• One-sided copy operation copies all elements in the
intersection of source and destination domains

16!

ndarray<double, 2> A(r); A[lb] = 3.14;

point<2> lb = {{1, 1}}, ub = {{10, 20}};

rectdomain<2> r(lb, ub);

ndarray<double, 2, global> B = ...;
B.async_copy(A); // copy from A to B
async_wait(); // wait for copy completion

Arrays in Adaptive Mesh Refinement

• AMR starts with a coarse grid
over the entire domain

• Progressively finer AMR
levels added as needed over
subsets of the domain

• Finer level composed of
union of regular subgrids,
but union itself may not be
regular

•  Individual subgrids can be
represented with UPC++
arrays

• Directory structure can be used to represent union of all
subgrids

17!

Example: Ghost Exchange in AMR

18!

foreach (l, my_grids.domain())
 foreach (a, all_grids.domain())

 if (l != a)

 my_grids[l].copy(all_grids[a].shrink(1));

Proc 0 Proc 1

my_grids

all_grids

• Can allocate arrays in a global index space
• Let library compute intersections

"ghost" cells

Avoid null copies!

Copy from interior of other grid!

Array Creation in miniGMG

void!create_grid(...,!int!li,!int!lk,!int!lk,!int!szi,!

!!!!!!!!!!!!!!!!!int!szj,!int!szk,!int!ghosts)!{!

!!...!

!!double!*grid!=!upcxx::allocate<double>(...);!

!

!!rectdomain<3>!rd(PT(liNghosts,!ljNghosts,!lkNghosts),!

!!!!!!!!!!!!!!!!!!!PT(li+szi+ghosts,!lj+szj+ghosts,!

!!!!!!!!!!!!!!!!!!!!!!lk+szk+ghosts));!

!!point<3>!padding!=!...;!

!!ndarray<double,!3>!garray(grid,!rd,!true,!padding);!

!!...!

}!

19!

Existing Grid Creation Code

Logical Domain of Grid

Padding of Grid Dimensions

Create Array Descriptor
over Existing Grid Memory!

Grid Domain!

Column-Major
Layout!

Padding!

Communication Setup for miniGMG Arrays

point<3>!dirs!=!{{!di,!dj,!dk!}},!p0!=!{{!0,!0,!0!}};!

for!(int!d!=!1;!d!<=!3;!d++)!{!

!!if!(dirs[d]!!=!0)!

!!!!dst!=!dst.border(ghosts,!Nd!*!dirs[d],!0);!

!!if!(dirs[d]!==!N1!&&!src.domain().lwb()[d]!<!0)!

!!!!src!=!src.translate(p0.replace(d,!dst.domain().upb()[d]!N!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!ghosts));!

!!else!if!(dirs[d]!==!1!&&!dst.domain().lwb()[d]!<!0)!

!!!!src!=!src.translate(p0.replace(d,!Nsrc.domain().upb()[d]!+!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!ghosts));!

}!

!

rectdomain<3>!isct!=!dst.domain()*src.domain().shrink(ghosts);!

!

send_arrays[PT(level,!g,!nn,!i,!j,!k)]!=!src.constrict(isct);!

recv_arrays[PT(level,!g,!nn,!i,!j,!k)]!=!dst.constrict(isct);!

20!

Circular Domain Shift
 at Boundaries

Compute Intersection

Save Views of Source and Destination Restricted to Intersection

Bulk Communication Strategy

• Bulk version uses manual packing/unpacking
- Similar to MPI code, but with one-sided puts instead

of two-sided messaging

21!i (unit stride)! i (unit stride)!

send
buffers

recv
buffer

box 2
(remote)

box 0
(local)

box 3
(remote)

1 3 2 4
box 1

(remote)

1

2

3

4 recv
buffer

Fine-Grained Communication Strategy

• Fine-Grained version does multiple one-sided puts of
contiguous data
- Puts are at natural granularity of the algorithm

22!i (unit stride)! i (unit stride)!

box 2
(remote)

box 0
(local)

box 3
(remote)

2 box 1
(remote)

1

Array Communication Strategy

• Array version logically copies entire ghost zones,
delegating actual procedure to array library
- Copies have one-sided semantics

23!i (unit stride)! i (unit stride)!

box 2
(remote)

box 0
(local)

box 3
(remote)

box 1
(remote)

2

1

Communication Coordination

• Shared array used to coordinate communication
shared_array<global_ptr<subdomain_type>,!1>!
global_boxes;!

• Bulk version must carefully coordinate send and receive
buffers between ranks
- Must ensure right buffers are used, same ordering

for packing and unpacking elements
- Special cases for ghost zones at faces, edges, and

corners
- Most difficult part of code

• Minimal coordination required for fine-grained and array
- Only need to obtain location of target grid from

shared array
24!

Ghost-Zone Exchange Algorithms

• Pack/unpack parallelized using OpenMP in bulk version
- Effectively serialized in fine-grained and array 25!

Bulk Fine-Grained Array

Barrier Yes Yes Yes

Pack Yes No No

Async Puts/
Copies

1 per
neighboring rank

1 for each
contiguous

segment

1 per
neighboring grid

Async Wait Yes Yes Yes

Barrier Yes Yes Yes

Unpack Yes No No

~ Line Count of
Setup + Exchange 884 537 399

Bulk Copy Code

• Packing/unpacking code in bulk version:
!!...!

!!for!(int!k!=!0;!k!<!dim_k;!k++)!{!

!!!!for!(int!j!=!0;!j!<!dim_j;!j++)!{!

!!!!!!for!(int!i!=!0;!i!<!dim_i;!i++)!{!

!!!!!!!!int!read_ijk!!=!(i+!read_i)!+!(j+!read_j)*!

!!!!!!!!!!!read_pencil!+!(k+!read_k)*!read_plane;!

!!!!!!!!int!write_ijk!=!(i+write_i)!+!(j+write_j)*!

!!!!!!!!!!write_pencil!+!(k+write_k)*write_plane;!

!!!!!!!!write[write_ijk]!=!read[read_ijk];!!

!!!!!!}!

!!!!}!

!!}!

• Code must be run on both sender and receiver
26!

Fine-Grained Copy Code

• Fine-grained code matches shared-memory code, but
with async_copy instead of memcpy:

!!...!

!!for!(int!k!=!0;!k!<!dim_k;!k++)!

!!!!for!(int!j!=!0;!j!<!dim_j;!j++)!{!

!!!!!!int!roff!=!recv_i!+!(j+recv_j)*rpencil!+!

!!!!!!!!(k+recv_k)*rplane;!

!!!!!!int!soff!=!send_i!+!(j+send_j)*spencil!+!

!!!!!!!!(k+send_k)*splane;!

!!!!!!async_copy(sbuf+soff,!rbuf+roff,!dim_i);!

!!!!}!

!!}!

• Takes advantage of fact that source and destination
layouts match

27!

Array Copy Code

• Array version delegates actual copies to array library:
!rcv!=!recv_arrays[PT(level,!g,!nn,!i,!j,!k)];!

!rcv.async_copy(send_arrays[PT(level,!g,!nn,!i,!j,!k)]);

• Array library behavior for cases that occur in miniGMG:
1.  If the source and destination are contiguous, then one-sided

put directly transfers data
2.  Otherwise, elements packed into contiguous buffer on source

a)  If the elements and array metadata fit into a medium
active message (AM), a medium AM is initiated

–  AM handler on remote side unpacks into destination
b)  Otherwise, a short AM is used to allocate a remote buffer

–  Blocking put transfers elements to remote buffer
–  Medium AM transfers array metadata
–  AM handler on remote side unpacks and deallocates

buffer 28!

Platforms and Experimental Setup

• Cray XC30 (Edison), located at NERSC
- Cray Aries Dragonfly network
- Each node has two 12-core sockets
- We use 8 threads/socket

•  IBM Blue Gene/Q (Mira), located at Argonne
- 5D torus network
- Each node has 16 user cores, with 4 threads/core
- We use 64 threads/socket

• Fixed (weak-scaling) problem size of 1283 grid/socket

• Two experiments on each platform
- 1 MPI process, 8 or 64 OpenMP threads per socket
- 8 MPI processes, 1 or 8 OpenMP threads per socket

29!

Communication Histogram

30!

• Histogram of message sizes per process, when using 1
process/socket, for all three versions on Cray XC30

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

4 16 64 256 1024 4096 16384 65536

N
um

be
r o

f M
es

sa
ge

s
Se

nt

Message Sizes (Bytes)

 1 Process/Socket, 128^3/Process

Bulk/MPI

Fine-Grained

Array

Histogram of 1 MPI Process vs. 8/Socket

31!

• Same overall problem size per socket
• Fewer small messages per process when using 8

processes, but more small messages per socket

1.E+0

1.E+1

1.E+2

1.E+3

1.E+4

1.E+5

1.E+6

1.E+7

4 16 64 256 1024 4096 16384 65536 N
um

be
r o

f M
es

sa
ge

s
Se

nt

Message Sizes (Bytes)

 1 Process/Socket, 128^3/Process

Bulk/MPI

Fine-Grained

Array

1.E+0

1.E+1

1.E+2

1.E+3

1.E+4

1.E+5

1.E+6

1.E+7

4 16 64 256 1024 4096 16384 N
um

be
r o

f M
es

sa
ge

s
Se

nt

Message Sizes (Bytes)

8 Processes/Socket, 64^3/Process

Bulk/MPI
Fine-Grained
Array

Performance Results on Cray XC30

32!

• Fine-grained and array versions do much better with
higher injection concurrency
- Array version does not currently parallelize packing/

unpacking, unlike bulk/MPI

B
et

te
r

B
et

te
r

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

8 64 512 4096 32768

R
un

ni
ng

 T
im

es
 (s

)

No. of Processes (x1 OpenMP)

Fine-Grained
Array
Bulk
MPI

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

1 8 64 512 4096

R
un

ni
ng

 T
im

es
 (s

)

No. of Processes (x8 OpenMP)

Fine-Grained
Array
Bulk
MPI

Performance Results on IBM Blue Gene/Q

33!

• Fine-grained does worse, array better on IBM than Cray
• Using more processes improves fine-grained and array

performance, but fine-grained still significantly slower

0.00#

2.00#

4.00#

6.00#

8.00#

10.00#

12.00#

14.00#

1# 8# 64# 512# 4096#

Ru
nn

in
g)
Ti
m
es
)(s
))

No.)of)Processes)(x64)OpenMP))

FineCGrained#
Array#
Bulk#
MPI#

0.00#

2.00#

4.00#

6.00#

8.00#

10.00#

12.00#

14.00#

8# 64# 512# 4096# 32768#

Ru
nn

in
g)
Ti
m
es
)(s
))

No.)of)Processes)(x8)OpenMP))

FineCGrained#
Array#
Bulk#
MPI#

B
et

te
r

B
et

te
r

Summary of Results

• Array abstraction can provide better productivity than
even fine-grained, shared-memory-style code, while
getting close to bulk performance
- Unlike bulk, array code doesn’t require two-sided

coordination
- Further optimization (e.g. parallelize packing/unpacking)

can reduce the performance gap between array and bulk
- Existing code can be easily rewritten to take advantage of

array copy facility, since changes localized to
communication part of code

• Fine-grained code not as bad as expected
- 3x slowdown over bulk at scale on Cray XC30, 5x on IBM

BG/Q, when using multiple processes/socket
- On manycore machines, fine-grained performance will be

crucial, since there will be significantly less memory/core
34!

